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AUTOMORPHISMS OF CERTAIN P-GROUPS (P ODD).

M.J. CURRAN

This paper shows that amongst the p-groups of order p®, where p denotes an odd prime,
there is only one group whose automorphism group is again a p-group. This automorphism
group has order p® and it is shown that this is the smallest order a p-group may have
when it occurs as an automorphism group. The paper also shows that all groups of order
p® have an automorphism of order 2 apart from the group above and three other related
groups.

In [6] MacHale considers p-groups which can occur as the automorphism group
of a finite group. In particular he conjectures that for p odd, the smallest p-group
which can arise in this way is of order p!® and is the automorphism group of a certain
3-generator class 2 p-group of order p®. He also conjectures in connection with this
that every group of order p®, p odd, has an automorphism of order 2. The purpose of
this paper is to show that both conjectures are false. Amongst the groups of order p°,
p > 3, there is one group

Go = (alaa I of = [al’a]p = [al;aaa]p = [alva’a7a]p = [a],a,a,a,a] =1,

alf = [alaa’aaa] = [al’a’al]_l)

defined when (p — 1,3) =1, and three groups defined when (p — 1,3) = 3, which have
no automorphisms of order 2. The latter three groups however possess automorphisms
of order 3. We show that G¢ is the unique group of order p® whose automorphism
group is again a p-group, that | Aut Go| = p®, and that p® is the smallest order which
can occur when a p-group, p odd, is an automorphism group.

The notation used is standard and that of Gorenstein [3]. In particular the commu-
tator [z,y,z,...] = [[[z,9],2],...], where [z,y] = 2 7'y zy. We do however denote the
lower central series of a group G by 71(G) = G, 72(G) = [G,G], 7i(G) = [7i-1(G),G]
for ¢ > 2, and the cyclic group of order n by C,.

Throughout, p always denotes an odd prime.

We first consider which groups of order p® have an automorphism of order 2. James

[5] gives the groups of order p™, n < 6, using the Hall-Senior method of classification
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by isoclinic families. We use James’ list and adopt the same notation for the presen-
tations. In particular, in any such presentation, trivial relations of the form [a,f] =1
between generators are omitted for economy of space. We also use throughout the fol-
lowing standard procedure to produce an appropriate automorphism. If a group has
presentation G = (X|R) and 6: X — G, we will denote the image z¢ of any generator
z; € X by T;. Thenif G = (X), where X = {Z; | z; € X} and the generators %; also
satisfy the relations R, 6 extends to an automorphism of G.

We begin by extending a result of Heineken and Liebeck in Theorem 2, but first

state a lemma proved using standard properties of commutators.

LEMMA 1. Let G be a class 3 group. Forany a, be G

(1) [a’_laba b] = [a'vbab]—_l (“) [a,b—17b—l] = [a’ba b]
(iii) [a=*,67,67"] = [a, b,b]* (iv) [a™1,67 1, a7 ] = [a,b,a]

THEOREM 2. If G is a p-group of order p™, n < 5, and nilpotency class at most
3, then G has an automorphism of order 2.

PROOF: The result is certainly true if G is abelian (Lemma 5 in [2]) or of class 2
(Lemma 7 in [8]) or of order p* (Lemma 9 in [8]). We may thus assume G is a class 3
group of order p®. From James’ list there are four families, @3, ¢¢, ¢7 and ¢s of such
groups. For each of these families we show it is possible to define an automorphism 4
which inverts at least one of the generators and fixes the remainder, so § has order 2.

The family ¢3 consists of groups G with G/Z(G) ~ ¢,(1%), the nonabelian
group of order p* and exponent p, and G' = Cp x Cp. Thus G/G' = CZ x C, or
G/G' = Cp x Cp x Cp and G = (a,y) is a 2-generator group or G = (a,ay,7) is
a 3-generator group respectively. However for convenience, as in [5], define additional
generators aiy; = [ai,a], ¢ = 1,2. Then in either the 2 or 3 generator case all the
groups G satisfy the relations: of,; =1, ¢ = 1, 2; together with 2 (or 3) additional

. t t
relations of the form: o =al, of =af, (vP = a}), where t =1 0r 2, 0< [, m

n < p. Note 72(G) = (az2,a3) and v3(G) = (@3). Now define 8 so that @ = o1,
@ = o', (7 = 7). Then @; is a conjugate of a; and, by Lemma 1, &; =
[a]? 1
¢ is the required autoinorphisin.

The family ¢q consists of groups G with G/Z(G) = ¢;(13) and G' = C,xCpxCy.
Thus G/G' = Cp, x Cp and G = (ay,a2) is a 2-generator group. Define additional
generators 8 = [ay,a2], Bi = [B,;], i = 1,.2. Then all the groups G satisfy the

,a ', a™] = a;'. Thus the barred generators also satisfy the above relations, so

relations: AP = B = 1, i = 1, 2; together with 2 further relations of the form:
of = ByB*, i = 1, 2. Note 72(G) = (8, B1, B2) and Z(G) = 713(G) = (B1, Bz2).
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Now define § so @; = a;!,i=1,2. Then 8 is a conjugate of # and, by Lemma 1,
B, = o7t o7t a7t = [e1,02,04)7 = 7Y, i = 1, 2. Again the barred generators
satisfy the relations, so 8 is an automorphism.

The family ¢ consists of groups G with G/Z(G) ~ ¢2(1*)xCp and G' = CpxC,.
Thus 73(G) = Z(G) = C, and since G/Z(G) is of exponent p, G/G' =~ C, x Cp, x Gy,
so G = (@, @;,P) is a 3-generator group. Define additional generators a;y1 = [a;,a],
i =1, 2. Then all the groups G satisfy the relations: o},, =1, i =1, 2, [1,8] = a3;
together with 3 further relations of the form: of = of, af = of*, GP = aF, where
0<!,m,n < pand m and n are not both nonzero. Note 7;(G) = (az,a3) and
v3(G) = (a3). When n = 0 define § so @ =o', @a=a"!, f=0. Then @, isa
conjugate of az, @ = [a;',a"!,a”?] = 05! by Lemma 1, and [@;,0) = [0 },8] =
[a1,8]7! since [a;,0] € Z(G). When n # 0 and m = 0 define 8 so that @; = o1,
@=a"!, =/. Then @, is a conjugate of a; ', @ = [a1,a”},a”!] = a3 by Lemma
1 and [@,f] = [a1,8]. In either case, the barred generators again satisfy the relations
and @ is an automorphism.

Finally the family ¢3 consists of just one group G = {(a;,03,8 | [e1,02] = 8 =
a'l’,ﬂ”z = a’z’2 = 1), which is a split extension of the cyclic group (ay) by the cyclic

group (az). Inverting o; and fixing ap thus gives the desired automorphism 8. ]

We now deal with the groups of order p® and nilpotency class 4, again with the
aid of James’ list. But first we define the following groups G, which are denoted by
$10(2111)b,. in that list:

Definition. For p > 3, define G, by

G, = (a’al,a2aa3,a4 I [ai,a] = aH—la[al,aZ]k = a: = a‘1’7ap = a€+1 =11 = 1’2,3)a

where r+1=1,...,(p—1,3) and k = g", g being the smallest positive integer which

is a primitive root (mod p).

THEOREM 3. Excluding the group(s) G, defined above, all remaining class 4
groups of order p® have an automorphism of order 2.

PROOF: In James’ list of groups of order p® there are two class 4 families ¢y and
d10-

When p = 3 these families have a slightly different form, so we consider the
groups of order 3° first. Each of these is of the form G = (a,a;, a3z, a3, a4), where
air1 = |ag,a], i =1, 2, 3. For each we content ourselves with giving below James’
designation of the group, the defining relations, and the action of an automorphism of
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order 2 on the two basic generators a; and.a.

3

$9(2111)a  ad =g, oz =adeg =0 =al =1, @ =0, @ = o] %am

$o(2111)b;  : daz=ag,a’=aday=cal=al=1;7 =7, @=a™*

¢9(15) : a3=ai'a3=a;‘a4=ag=a4=1; El=a11,a=a.

$10(2111)a, : [og,ep) ! = aZH =atddoy =y =l =ai=1;r=0,1;
a; =o01,0 = alazal_z.

$10(1°) i [ea, 2] = a0 = oz = aday = o) =af =1;

— - —1
oy = 01,00 = o .

For p > 3, the two families ¢y and ¢y¢ conmsist of groups G with G/Z(G) =~
¢3(14), the non-abelian class 3 group of order p* and exponent p, and G' =~ C, x
Cp x Cp. Thus G/G' = Cp x Cp and G = (a, ;) is a 2-generator group. Define the
additional generators a;+31 = [@;,a] for i = 1, 2, 3. Then the groups G all satisfy the
relations: of,; =1 for ¢ =1, 2, 3; together with 2 relations of the form: of = af*,
of =af, 0<m, n < p; where m and n are not both non-zero. The groups G
in @10 also satisfy the additional relation: [, 3] = ag. Note 72(G) = (az,a3,a4),
73(G) = {az,4) and Z(G) = v4(Q) = (0yq) .

When n = 0, define 6 so that @ = a! and @ = a;. Then using stan-
dard commutator properties [aq,a™,a7!,a™!] = [a3,a,0,a]7! so @y = o] and
[a1,a7, 1] = [@1,@, 1] so [@1,@2] = [a1,a2]"!. Also @; and @; are conjugates
of a;! and aj respectively.

With the exception of the groups G, defined above, n # 0 and m = 0 occurs
only for groups G in ¢y. For these groups in ¢y define # so that @ = o and &, =
a;!. Then as above [a;},a,a,a] = [a1,0,@,a] ™! so @ = a;?, and @, and @; are
conjugates of a; ! and a3’ respectively. So in both cases the barred generators satisfy

the relations above, and ¢ is the required automorphism of order 2. 1

We now treat the exceptional group(s) G..

THEOREM 4. . The groups G, defined above have no automorphisms of order 2.
In particular, for p > 3, if (p~1,3) =3 then |AutG,| =3p®, r = 0, 1, 2, and if
(p—1,3) =1 then [Aut Gy| = p®.

PROOF: G = G, has 72(G) = {(az,03,4), 73(G) = (a3,cq) and Z(G) =
74(G) = {a4) . Since G/G' = Cpx Cp, G has p+1 maximal subgroups My = (a;,G'),
M; = {aia,G"), 1 < i < p. Now M) = {[a1,@;]) = (a4), whereas for ¢ > 0,
M| = (a3, aq4) since [az,ala] = [az,allaz, e1] = eza;’ and [a;,ale] = [a;z,a) = ay4.

Thus M, is characteristic.
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G has exponent p? since a; € G has order p?* but G has no elements of larger
order since G/Z(G) ~ ¢;3(1*) has exponent p. Thus M,,..., M,_; all have exponent
p® since ay € My, and for 1 <i<p—1, ala € M; and (aia)’ = (af)i = okt using
that G is regular. However, M, clearly has exponent p, again using that G is regular.
Thus M, is characteristic.

Therefore since My, M, and G' are characteristic, any automorphism 6 of G
must be defined so that @; and @ have the form: @; = aiz, @ = aly, where 1 <1,
j<pand z, y € G'. In fact we use the relations of = af = [, @;]* to show that if
6 is an automorphism then ¢ =1 (mod p) and j =:¢~! (mod p). (*)

First

(1) o = (aiw)p = ok

Next @; = [@1,@] = [aiz,a’y] and by considering the image of this commutator in
G/713(G), we see that @ = af)w, for some w € 73(G). So [@1,&:] = [ai,afw] =

i _ 8%
[@r,02]"7 = a5 7. Thus

(@) (@, ) = o} 7%,
Equating (1) and (2) gives
(3) 17 =1 (mod p).

Also &; = [@,d] = [a;w,a’y] and by considering the image of this commutator in
G/74(G), we see that &3 = ajz, for some z € 74(G). Thus &y = [a;,a] = [a)z,afy] =

. 2
; 2 ~ k
[as,a)? = i, s0 @ =a) " so

(4) a:’ = aizk.
Equating (1) and (4) gives
(5) j? =i (mod p).

Thus from (3) and (5) * =1 (mod p) and j =1~' (mod p), which is (*). Conversely,
if ¢ and j satisfy (*), then the barred generators satisfy the defining relations of G, so
any map 8 of form &; = o'z, @ = afy,forany z, y € G', extends to an automorphism
of G.

Now |G'| = p*. Thus if (p — 1,3) = 3, there are 3 solutions for 7, so |Aut G,| =
3p%, r=0,1,2. Butif (p—1,3) =1,then i =j =1 so |Aut Gy| = p°. ]
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COROLLARY 5. The group Gy, defined for p > 3 and (p — 1,3) = 1, is the unique

group of order p® whose automorphism group is again a p-group.

Note that in contrast to Ying’s result (Theorem 2 in [8]) when (p — 1,3) = 3, the
2-generator groups G,, 0 < r < 2, have no automorphisms of order 2 yet AutG, is
not a p-group either.

Finally we show in Theorem 9 that p® is the smallest order that a p-group may
have when it occurs as an automorphism group. We first state the following results, in

which G denotes a finite group.

THEOREM 6. If AutG is a p-group then G is also a non-abelian p-group P or
G~Cy xP.

PROOF: See Theorem 2 in [7]. ]
THEOREM 7. Every nilpotent group G with |G| > 2 has an outer automorphism.
PROOF: See Lemma 11 in [2]. 1

THEOREM 8. If G is a non-cyclic p-group of order greater than p? such that
|G/Z(G)| € p*, then |G| divides | Aut G|.

ProoF: This is the main result in Davitt {1]. 1
THEOREM 9. There is no group G such that |AutG| =p", n < 5.

PROOF: Suppose on the contrary |Aut G| = p", for n € 5. By Theorem 6, we
may suppose G is a non-abelian p-group. By Theorem 7 Inn G is a proper subgroup
of AutG so Inn G divides p*. Thus by Theorem 8 |G| divides | Aut G|, so |G| = p™,
n € 5. But by Theorems 2 and 3, all such groups apart from the groups G, have
an automorphism of order 2, so G cannot be any of them. Finally, by Theorem 4, G

cannot be one of the groups G, either, so there is no such group G. 1

COROLLARY 10. Let G¢ be the group defined above for p > 3 and (p—1,3) =
1. Then AutGo has the smallest order a p-group may have when it occurs as an

automorphism group.
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