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DIFFERENT METHODS OF COMPLEX INTERPOLATION

LAURA SERVIDEI

We prove that the classic interpolation spaces of Calderon can be defined using spaces of
functions that satisfy weaker conditions. For Calderon's second space we use a space of
functions defined by Cwickel and Janson; we then modify their definition to find another
space of functions which defines Calderon's first space.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Complex interpolation methods give, for any couple A = (Ao, A\) of compatible
Banach spaces, a family of intermediate spaces as a quotient of a space of functions.
These functions satisfy some holomorphy condition on the strip 5 = {2 6 C | 0 ^
Re (2) ^ 1}. Different choices of the space of functions lead to different families of
intermediate spaces. Since Calderon's classic work, several interpolation methods have
been studied. In this paper we compare a complex interpolation method introduced
by Cwickel and Janson with the two methods of Calderon. Throughout this paper we
will use the notation of [3, Chapter 4] which is devoted to the complex interpolation
methods as described by Calderon in [1].

Cwickel and Janson in [2] define a complex interpolation method in the following
context: let A = (Ao, Ai) be a couple of Banach spaces continuously embedded in a
Banach space A. Let A+ be a linear subspace of the dual space .4* that determines
the norms Ao, Ai and A, that is there are subsets To, Fi and F of A+ such that:

(i) ||a||A = 8 up{ | (o > a+) | | o+€r} 1 oGA;

(ii) if a € A and sup{|(a, a+) | | a+ € Tj} < 00 then a G AJ;

\W\\Aj = "UP{K«. a+)\ I a + G I1,-} (j = 0, 1).
By the bipolar theorem, as noted in [2], the existence of such Fo , Fi and F is

equivalent to the unit balls of Ao, Ai and A being closed in the topology <r(A, J4+)
and A+ induces on A. Then define V(A) to be the space of all functions / : 5 —» A
such that:

(i) for every a+ 6 A+ z 1—> (f(z), a+) is a bounded, continuous function on
S, holomorphic on its interior;

(ii) for almost every t G R and for j = 0, 1 f(j + it) g Aj and t i-»
| |/(j + it)||^. is an essentially bounded function.

^
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390 L. Servidei [2]

is a Banach space with respect to the norm:

11/11© = max{supesst6R ||/(tt)||^o , supesstgR ||/(1 + it)\\Al}.

If 9 G (0, 1) we define ~A{9y to be the space (f(9) | / . € V{A)} equipped with the
norm: ||a||{9} = M{\\f\\v \ f{9) = a}.

The definition of the space -<4{0} is different from the definition of Calderon's first
space, A[g], for several reasons:

(i) the functions in 1}(A) satisfy an apparently weaker holomorphy condi-
tion:

(ii) the continuity conditions on S are weaker.

Cwickel and Janson proved that ^&{e) is continuously embedded in Calderon's

second space, A ; we will prove that, if an extra hypothesis holds, the space -4/e}

coincides with the space A

THEOREM 1. If one of the following hypotheses holds:

(i) the unit ball of A is <r(A**, A+)-closed in A**,

(ii) the unit balls of Ao and Ai are <r{A**, A+ )-closed in A** ,

then Asg\ = A with equality of norms.

In Section 3 we consider a variant of this method where we relax the continuity
conditions only on one side of the boundary of 5 , that is Re (z) •=• 0, while on Re (z) = 1
strong continuity is requested. In fact we define C(A) to be the space of all functions
/ : 5 —» A such that:

(i) for every a+ £ A+ z *—> (f(z), o+) is a bounded, continuous function
on S, holomorphic on its interior;

(ii) for almost every t E R f(H) S Ao and t i-» ||/(i<)ll^i ' s a n essentially

bounded function;
(iii) for every t G R f(l+it) € Ao and t i-» f(l+it) is a yl

continuous and bounded function,

is a Banach space with respect to the norm:

= max{supess16R \\f(it)\\Ao , sup | | / (1 + ii)\\A }.
teR

It 9 6 (0, 1) we define A^ to be the space {/(#) | / G C(A)} equipped with the norm:
||a||r0i = inf ||/||C | f{9) = a}. We will prove that this definition leads to Calderon's
first space A^ .

THEOREM 2. A^g] = A^ with equality of norms.
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2. P R O O F OF THEOREM 1

raj

We prove only the inclusion A C ^{6} ? a s the converse inclusion was proved in

[2]-
Let Q (A) be the space of holomorphic functions on 5 in ^ (̂ Q (where £} (A) =

Ao + Ai) needed in the definition of the space A . If a € A and e > 0 we can

choose F e G(A) so that F'{6) = a and \\F\\g ^ \\a\\le] +e. As £ (1) is naturally

embedded in J4, with continuous embedding, F is an .A-norm continuous function on

5 , A-norm-holomorphic on 50 = {z G C | 0 < Re(2) < 1} and ||-F'(z)||A < c\\F\\g for

some c > 0, for all z £ So .

Therefore for every a+ £ A+ z 1—> (F'(z), a+) is a bounded, holomorphic function

on So and

(1) | ( F ' ( 2 ) , a + ) | < ^

so we can define

(2) <Pj{t) = Yim{F'{S+it), a+) j = 0, 1

as the limit above exists for almost every t £ R. Also <pj £ L°°(R) and

(3) Hw lL< c M(J o + I L . i = 0,1.

On the other hand, if j = 0, 1 t H-> (F(j + i<), a+) is a Lipschitz function, with

Lipschitz constant not exceeding c | |F | |G Ha+H^,. Then we can define, for j = 0, 1

= M
m

.o ih
i

as the limit above exists for almost every t G R, and we have

(4) (F(j + it), a+) = {F(j), a+) + i f i>j{u)du j = 0, 1, i e R.
Jo

Now we prove that V'j(') = fj{t) almost everywhere; for this purpose we consider
the function

( V»i(0 2 = 3
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By Cauchy's integration formula, the boundedness of h and Lebesgue's dominated
convergence theorem, we have

(5) I h{a)dz =
J-t

0

where 7 is the curve given by the boundary of the rectangle whose vertices are: 0, it,
s + it, s; s > 0, i £ R. From (4) and (5) it is easily proved that, for every 3 £ (0, 1)

f'\(F'{v)-F'{v + it),a+)\dv
Jo

\(F(s + it) - F(s), a+) - (F(it) - F(0), a+)\

+ \(F(s) - F(0), a+)| + \(F(S + it) - F(it), a+)\

By the continuity of F on S the right hand side of the inequality above tends to 0 when
t

s —» 0. So f (<po(u) — tf)0(u))du = 0 for every t £ R, thus (p0 = ^o almost everywhere.
o

In the same way we can prove that tfii(t) = ipi(t) almost everywhere. Now (2) and
(3) show that for almost every t there exists $j(t) € A**, j — 0, 1, such that

(6) (*,(<), a+) = ^(<) = lim(F'(a+ it), a+) J = 0, 1.

If the unit ball of A is O^JT*, ^+)-closed in A**, then (1) and (6) imply that
$j{t) £ A. On the other hand for almost every t £ R we have

(7) (#,(*), o+> = ^ ( 0 - lim UF(j + U + ih) - F(j + it), a+)

and then as the unit ball of Aj is a(A**, .A+)-closed, we also have that $j(t) £ Aj,
j = 0, 1, for almost every t £ R.

If we assume hypothesis (ii), that is the unit balls of Ao and A1 are <r(A*:*, A+)-
closed instead of the unit ball of A, we can conclude that $j(t) £ Aj from (7) and

(8) — (F{j + it + ih) - F{j + it), a+) 1 A'. "

In any case from (7) and (8) we also have ||*y(OIU ^ WFWo ' J = 0, 1. This
proves that the function

DF(z) =
F'{z)
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is in V(A) and \\DF\\V < \\F\\Q. Therefore a = DF{9) € 1{0} and | |a| |{e} <
\Q\ n

From Theorem 1 we also obtain that, if one of the hypotheses holds, A{e} is an
interpolation space with respect to the couple A. Actually it is easy to see that -4{s}
is an interpolation space with respect to A even without hypothesis (i) or (ii). Then
the mapping (AQ, AI) •—> -4{e} is an interpolation functor. The domain of this functor
is the category whose objects are the couples of Banach spaces embedding in another
Banach space (not the same for every couple) such that there is a linear subspace A+

of A* that determines the norms Ag, A± and A.

3. PROOF OF THEOREM 2

We need the following Lemma:

LEMMA 3. Let Pj(z, t), j = 0, 1, be the Poisson kernel for the strip S. If f 6

C(A) and 0 € [0, 1], then

The proof of this Lemma is analogous to the proof of [3, Lemma 4.3.2].
Obviously the space J~(A) is contained in the space C(A) , so we have A^ C

and ||a|| ,fl, ^ ||a||[gi > a 6 -4[e] • To prove the converse inclusion it is sufficient to prove
that the unit ball of A\m is dense in the unit ball of -4{e] (in fact this gives that the
inclusion Ayg\ —* A^g] is open, thus surjective).

In order to prove this density we consider / 6 C(A) an<^ define
g(z) = e'\z ~ 'f(z), z G 5, e > 0. Now we regularise g by convolving it on the
vertical lines with the Weierstrass kernel Wt(x) = (4irt)~1/2e~x*'lil, x e R, t > 0, that
is we define

9t{z)= I g(x + i{y - u))Wt{u)du z = x + iy, t > 0.
JR

We will prove that gt €
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The function y i—> gt{iy) is .Ao-riorrn-coiitinuous and bounded, in fact:

ht{iy)\\Ao < I \\g{iy-iu)\\Ao Wt(u)du
J R

l/lo^ sup
y6R

= sup

def

II/MIL

(1) \\9t(iy)\\Ao < Mo.

Furthermore, since gt{iy) = In g{iu)Wt(y — u)du, we have, as y —» y',

ht(iy)-9t(iy')\\Ao

) -exp(-(y'-U)2/4<))rfU||

< - ^ = jf |exp (-(y - uf/At) - exp (-(y' - uf/u) \du ^ 0.

Similarly it can be proved that y i—» p4(l + iy) is ^i-norm-continuous and

(2) sup | | f t(l+xy)| |y4 | <e« sup | | / (1+ i»)||il i =e'Mi.

Since y H-» gj(j + it), j = 0 , 1 , are .A^-norm-continuous, they are continuous
functions with respect to the norm in ]T) (J4). Let h be the Poisson integral of the
restriction of the function gt to the boundary of 5; ft is a ^ (A)-valued function
which is strongly continuous. Then, if a+ € A+,

(h(z), «+) = / (gt(iy), a+)P0(z, t)dy + f (gt(l + iy), a+)P1(z, t)dy
JR Jfi

= (9t(z), a+)

because (gt(z), a"1") is holomorphic and bounded, and thus admits a Poisson integral
representation. Then, since A+ separates points in A, gt{z) = h-{z), z £ S, that is
gt: S —> Yl (A) ls a strongly continuous function. If 7 is a piecewise regular, closed
curve in So and if a+ 6 A+ we have

(<fgt(z),a+)= I(gt(z), a+)dz = 0
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then $ gt(z)dz = 0. So, by Morera's theorem, we obtain that gt(z) is a ^ (Z)-norm-

holomorphic function on So • Furthermore from (1) and (2)

then gt is bounded in £ (A) -norm.

Thus we have proved that gt G F(A), t > 0. As g(0) = f(8), applying Lemma 3
to the function (g — gt), t > 0, we have

\\{gt - g)(iy)\\\-e • sup \\(gt - g)(l + iy)\fA
yen

that is, by (1),

(3) \\gt(O) - f(e)\\{e] < 2A/0
1-9 sup | |(S t

Now we have

\\(9t - g)\\At < J \\g(i +w + ») - 0(1 + nOLx ^(ujdu.

As Wt is a mollifier and the function y >-* g(l + iy) is uniformly continuous in A±-

norm, we have ||(/t(l + iy) — 5(1 +i2/)| | / l l —* 0 as t —> 0. Then from (3) we obtain

||j«(tf) - /(0)| |{e] -» 0 as t -> 0. Furthermore, if | | / | | c < 1, from (1) and (2) we have

llSill̂ r ^ ee where e is arbitrary. This proves our theorem. 0
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