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Abstract

We prove that a domain £1 in the exterior of a convex domain C in a four-dimensional simply connected
Riemannian manifold of nonpositive sectional curvature satisfies the relative isoperimetric inequality
647T2 Vol(Q)3 < Vol(3fi ~ dC)\ Equality holds if and only if ft is an Euclidean half ball and 3Q ~ dC
is a hemisphere.

2000 Mathematics subject classification: primary 49Q20, 58E35.

1. Introduction

The classical isoperimetric inequality states that if Q is a domain in R" then

(1) n"a)n Vol(ft)"-1 <

where a>n represents the volume of a unit ball in W. Here equality holds if and only

if Q is a ball. One natural way to extend this optimal inequality is the following. Let

HI be a half-space {(xu . . . , xn) : xn > 0} in OS" and let Q be a domain in M with

dQHdU ^ 4>. If we define Q = {(xu ..., *„_,, -xn) : (*,, . . . , *„ ) 6 Q], then it

follows from (1) that

nncon Vol(S2 U 5)"-1 < VolO(S2 U

Dividing this inequality by 2" yields

- nncon
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Motivated by this, one can ask the following question. Given a convex domain C C R"
and a domain Q in R" ~ C with 3£2fl9C ^ 0, does £2 satisfy the relative isoperimetric
inequality

(2) ]• nncon Vol(^)"-1 < VolOJ2 ~ 3 C ) \

with equality holding if and only if Q is a half-ball and dQ ~ dC is a hemisphere?
In [1] Aubin conjectured that (1) should hold for a domain £1 in an n -dimensional

simply connected Riemannian manifold M" of nonpositive sectional curvature. This
conjecture is still open except for the dimensions n = 2 ,3 ,4 ; these cases were proved
by Weil [10], Kleiner [9], and Croke [7], respectively.

Extending Aubin's conjecture, one can ask the following. Does (2) hold for a
simply connected Riemannian manifold M" of nonpositive sectional curvature, C a
convex domain in M, and £2 a domain in M ~ C? Does equality hold if and only if
Q is a Euclidean half ball?

One can easily prove (2) in a two-dimensional M by considering the convex hull
of Q. Recently, the relative isoperimetric inequality in M3 was proved in [6]. In this
paper we prove the inequality in M4. However, in dimensions higher than four, the
problem is still open. In Euclidean space R", there are some partial results [8, 4] and,
recently, a general result [5].

The key idea of this paper in the proof of (2) is that the concavity of M ~ C
conforms naturally to the negativity of the curvature of M. We employ Croke's
method [7] in this paper.

We would like to thank Rick Schoen for inviting us to have a valuable sabbatical
year at Stanford University in 2002-2003.

2. Double cover of S2 relative to C

Let M be an n-dimensional Riemannian manifold and SM the unit sphere bundle
of M. A geodesic flow <t>, on M satisfies

yv(t) = no<t>,(v) and y'v(t) = <t>,(v)

where yv denotes the geodesic with initial point n(v) and initial velocity vector v, and
n is the projection from SM onto M. Note that <t>, takes SM to itself. Liouville proved
that <t>, preserves the canonical measure on SM, the local product of the Lebesgue
measure on the unit tangent spheres with the Riemannian measure on M. From this
theorem one obtains Santalo's formula as follows.

Let Q c M be a relatively compact domain. For v e SM, we set

l(v) = sup{r : yv(t) eQ, V? e (0, r)},
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that is, yv(l(v)) will be the first point on the geodesic to hit 3 ft. Denote by v the
inward unit normal vector field along 3ft, and let S+3ft denote the set of inward
pointing unit vectors along 3 ft, that is,

S+3ft = {ueSQ\dn : (u, VjcW) > 0}.

The measure du on S+3 ft is the local product of the canonical measure on unit tangent
hemispheres with the Riemannian measure on 3 £2.

Since the measure du on SM is invariant with respect to the geodesic flow <t>,,
integration on Sft can be performed by summing up the one-dimensional integrals
along all geodesies in ft starting from 3ft. This is the gist of Santalo's formula

f f(v)dv= f {u,vnW)du f f{<b,u)dt.
Jsn Js+da Jo

For a proof, see [3, pages 231-232].
A characteristic of the relative isoperimetric inequality is that it does not count

the volume of dQ D dC. In other words, dQ D dC is not considered to be part of
the boundary of Q. This motivates us to consider the gluing of Q with itself along
dQ Pi 3C. More precisely, let ft, and Q2 be two replicas of Q, l e t « be the equivalence
relation which identifies the two points of 3fti and 3ft2 that correspond to a point of
3ft n dC, and define Q* = ft, U Q2/ « . Let us call Q* the double cover of Q relative
to C. Obviously, Q* is a smooth manifold if dC is smooth. Its boundary 3ft* is the
double cover of 3ft ~ dC.

Although the metric of Q* is smooth away from 3C, it is just continuous on dQCidC.
Being a Riemannian manifold, Q* has geodesies. When a geodesic of Q* moves from
ft] to Q2, or the other way around, it bounces off C at 3ft n dC just as a light ray
is reflected by a mirror. Given a point p off 3C and v e Mp there exists a unique
geodesic yv starting from p in the direction of v. However, if p is in 3ft n dC and v
is tangent to 3C then there are three geodesies yv on ft* since there are two identical
geodesies yv on ft, and ft2, and the third is the geodesic of 3C in v direction.

Nonuniqueness of geodesies is due to the nonsmoothness of the metric of ft*
along dC. Since the metric is only continuous, the Christoffel symbols F'jk are
discontinuous at p G dC and so the sectional curvature can be infinite at p if 3C is
strictly convex. Still, the Jacobi field J is well defined. J is smooth away from dC and
continuous along dC. Because of nonuniqueness of geodesic, the geodesic flow <3>,
on ft* along a geodesic path y is not well defined when y is tangent to dC. However,
it is well defined and smooth almost everywhere. In particular, it is not difficult
to see that 4>, is measure preserving along y when y is transversal to 3C. This is
because even though the metric of ft* is not smooth at p e y n 3C, <t>, is measure
preserving both up to p and after p. Therefore we still have Santalo's formula on
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the C° Riemannian manifold £2*

[ f(v)dv= f uvdu f f(<t>,u)dt,
JSSl' JS+dSl' Jo

where uv := (u, vn(u)). Hence letting f(v) = 1 gives the following.

LEMMA 2.1. Vol(fi*) = (\/ncon) Js+dQ. l(u)uv du.

Recall that £2* is a double cover of Q and 3£2* is a double cover of dQ ~ 3C.
Therefore the relative isoperimetric inequality (2) for £2 c M will follow if we can I
prove the classical isoperimetric inequality for £2*, \

(3) n"u>nVol(n*)n-[ < Vol(3n*)\

For the following lemma let us write antw :— —yu'(/(M)). See [7] for its proof.

LEMMA 2.2. For an integrable function g on S+3£2*,

/ g(u)uvdu= / g(ant u)uvdu.
JS+dn- JS+dSl'

3. Concavity vs negativity of curvature

Suppose that M is a 2-dimensional Riemannian manifold, C is a convex domain in
M, and D C M is a domain in the exterior of C. Then the Gaussian curvature of D*
along 3D n 3C can be - o o . For example, let C = {(x, y) € K2 : x2 + y2 < 1} and
D = {(x, y) : 1 < x2 + y2 < 2}. Then the integral of the Gaussian curvature of D*
along dDDdC equals —4n. This follows from the Gauss-Bonnet theorem applied to
the annulus D*.

Thus the concavity of D along 3D (1 dC implies the negativity of curvature on
D* fl dC. However, this is not the case for a domain £2 in M", n > 3. The sectional
curvature of fi* along the section of dC is even positive. However, if M is simply
connected and nonpositively curved, Q* still enjoys properties of a negatively curved
manifold: (i) the volume of a geodesic ball in £2* grows as in a negatively curved
manifold; and (ii) two rays emanating from a point never intersect each other. First
we need the following.

LEMMA 3.1. Suppose that M is simply connected and nonpositively curved, C C M
is a convex domain and a domain £1 C M lies in the exterior of C. Suppose that
a : [0,/] —> £2* is a geodesic segment passing through dQDdC at a (a) transversally.
Then a(t) <£dQ(l dC for any t £ a.
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PROOF. Suppose that a c ft hits 3ft n dC when t — b. Since M is simply
connected and nonpositively curved, a is the unique geodesic from o(a) to a(b). By
the convexity of C, a(a, b) lies in C, which is a contradiction. •

Lemma 3.1 implies that a geodesic which moves from f21 to ^22 transversally
crossing 3 ftPi3 C never comes back to Q{. This partially proves property (ii) mentioned
above.

Let dx be the volume form of M",dup the volume form of the unit sphere in Mp,
and (M, r) the polar coordinates about p e M. Then dx = h{u, r)dupdr for some
positive function h(u, r) . If M has nonpositive sectional curvature then h(u, r) > r"~l

with equality if and only if the sectional curvatures of all sections containing y'u are 0
(see [2, Section 11.10]).

LEMMA 3.2. (a) Let M, C, ft be as in Lemma 3.1. Then h(u, r) > r""1 on ft*,
with equality for every p if and only ifQ* is flat.
(b) Two rays in ft* emanating from a point and transversal to 9ft D dC never

intersect each other.

PROOF, (a) We have only to consider the case when the geodesic realizing r hits
dC transversally. Fix p e ft* and let S be a 2-dimensional surface in ft* consisting
of geodesies emanating from p. Let J(t) be the Jacobi field along a geodesic y(t)
from p = y(0) with 7(0) = 0, |7'(0)| = 1, and J'(0) 1 y'(0). J satisfies the Jacobi
equation

(4) J" + R(y',J)y' = 0,

where R is the Riemann curvature tensor of S. However, this equation is not well
defined because R = — oo when y hits dC. So let us consider J' instead of J".
Equation (4) implies that \J'(t)\ is nondecreasing as a function of t away from dC.
When y hits 3C, | J ' | is discontinuous. The point is that | J ' | jumps up on dC. This is
where the convexity of C plays a key role. Hence | J ' | can be said to be nondecreasing
everywhere. Therefore

\J'(t)\>\J'(O)\ = l,

and hence

(5) \J(t)\>t.

This inequality implies that the exponential map exp : ft* —> ft* is length increasing
(nondecreasing, to be precise). Now let us show that exp is volume increasing.
Suppose that Jexp(w,) = u,, i = 1 , . . . , n — 1, and that w, are orthogonal to each
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other and t>, ± y'. Let U and V be (n — l)-dimensional parallelepipeds generated by
M, and v,, respectively. Then

Vol(f/)< f ] | n , | < Y] |v/l = Vol(V).
l<i<n—1 l< i<n- l

Hence exp is volume increasing and it follows that h(u, r) > r"~l.
If equality holds at every p, then Vol(U) = Vol(V) and so |w,| = |u,| and u, are

pairwise orthogonal. Thus exp is an isometry and Q* is flat.
(b) We see from (5) that exp has nonsingular differential and hence it is a local

diffeomorphism. Therefore the exponential map is one-to-one. •

LEMMA 3.3.

I du <
n. (antM),

with equality if and only ifQ is flat and convex.

PROOF. Let dA be the volume form of dQ*. If we denote B = e\p{tu : t = /(«)},

then B C dQ* and dA\B = h(u, l(u))/(antu)vdup. Write S+dQ* = n-[[p} for
77- : S+dQ* -> 3f2*. Then the map (p : S+dQ* -> dQ* defined by <p(u) = exp(l(u)u)

is a one-to-one map by Lemma 3.2 (b). This is another place where the convexity

of C is critically used. Therefore we have

5+3n. (antu),,

Note that Vol(fi) = Vol(3fi*) if and only if dQ* is star-shaped from p. Integrating

over p € 9fi* yields
f h(u,l(u)) ,
/ du < Vol(o£2 )

Js+dn. (ant«)u

with equality if and only if Q is convex. Thus Lemma 3.2 (a) completes the proof. D

See [7] for the proof of the following.
LEMMA 3.4.

/ (antM)u'
/("-2)Mu<"-1)/<"-2)^M < &„ Vol(3f2*)

where

an = (n- I K . , / cos'l/("-2) t sin""2 r dt.
Jo

Equality holds if and only if (ant u)v = uv everywhere.
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4. Theorem

We are now ready to prove the relative isoperimetric inequality for £2 c M ~ C.

THEOREM. Let M be a four-dimensional simply connected Riemannian manifold
of nonpositive sectional curvature. If C C M is a convex domain and Q is a domain
in M ~ C, then Q satisfies

64 TT2 Vol(ft)3 < Vol(3fi ~ 3C)4.

Equality holds if and only ifQ is a Euclidean half-ball and dQ, ~ dC is a hemisphere.

PROOF. We will first prove the classical isoperimetric inequality (3) for Q*.

Vol(£T) = — - I l(u)uvdu (Lemma2.1)
2x J

(Holder)

1 /JT2\2P

< Vol(3fi*)2/3 — Vol(3f2*)2/3. (Lemmas 3.3-3.4)
In2 \ 4 /

Therefore

128TT2VO1(Q*)3 < VolOn*)4.

Dividing this inequality by 24 gives the desired relative isoperimetric inequality for Q.
Equality holds only if we have equalities in Lemmas 3.3-3.4 as well as in the

Holder inequality. Hence equality holds only if £1 is flat and convex, (antM)u = «„,
and l(u) = duv for some constant d > 0. Therefore Q* is an Euclidean ball of
diameter d. •
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