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A ONE DIMENSIONAL ANALOGUE OF THE VORTICITY EQUATION

K. SRISKANDARAJAH

We study the qualitative properties of the one dimensional analogue of the
Helmholtz vorticity advection equation. The second order hyperbolic equation
has the unusual characteristic of disturbances propagating at infinite speed. The
global solution for Goursat data is given in closed form. We also obtain qualitative
results on the nodal curve where the solution is zero. A related perturbation prob-
lem is considered and solutions for small data are obtained. The forced vorticity
equation admits a class of soliton solutions.

1. INTRODUCTION

The Helmholtz vorticity advection equation for the two dimensional flow of an
incompressible ideal fluid, which describes the evolution of vorticity u), is given by

d d d\
at ox dy)

where u = (u(x,y,t),v(x,y,t)) is the fluid velocity and u = vx - uy is called the
vorticity. We use the subscript notation to denote the partial derivatives and A to
denote the two dimensional Laplacian operator. Conservation of mass is expressed by

vy = 0.

The above two coupled equations are usually formulated in terms of the stream function
ip that automatically satisfies conservation of mass. In terms of the stream function ip,
the flow variables are u = -ipy, v = ipx, w = tpxx + iftyy = AV>- The problem now is to
solve the following nonlinear third order hyperbolic partial differential equation
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120 K. Sriskandarajah [2]

with the initial vorticity distribution u>(x, y, 0) specified in some region in the x, y plane
together with some boundary conditions. The vorticity equation implies that following
the fluid particle trajectory defined by Xt = u(x, t) the vorticity is conserved and this
is the Kelvin-Helmholtz vorticity conservation theorem for an inviscid fluid. Given
the initial vorticity distribution one can solve for the stream function by inverting the
Poisson equation Atp = w and then find the velocity field and hence solve the advection
equation to find the vorticity distribution at the next time step. This procedure is
repeated until the desired time.

In [3] the authors model the three-dimensional vorticity equation by an integral
differential equation. This is extended to viscous flow in [9]. A review of the math-
ematical theory and modeling of the three dimensional vorticity equation is found in
[7]. The main difference in three dimensions is that vorticity can increase by stretching
which in turn can cause singularities in velocity and vorticity to form in finite time.
By contrast in two dimensions the solution exists globally with mild restrictions on the
decay rate of the initial vorticity.

We would like to study a simpler problem in one space dimension that is similar
in some respect to the vorticity advection equation to gain some understanding of the
dynamics of the two dimensional vorticity equation. We consider

(i)

subject to the boundary and initial conditions

(2) u(0, t) = g(t), u(x, 0) = uo(x) = 5(0) + f / ( 0 #•
Jo

Here ux plays the role of vorticity. We are given / , the initial distribution of ux.
Equation (1) implies that ux is conserved along the curve (x(t),t) defined by xt =
u(x,t).

In this paper our aim is to study the simpler equation (1). We follow the same
steps outlined for the two dimensional problem. That is, for a fixed (x, t) we

(i) find the trajectory (£, t) for £ between 0 and x of the fluid particles that
reach s at time zero,

(ii) establish the new distribution ux(£,t) = ux(s,0) = f(s),
(iii) integrate ux(£,t) from 0 to a; to find u(x,t).

We assume the following hypotheses on / and g:

(Hf) / is piecewise continuous and \f(a)\ < M for a e R, M > 0,
(Hg) g is continuous.
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Writing (1) as a system of equations with ui = u, u2 = ux gives

Wlx = "2 , U2t + U\Uix = 0.

This system of equations is in characteristic form and its characteristics are t = constant
and the curve C given by xt = u\ (x, t). The characteristic speeds with which discon-
tinuities of solutions propagate are the local speed u along C and infinite speed along
t = constant. The infinite speed of propagation is usually a feature of parabolic partial
differential equations and not of hyperbolic equations.

The boundary condition u(0,t) = g(i) = 0 makes the t axis a characteristic.
Therefore in the case g = 0, the data (2) is specified on the two characteristics, the t
and x axes. In the subsequent analysis we call C the characteristic thus ignoring the
trivial characteristic t = constant. Along C, ux = u2 is constant and then integration
gives u(x,t) = $*ux{£,t)d£.

Integrating (1) from 0 to a; and using the boundary condition gives Burger's equa-
tion with a non-local source term

We show that solutions of (1) and (2) have no shocks and exist for all time in both
directions. A similar equation occurs in gas flow through a nozzle. In [5, 6] (3) with
a right hand side c(x)h(u) representing a moving local source is studied. It is found
that shocks can develop in finite time. For further details see [6] and the references
contained therein.

Define u(x,t) to be a weak solution of (1) if u is piecewise differentiable in x for
each fixed t and satisfies (3) and the initial condition. This definition of weak solution
allows us to include an initial condition uo which is only piecewise differentiable. It is
shown that a weak solution of (1) is a classical solution except on the characteristics
through the points where the initial function / is not continuous and the discontinuity
of the slope propagates with the local speed u.

As in [2], (1) and (2) could also be written as a first order nonlinear, non-local
equation for ux(x,i) denoted by v(x, t). Since u(x, t) = g(t) + Jo ux(£, t)d£ we get

subject to the initial condition v(x,0) = f(x).

If u(x, t) is a solution of (1) then

(i) -u(-x, t) is a solution of (1) with uo(x), g(t) replaced by — uo(—x), -g(t)

respectively,
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(ii) u(x + L, t) solves (1) with initial condition UQ(X + L) and boundary con-
dition u(L,t) = g(t),

(iii) -u(x, -t) is a solution of (1) with UQ(X), g(t) replaced by -uo{x), -g(-t)

respectively.

Therefore without loss of generality we can assume x ^ 0, t > 0 in (1).

In the next section we analyse the case g(t) = 0, which illustrates the method that
is used to solve the problem for non-zero g in a simpler setup. We give a plausible
reason for the infinite speed of propagation for a compactly supported initial profile
u0. Suppose that lim u(x,t) = c(t) for each fixed t. Then it follows from (3) that

X—KX>

dc/dt = f£° ux(x,t) dx > 0, c(0) = 0. Hence tc(t) > 0 and c(t) is strictly increasing
for all t. This means that u(x,t) does not have compact support for any t different
from zero and this is what is meant by infinite speed of propagation. The assumptions
made in deriving this result are proved valid in section 3. Prom the observation in the
previous paragraph and the last result a solution to (1) propagates to the right (left)
with infinite speed if the zero boundary condition is to the left (right) of the support of

2. ZERO BOUNDARY CONDITION

In this section we study the characteristic curve C through (a, 0) defined by

dr
(5) ^ = u(x(t),t),x(0) = a

where u(x,t) is a smooth solution to (1). Denote the solution to (1) by x(a, t). Then

formally we have

—ux{x(a, t), t) = utx(x(a, t), t) + uxx(x(a, t), t)xt{a, t)

= utx{x(a, t),t) + u{x(a, t), t)uxx{x(a, t),t) = 0.

Therefore for fixed a we get ux(x(a, t), t) = constant = f(a). Formally differentiating

equation (5) with respect to the initial condition a gives us

dx
(6) ~ = ux(x(t),t)xa = f(a)xa, xa(0) = 1.

The solution is

(7) xa(a,t)= / eUx^a'T)'T)dT = etfi-a).
Jo

Integration with respect to a gives x(a, t) = x(0,t) + /Q
a xa(s,t)ds = /o° e*^s'ds. So

define u(x(a,t),t) = xt{a,t) = Jo° f(s)etf^ds and suppose that for every (x,t) there
is an a such that x(a,t) = x. Then by reversing the arguments in this paragraph we
get the the following theorem.
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THEOREM 1 . Let a be implicitly defined by x = x(a,t) = f^etf<-^ds. Then

u(x, t) = /0° f(s)etf(-s^ds is the unique solution of (1) and (2) with g = 0.

Before proving this theorem we observe that the solution exists for all time and
this is in sharp contrast to the solutions of Burger's equation Ut + uux = 0 which may
develop shock in finite time or may lose uniqueness depending on the initial condition
u(x, 0). Suppose <j) is an arbitrary function such that f_oo(l>(f(a))da is convergent.
Then a change of variable gives that

f
is a conserved quantity of (1).

Now we list several properties of x(a, t) that are used in the proof of the theorem
and later. The function x(a, t) is infinitely differentiate in t and its time derivatives are
given by dnx(a,t)/dtn — /0° fn(s)etf(-s^ds. Moreover, x is one time more differentiate
with respect to a than is / . Hence we note that all the even partial derivatives of
x(a, t) with respect to t are positive for a > 0 making x and all even derivatives of
x with respect to t positive and convex. The hypothesis (Hf) implies that ae~'*'M ^
f£ etf^ds ^ ae^M. The positivity and the boundedness of the integrand shows that
for a fixed t

(i) the Jacobian exp(tf(a)) of the transformation from (x,t) to (a,t) is
non-zero,

(ii) x(a,t) is strictly increasing with a,
(iii) lim x(a, t) = oo.

a—foo

This in turn implies that the transformation defined by x(a,t) = J"o° e
t^s^ds has

an inverse a(x, t) for every fixed t, is one to one, onto and

ax = e-"<°>, at = -e

Therefore it follows that (i) characteristics do not intersect, (ii) every point (x, t) is
reached by the characteristic through (a(x,t),0). Hence the solution to (1) is unique
and exist for all time. Compare this with the solutions of Burger's equation which
can develop a shock in finite time or lose uniqueness in the form of an expansion fan
depending on the initial conditions. We may interpret x(a, t),xt(a, t), Xu(a, t) as the
position, velocity, and acceleration of the particle that was at a initially. We collect a
few more properties that are needed, in the following remark. These follow easily from
the definition of x.
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REMARK 1.

(i) xt(a, t) = /0° /(s)e'/(s)(iS = u(x(a, t), t) = u(x, t),

(ii) xta(a,t) = /(a)e"(a> = ux(x,t)xa(a,t) = ux(x(a, t) , t )e t / (°) ,

(iii) xtt(a, t) = /o
a f2{s)et^s)ds = ux(x(a, t), t)xt(a, t) + ut(x(a, t), t).

PROOF: It is easy to see that u satisfies the boundary and initial conditions. Now
to verify u(x,t) satisfies the differential equation we differentiate ux(x(a,t),t) = f(a),
given by (i), with respect to t and it follows that 0 = Utx{x{a, t), t)+uxx(x(a, t), t)xt(a, t)
= utx + uuxx everywhere except on the characteristics through the points (a, 0) where
/ is discontinuous. If / were continuous then the solution would be classical. The
uniqueness of the solution follows easily from the method of characteristics and the
proof is therefore omitted. D

We have shown in the proof of Theorem 1 that a classical solution is a weak
solution and a weak solution is a classical solution except on the characteristics through
the discontinuities of u'o = f.

The asymptotic behaviour of x(a,t),xt(a,t),xtt(a,t) for fixed a and large t are
governed by the sign of / in (0, a) . To quantify we define the following:

A + (a) = {s G (0,a) : f(s) > 0}, A_(o) = {s G (0,a) : f(s) < 0},

A0(a) = { S e ( 0 , a ) : / ( s ) = 0},

a = inf{a > 0 : |A_(o)| > 0 and |A + (a) | = 0 or |A+(a)| > 0 and |A_(o)| = 0}.

Therefore a is essentially the first time / switches sign. Here and elsewhere, the
measure of a set S is denoted by \S\. The different possibilities for x(a,t), xt(a,t) for
a fixed a > 0 are listed below.

LEMMA 1 .

(i) As a function t, x(a,t) is convex and positive, and xt(a,t) is strictly

increasing in t for all t.

(ii) If |A+(o)| > 0 and |A_(o) | > 0 then lim xt(a,t) = ±oo.
t»±OO

(iii) If |A+(a)| = 0 and |A_(a) | > 0 then lim xt(a,t) = 0, lim x(a,t) =
t—fOO t—¥QO

(iv) If |A+(a)| > 0 and |A_(a) | = 0 then lim xt(a,t) = 0, lim x(a,t) =
t—V — OO t—¥ — OO

|A0(a) | .

If |A+(

|A0(a) | .

PROOF: The proof of (i) follows from the integrand of both x(a,t) and xtt(a,t)
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being positive. If | A + ( a ) | > 0 then for t > 0 we have

„ (n f\ _ / f2('e
1\p*/(s)/7e — / f2(v\ptf(s> 4- I f2(tt^ptf(s>

Xtt\a-)i) — I J \s)e as — I j {oje -t I j \t>)e
7A_(O)

^ J f ( s)e* " •

This shows that in general

xtt(a,t) > Mini f f2(s), f f2(s)\ for all t.
(JA + {a) JA.(o) J

Similarly it can be shown that if |A_(a)| > 0 then Xt tend to infinity as t goes
to negative infinity. If |A+(a)| = 0 then all the integrals are over A_(o) and the
integrands are bounded. We use the Lebesque dominated convergence theorem to show
the limits exist as t goes to infinity. Since | /(s)e'^s) | ^ |/(s)| for s € A_(a), t ^ 0,

(lhn I f{s)etf(s) = I tHm f(s)etf^ = 0.

Similarly

lira f etf{s) = f flhn e' / ( s ) = 0.

Now

(o,0= r etna)ds= f el^+ f
JO iA.(o) /A0(O)

f
A0(O)

Taking the limit as £ going to infinity gives lim x(a,t) = |Ao(a)|. Similar arguments
t—>oo

lead to lim Xt(a, t) = Xu{a, 0 = 0 and to the counterparts for the case when |A_ (a)\ =
t—iCO

0. Combining the different cases now shows the parts (ii),(iii), and (iv). u
Lemma 1 shows that xt (a, t) is strictly increasing in t and has at most one zero

for each fixed a € R. This means that along each characteristic x(a,t) the value
u(x(a, t), t) = xt(a, 0 is a strictly increasing function of t and the behaviour at t = ±00
depends on A+(a), A_(a) as stated in the lemma.

Therefore we can define t(a) as the unique t such that xt(a,t(a)) = 0 if |A+(o)| >
0 and |A_(a)| > 0, t(a) = 00 if |A+(o)| = 0 and |A_(o)| > 0 and t(a) = -00 if
|A+(a)| > 0 and |A_(o)| = 0. It follows from the uniqueness of t that (i) t(a) =
0 if and only if uo(a) = 0, (ii) t(a)uo(a) < 0, (iii) £(a)sgn (uo(a)) = 00 and the
domain of t is (a, 00). In [1] and [8] the number of points in the zero set {x : u(x, t) = 0}
of u is defined as the lap number. It is shown using the maximum principle that for
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solutions of parabolic partial differential equations the lap number is a non-increasing
function of time. In our case we show that for a bounded initial function the lap number
is zero or one as t goes to positive or negative infinity. The lap number in our case is
the same as the number of points in the set {a : t(a) = t} when the latter is defined.

The significance of t(a) is that if we set x = x(a,t) then t is a function of x
parametrised by a and u{x,t(x)) — 0. Here we have used the same t to denote
both a function of a and a function of x. Therefore we can track the zeros of the
solution u(x, t) in space and time obtaining the nodal curve of u which is defined by
{(x(a,t(a)),t(a)) : a £ (a, oo)} and is studied further in the next section. He and
Moodie refer to the nodal curve of u as a sonic line in [5].

3. NODAL CURVES OF U

It is found easier to study the qualitative properties of the function t(a) through
a differential equation satisfied by t(a). We derive this differential equation from the
condition Xt(a,t) = 0 for all a. Differentiating with respect to a we get Xta(a,t) +
Xtt(a,t)dt/da = 0. This gives

da I j [s)e J\ >ds

subject to the initial condition

(9) <(a0) — to where u(ao, to) = 0 or t(a) = sgn (uo(a)) oo.

REMARK 2.

(i) uo(a) and t(a) have the opposite sign and the same critical points in the
domain of t,

(ii) supp dt/da = supp / .

LEMMA 2 . The solution to (8) exists on (a, oo) where a = inf{a > 0 : |A_(a)| >
0 and |A+(a) | = 0 or |A+(a)| > 0 and |A_(a)| — 0}. If in addition lim uo(a) exists

a—• oo

then t(a) is bounded for a € (a + e, oo) for any e > 0.

PROOF: We showed in the proof of Lemma 1 in the last section that if |A+(ao)| >

0, |A_(ao)| > 0 then

xtt(a, t) > Mini / / 2(s) , j /2(s) I = B(a0) for all t and a ^ a0.
w A + (ao) -/A + (oo) J

It follows that dt/da is bounded above by Me^M/B(ao) for any a < ao ^ a. This
implies global existence of solutions on (o, oo).
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To prove the second part suppose t and dt/da are positive in (ao, a) • Then it
follows from the differential equation that / is negative in (ao,a) and implies

dt fjaWfM /(a)

da ^ B(a0) B(a0)

This gives

Hn\ < tin \ 4
B(a0)

Letting a go to infinity shows that t is positive and bounded. A similar argument
shows that t is bounded from below and hence proves the lemma. D

Connectedness of the graph (a, t(a)) shows that if «o has a non-trivial zero then
the zeros of u(x, t) can be traced to the zeros of the initial profile uo • Since there is a
one to one correspondence between the (a, t) plane and the (x, t) plane we can convert
the nodal curve of u from one plane to the other; it merely changes the domain of t.
The domain of t as a function of x is ( lim x(a,t), oo) = (|A0(5)|, oo). That is,

\t—>±oo /

the nodal curve in the (x, t) plane is a horizontally strained version of the nodal curve
in the (a, t) plane having the zeros of Uo as the zeros of both functions.

To illustrate the effectiveness of t{a) in predicting the qualitative behaviour of the
evolution of u(x,t) we look at an initial condition uo(x) with compact support.

Consider an initial condition u$ with compact support [0, L]. Then from the
definition a € (0, L). We can assume without loss of generality that UQ{U) > 0. The
remark preceding the lemma in the last section implies (i) lirnf(a) = -oo, (ii) t(a) =

a—Hi

0 for a ^ L. This means that for any non-zero t\, u(x,ti) is not zero for x ^ x(L,t{)
since t~l{t\) < L. Therefore u(x,t) has no compact support for any non-zero t. More
can be said about the behaviour of u(x, t) for large x by computing u(x, t) given in
Theorem 1. u(x, t) = Xt(L,t) for x ^ x(L,t) and Xt(L,t) is a strictly increasing
function of time. In other words, u(x, t) loses its compact support for any non-zero
t in a mild way by maintaining compact support for ux(.,t) for all t. Also observe
that lim |supp{ux(a;, t)}\ — oo. By specialising the above analysis for a non-negative

t—•±oo

initial profile wo with compact support, we conclude that u(x, t) is positive for t > 0
and changes sign once for t < 0. From the symmetry of (1) it follows that if the zero
boundary condition is to the left (right) of the compact support of the initial condition
then u(x,t) propagates with infinite speed to the right (left).

4. NON ZERO BOUNDARY CONDITION

We consider (1) with a general boundary condition. That g / 0 makes the t axis
no longer the characteristic x(0, t) through (0, 0) and introduces new difficulties. We
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define x(0,t) = j(t). The characteristic through (a, 0) is given by x(a, t) = x(0,t) +
Qe^^ds = 7(t) + J'e'fWds. It turns out that it is easier to study b(t) = a(0,t)
than 7(t). The function b(t) has the property that the characteristic x{b(t),t) through
(b(t),O) goes through (0,t). That is, we follow the characteristic starting from the
t axis where we know the value of u, hence the slope of the characteristic, and this
intersects the x axis at b(t).

We derive a differential equation for b from the identity x(b(t),t) = 0. Differenti-
ation with respect to t gives

xt(b(t),t) + xa{b(t),t)~ = 0

and

xt (&(<). *) = u(x(b(t), t)) = u(0, t) = g(t).

Therefore

(10) e * / w | + f l ( t ) = 0 .

The initial condition for b is 6(0) = 0. The existence and uniqueness of solutions to
the differential equation (11) is established.

If / is continuous and bounded then the proof of uniqueness, existence and
boundedness of b follows easily. To prove the same when / is only piecewise con-
tinuous needs some care. Indeed no solution to the simple differential equation
sgn (b)db/dt + 1 = 0, 6(0) = 0 can be continued to the right of time zero. How-
ever across a discontinuity of / the coefncent of the slope of b is positive and hence b

can be continued past a discontinuity of / in both directions. In this way we obtain a
unique, bounded and piecewise differentiable function b that exists for all time. This
is stated as a lemma.

LEMMA 3 . Suppose g is continuous and / is piecewise continuous and bounded.

Then the solution to (9) exists on all of R, and is unique, piecewise continuous and
bounded.

We can now obtain a formula for x(a,t) in terms of b and / . As before

/•a pa

x(a,t) = x(a1,t)+ xa(s,t)ds = x(ai,t)+ et/(s)ds.

If a! = b(t) then

(11) x(a,t)= [ etf{s)ds.
Jb(t)

This leads us to the following remarks on the properties of x(a, t) that we shall need

later.
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REMARK 3.

(i) x(b(t),t) = 0, xt(b(t),t) = g(t) for all t,

(ii) xt(a, t) = xt(b(t), t) + /;( t ) xta(s, t) ds = g(t) + f°t) f(s)e*Mds = u(x, t),

(iii) xtt(a,t) = g'(t)+g(t)f(b(t)) + /fc
a
(t) / W < - > d s .

Since b is bounded it follows from (11) that for a fixed t the limits lim x(a,t) =
±oo and x(a,t) is strictly increasing as a function of a. Therefore the coordinate
transformation (a, t) to (x,t) denned by x = J^et^s^ds is one-one and onto. As
before u denned by (ii) of Remark 3 is the unique solution to (1) and (2). The above
discussion leads us to the main theorem.

THEOREM 2 . Let a be implicitly defined by x = f£t, etf<-s^ds where b is the

solution of (10). Then u(x,t) = g(t) + ^,t-)f{s)et^s^ds is the unique solution to (1)

and (2).

REMARK 4. We can estimate the growth rate of u for fixed t from the formula given
above. The mean value theorem for integrals gives \(u(x, t) - g(t))/x\ < M where M
is the bound for / . Therefore the growth rate of u is at most linear in x for each fixed
t.

Another way to look at b is to choose any b with 6(0) = 0 and define g by (10).
Then we can control the shape of x(a, t) through g and hence u on the characteristics.
The separation x(a2, t) — x{a\,t) of the characteristics through a\, a,2 is still controlled
by the sign of / in (01,02) and the choice of b has no influence on this. We shall
use these remarks to help us select / and h in order to have a soliton solution ux of
uxt + uuxx = h(ux) and (2).

5. PERTURBATION EQUATION

Consider

(12)

subject to the boundary and initial conditions (2). In the limit e going to zero formally
we get the linear wave equation uxt = 0. The solution is u(x,t;0) = uo(x)+g(t)-g(0) =
g(t) + Jo

x f(s) ds. Therefore we expect that if we denote the solution of (12) and (2) by
u(x, t; e) then lim u(x, t; e) — u$(x) + g(t). We show that this is indeed the case.

e—>0

Suppose u(x,t;e) is a solution of (12). Then v denned by ev — u satisfies (1) and
(2) with Mo replaced EUQ and g replaced by eg. That is what we need to solve (1) with
small data ef,eg. To compute v(x,t;s) we follow the steps given in the Theorem 2.
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LEMMA 4 . With the notations in the previous paragraph for t,a fixed

(i) 6 = -e(/0
tff(«)d*)+O(e2),

(ii) x = x(a, t; e) = a + O(e),

(iii) v(x, t; e) = e{g(t) + /Q
x f(s) ds} + O{e2).

PROOF: Since 6 satisfies

= 0, 6(0) = 0,

b(t) is implicitly given by

g(s)ds+ f

= -e | I g(s) ds + R \ where R = f g(s) (e-"/(b(s)) -

We show R/s is bounded. Note

: \sg(s)\Me^ M.

We used the Mean Value Theorem and that / is bounded in the last step. Therefore
we have R = O(e) which proves (i). We prove (ii) by the same arguments used in (i)
after writing

fa
x(a,t) = / e£ t / ( s )ds

Jb(t)
pa

= a- b{t) + \
Jb(t)

That is, x = x(a, t) = a + O(e). Similarly for v we find

v(x(a,t),t) = eg(t) +

= e\g(t)+ f f(s)ds+ f
I Jb(t) Jb{x

= e \g(t) + r f(s) ds + O(e)\ = e\g(t) + f f(s) ds + O(e)\.
I Jb(t) J L Jo ) D

Therefore we have proved the following theorem.

THEOREM 3 . Let u(x, t; e) be the unique solution of (12) and (2). Then for fixed

(x, t) we have lim u(x, t; e) = g(t) + UQ{X) - g(0).

b(t)
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6. SOLITON SOLUTIONS

In this section we look for a soliton solution ux(x,t) (see [4]) of

(13)

using the methods developed in the previous sections. We have been able to control the
shape of the characteristics by b through g and the separation between two character-
istics depends only on the sign of / between the points. In the case of h — 0, ux is
constant on the characteristics; hence the the profile of ux(x, t) is spreading between the
characteristics coming from the positive regions of / and shrinking between the charac-
teristics coming from the negative regions of / as time increases. With h not identically
zero we have now a means of controlling the the value of ux(x, t) = ux(x(a, t), t) on the
characteristic through (a, 0) with time. This is given by the solution to the ordinary
differential equation

(14) ^ = h(v), v(0) = f(a).

Therefore there is a possibility for a soliton type solution (13) for ux(x,i) for some
choice of f,b and h. We look for a solution u of (13) so that ux(x,t) for each fixed t

is a translation of / and decays to zero at great distances.

In [2] the connection between the solutions of (13) and a one dimensional non-local
wave equation is established by a nonlinear transformation of a dependent variable.
The solvability of (13) is used to obtain solutions to the nonlinear one dimensional
wave equation. The solution ux(x(a,t), t) of (13) is implicitly given by

(15) / rn = t-
Jf(a) Hv)

Then (6) gives xa(a, t) — /„* eU l ( : c ( a ' T ) ' TW. Therefore the transformation from (x, t) to
(a, t) is given by x = x(a, t) = y(t) + /Q

axa(s,t) ds and u(x, t) = d^/dt + f° xat(s, t) ds

where x(0, t) = j(t) is the characteristic through the origin. We have therefore proved
the following existence and uniqueness theorem.

THEOREM 4 . Let a be implicitly defined by

x = x(a,t)=-y(t)+ if e^M'^'^

Then u(x,i) = j'(t) + Jo°xat(s,t)ds is the unique solution of (13) and (2) where

ux(x(a,t),t) is the solution of (14) and 7 and g are connected by u(0,t) = g(t).
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REMARK 5. Theorem 5 generalises Theorems 1 and 2 with 7 and b connected by

-y(t) = x(0,t) = x(b,t) + fb xa(s, i) ds = fb xa(s,t) ds.

As in [2], (13) has the following class of conserved quantities. Let </> be any func-

tion so that / ^ (t>(f(a)) da is convergent. Then by change of variable this integral

transforms to
f°° skill t<r i\\

dxfI-00 xa{a(x,t),t)

and hence is conserved.

We now resume the search for / and h so that (13) admits a soliton solution for
ux(x,t). Suppose / is positive, bell shaped and decays to zero far away. Let / satisfy

/ > 0, / ' (0) = 0, xf'(x) > 0 for x ^ 0 and lim f(x) = 0.
|x|->oo

Letting x go to infinity in (13) gives h(0) = 0 for (13) to have a soliton solution. If
/(0) is a zero of h then /(0) is an equilibrium solution of (14) and ux{i(i),t) = /(0)
for all t. Since / is positive the characteristics are spreading with time so we need
h to be negative in (0, / (0)) . In addition the solutions given by (14) exist globally
for intial values in [0, /(0)] if the zeros of h are simple. Therefore choose h(v) —

v(v - f(0))h2(v) with h2 positive in [0, / (0)] . Since au(x,at) solves (13) with a right
hand side a2h(u/a), we can take /(0) = 1 without loss of generality.

The functions / and h2 are to be chosen so that ux(x,t) = f(x — 'y(t)) is a
solution. Substituting u(x, t) = F(x - j(t)) + j'(t) where F is the antiderivative of /
with F(0) = 0 in (14) gives

(16) F(x)f'(£) = h(f{x)).

The general solution is F(x) = c e ^ 1 " ^ ) where c is a constant and Hi is an antideriva-
tive of v/h(v). F(0) — 0 implies that Hi(v) goes to negative infinity as v approaches
1 from the left. Therefore

xdx

It follows that H\{v) behaves like ln( l — v)/h2(l) as v approaches one from the left.
Substitution for F gives

(17) / ' =

and / satisfies the conditions

= l, lim / ( z )=0 .
z>±oo
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We need the function he H^('> non-Lipschitz at one in order to have non-uniqueness.
Prom the behaviour of H\ near one we find h(v)e~Hl^ behaves like (1 — v) ~

and hence is non-Lipschitz if /i2(l) > 1 or equivalently h'(l) > 1. It is seen that
f(x; c) — f(cx; 1) and therefore c can be set to one in (14). In this case f(x; 1) is given
implicitly by

(18) £ = / ° where H^v) = / | ^ .

THEOREM 5 . Let c be any positive number, h(v) = v(v - I)h2(v), /i2 > 0 in

[0,1], /i2(l) > 1. Define

f /(ci;l) ifx^O
fix) = <

I f(-cx-1) if 0 < a;

where f(x; 1) is given by (18). Then u = j'(t) + h(f(x - j))/h'(x - 7) and ux(x, t) =
f(x — j(t)) where 7 is any arbitrary function subject only to 7(0) = 0 is the unique
traveling wave solution of (13) with g(t) = 7'(t) — h(f('y))/h'{/y).

We illustrate the previous theorem with an example.

EXAMPLE 1. Choose h(v) — 2(v — l)v and c = 1 thereby satisfying all the require-
ments of the theorem. Then (13) can be integrated in known hyperbolic trigonomet-
ric functions. We get H\(v) = (1/2)In(1 — v), f{x;l) = l/cosh2x and therefore
f(x) = l/cosh2:c, F(x) — tanhx. The soliton solution is ux(x,i) = l/cosh2(a; — j(t))
and u(x,t) = tanh (a; - j(t)) + dj/dt. The transformation between (x,t) and (a,t) is
given by sinh (x — 7) = e* sinh (a).

7. CONCLUSION

We have analysed (1) using the method of characteristics. It is found that the
problem does not admit shocks and the solution exists for all time. The unique solution
is given in Theorem 2 of Section 4. In Section 3 we derived and found qualitative
properties of the zero set of u(x, t). It is found in Section 3 that a novel feature of
(1) is that small disturbances propagate with infinite speed. In Section 5 a nonlinear
perturbation problem is considered. We proved pointwise convergence of the solution.
In Section 6 we showed the existence of a soliton solution to (13).

Subsequently, we have also looked at a generalisation of (1) of the form

(19)

with a a real number.
This problem may develop a shock in finite time and will be considered in detail

elsewhere.
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