
Canad. Math. Bull. Vol. 46 (4), 2003 pp. 575–587

Optimization of Polynomial Functions

M. Marshall

Abstract. This paper develops a refinement of Lasserre’s algorithm for optimizing a polynomial on

a basic closed semialgebraic set via semidefinite programming and addresses an open question con-

cerning the duality gap. It is shown that, under certain natural stability assumptions, the problem of

optimization on a basic closed set reduces to the compact case.

Recently progress has been made in the development of algorithms for optimizing

polynomials. The main idea being stressed is that of reducing the problem to an easier
problem involving semidefinite programming [18]. It seems that in many cases the
method dramatically outperforms other existing methods. The idea traces back to
work of Shor [16] [17] and is further developed by Parrilo [10] and by Parrilo and

Sturmfels [11] and by Lasserre [7] [8].

In [7] [8] Lasserre describes an extension of the method to minimizing a polyno-
mial on an arbitrary basic closed semialgebraic set and uses a result due to Putinar

[13] to prove that the method produces the exact minimum in the compact case. In
the general case it produces a lower bound for the minimum.

The ideas involved come from three branches of mathematics: algebraic geometry
(positive polynomials), functional analysis (the moment problem) and optimization.
This makes the area an attractive one not only from the computational but also from
the theoretical point of view.

In Section 1 we define three lower bounds for a polynomial and point out relation-
ships between them. In Section 2 we outline Lasserre’s method. In Sections 3 and 4

we describe a refinement of Lasserre’s method in the empty interior case and address
questions left open in [7] [8] concerning the duality gap. In Section 5 we show that,
in the presence of certain stability assumptions, the problem of minimization of a
polynomial on a basic closed semialgebraic set reduces naturally to the compact case

(so can be handled using Lasserre’s method, yielding exact results).

1 Lower Bounds for a Polynomial

Denote the polynomial ring R[x1, . . . , xn] by R[x] for short. Fix a finite subset S =

{g1, . . . , gs} of R[x]. We consider the problem of minimizing a polynomial f on the
basic closed semialgebraic set

KS := {p ∈ R
n : gi(p) ≥ 0, i = 1, . . . , s}.
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Denote by MS the quadratic module in R[x] generated by S. By definition, MS is the
set of all finite sums of the form

σ0 + σ1g1 + · · · + σsgs,

where each σi a sum of squares in R[x], i = 0, . . . , s.

The main focus of Lasserre’s work in [7] [8] is on the case where KS is compact
but other cases are not excluded. In particular, the case S = ∅ (global minimization)
investigated earlier by Shor [16] [17] and more recently by Parrilo and Sturmfels [10]
[11] is not excluded. Note that if S = ∅, then KS = R

n and MS = the set of sums of

squares in R[x].
Fix f ∈ R[x]. Various sorts of lower bounds for f on KS are considered. Define:

f ∗ = inf{ f (p) | p ∈ KS}

f̄ sos
= inf{L( f ) | L ∈ K̄S}

f sos
= sup{λ ∈ R | f − λ ∈ MS}

where K̄S is the convex cone in the dual space of R[x] defined by

K̄S := {L : R[x] → R | L is linear, L(1) = 1, L(MS) ≥ 0}.

Note that K̄S depends on S (the particular presentation) not just on KS.

Proposition 1.1 f ∗ ≥ f̄ sos ≥ f sos .

Proof The inequality f ∗ ≥ f̄ sos is a consequence of the embedding KS ↪→ K̄S,

p 7→ Lp, where Lp denotes evaluation at p, i.e., Lp(g) = g(p). Suppose p ∈ KS.
Then f (p) = Lp( f ) ≥ f̄ sos . Thus f ∗ ≥ f̄ sos . The inequality f̄ sos ≥ f sos is obvious.
If f − λ ∈ MS then, ∀L ∈ K̄S, L( f − λ) ≥ 0. Since L is linear and L(1) = 1 this
implies L( f ) − λ ≥ 0, i.e., L( f ) ≥ λ. This proves f̄ sos ≥ λ for any such λ. This

proves f̄ sos ≥ f sos .

The following result is due to Putinar [13]. Jacobi gives another proof in [4] based
on an extension of the Kadison-Dubois Theorem.

Theorem 1.2 [13] Suppose KS is compact and r2 −‖x‖2 ∈ MS for some real number r.

Then, for any f ∈ R[x], f > 0 on KS ⇒ f ∈ MS.

If KS is compact then KS is completely inside some big ball centered at the origin,
with radius r say. In this case, we can add r2 −‖x‖2 to our set S without changing KS.
Thus there is no harm in assuming, to begin with, that r2 − ‖x‖2 ∈ MS.

At the same time, the condition that r2 − ‖x‖2 belongs to MS for sufficiently large

r is automatically satisfied in many cases. It is automatically satisfied if MS is closed
under multiplication [14, Corollary 3]. According to results of Jacobi and Prestel
[5] it is automatically satisfied in a variety of other cases as well. For example, it is
automatically satisfied if s = |S| ≤ 2 or, more generally, if MS is ‘partially closed
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under multiplication’ (see [5, Theorem 4.4]) or if dim(KS) = 1, provided a ⊆ MS

where a denotes the ideal of polynomials vanishing on KS.

Corollary 1.3 If KS is compact and r2 − ‖x‖2 ∈ MS for some real number r, then

f sos
= f̄ sos

= f ∗.

Proof By definition of f ∗, f − f ∗ ≥ 0 on KS. Suppose ε > 0 is given. Then

f − f ∗ + ε > 0 on KS so, by Putinar’s Theorem, f − f ∗ + ε ∈ MS, i.e., f sos ≥ f ∗ − ε.
The result follows from this, using Proposition 1.1.

Following standard terminology [6] [9] [12] [14] [15] we say that the moment

problem holds for MS if for each L ∈ K̄S there exists a positive Borel measure µ on KS

such that ∀ f ∈ R[x], L( f ) =
∫

KS
f dµ.

Proposition 1.4 The following are equivalent:

(1) The moment problem holds for MS.

(2) ∀ f ∈ R[x], f̄ sos
= f ∗.

Proof (1) ⇒ (2). Let f ∈ R[x]. Suppose λ ∈ R, f ∗ ≥ λ. Then f − λ ≥ 0 on
KS so, by (1), for any L ∈ K̄S, L( f − λ) =

∫

KS
( f − λ) dµ ≥ 0 where µ is a positive

Borel measure associated to L, i.e., L( f ) ≥ λ. This proves f̄ sos ≥ λ for any such

λ so f̄ sos ≥ f ∗. Thus f̄ sos
= f ∗. (2) ⇒ (1). Let f ∈ R[x], f ≥ 0 on KS (so

f̄ sos
= f ∗ ≥ 0). Then, for any L ∈ K̄S, L( f ) ≥ f̄ sos ≥ 0, so by Haviland’s Theorem

[2] [3], there is a positive Borel measure µ on KS corresponding to L.

The moment problem holds for MS in the compact case discussed above, but also
in a large number of non-compact cases [6] [9] [12] [15]. At the same time, the mo-
ment problem is known to fail for MS in a great many cases, e.g., in [6, Corollary 3.10]
it is shown that it fails whenever KS contains a 2-dimensional cone.

R[x] comes equipped with its unique finest locally convex topology [1] [12]. The
closure of the quadratic module MS is equal to

M̄S =

⋂

L∈K̄S

{g ∈ R[x] | L(g) ≥ 0},

e.g., see [6, Lemma 3.3].

Proposition 1.5 MS closed ⇒∀ f ∈ R[x], f sos
= f̄ sos .

Proof Suppose λ ∈ R, f̄ sos ≥ λ. Suppose L ∈ K̄S. Thus L( f ) ≥ λ, i.e., L( f −λ) ≥ 0.
Since MS is closed, this implies f − λ ∈ MS for all such λ, i.e., f sos ≥ f̄ sos .

Note: If MS is closed and KS 6= ∅ then ‘sup’ can be replaced by ‘max’ in the defini-
tion of f sos (provided, of course, that {λ ∈ R | f − λ ∈ MS} 6= ∅).

In the compact case MS is almost never closed, e.g., MS is never closed if
dim(KS) ≥ 3 [6, Theorem 3.8], but it is closed in certain non-compact cases [1]
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[6] [12]. According to [1, Theorem 3], MS is closed if S = ∅. More generally, MS is
closed if KS contains an n-dimensional cone [6, Theorem 3.5].

Examples 1.6 (1) Suppose n = 1. If KS is compact then f ∗ = f̄ sos
= f sos by

Corollary 1.3 (using [5, Remark 4.7]). The same is true if S = ∅. In all other cases
MS is closed [6, Theorem 3.5] so f̄ sos

= f sos by Proposition 1.5. f ∗ = f̄ sos may or
may not hold, depending on the presentation of KS. It follows from [6, Theorem 2.2]
that f ∗ = f̄ sos holds when S contains the standard generators of KS (up to scaling)

and MS is closed under multiplication. In all other cases f ∗ 6= f̄ sos for appropriate f .

(2) Take n = 1, S = {x3} (so KS = [0,∞) and S does not contain the standard

generator x). Take f = x. Then f ∗ = 0, f̄ sos
= f sos

= −∞. Take f = x2 + 2ax,
a > 0. Then f ∗ = 0, f̄ sos

= f sos
= −a2.

(3) Take n = 1, S = {x3(x + 1)} (so KS = (−∞,−1] ∪ [0,∞) but S does not

contain the standard generator x(x + 1)), f = x(x + 1). Then f ∗ = 0, f̄ sos
= f sos

=

−1/4.

(4) Take n = 2, S = ∅, f = x4 y2 + x2 y4 − 3x2 y2 + 1 (the Motzkin polynomial).
Then f ∗ = 0, f̄ sos

= f sos
= −∞.

(5) Take n = 2, S = {x3(1 − x)3} (so KS is the infinite strip [0, 1] × R), f = xy2.
Then f ∗ = f̄ sos

= 0, f sos
= −∞ [6, Ex. 5.2].

(6) Take n = 2, S = {x3, 1−x, y3} (so KS is the infinite half strip [0, 1]× [0,∞)).
Take f = x(y2 + ay), a > 0. Then f ∗ = 0, f̄ sos

= −a2, f sos
= −∞.

(7) Take n = 2, S = {x − 1/2, y − 1/2, 1 − xy} (the Jacobi-Prestel example).

Then KS is compact but ∀r ∈ R, r2 − (x2 + y2) /∈ MS [5, Ex. 4.6] so Corollary 1.3
does not apply. Take f = −(x2 + y2). Then f ∗ = −17/4, f sos

= −∞.

2 Lasserre’s Method

The computational method described by Lasserre in [7] [8] involves looking at cer-
tain finite dimensional analogs of R[x], MS, K̄S and of f sos and f̄ sos .

For a fixed positive integer d, denote by Pd the vector space consisting of all poly-
nomials in R[x] of degree ≤ 2d. Pd is finite dimensional with basis consisting of all
monomials xα := xα1

1 · · · xαn
n , α1 + · · · + αn ≤ 2d. Define g0 = 1. Let vi = deg(gi),

i = 0, . . . , s (so v0 = 0). Define Md to be the set of all elements of Pd of the form
∑s

i=0 σigi where σi is a sum of squares of polynomials in R[x] of degree ≤ 2d − vi ,
i = 0, . . . , s. Md is a subcone of the cone MS ∩ Pd in Pd considered in [6]. Define Kd

to be the set of all linear mappings L : Pd → R satisfying L(1) = 1 and L(Md) ≥ 0.

Finally, for f ∈ R[x] of degree ≤ 2d, define

f(d) = sup{λ ∈ R | f − λ ∈ Md}, f̄(d) = inf{L( f ) | L ∈ Kd}.

It follows from results in [7] [8] that computation of f(d) is a semidefinite pro-
gramming problem and that computation of f̄(d) is the dual problem. See [7] [8]
for details. Also see Section 4 below. In the case S = ∅ (global optimization) the
semidefinite program simplifies; see [7] [10] [11] and Proposition 2.3 below.
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Proposition 2.1

(1) f(d) ≤ f̄(d).

(2) The sequences { f(d)}, { f̄(d)} are increasing.

(3) limd→∞ f(d) = f sos .

(4) f̄(d) ≤ f̄ sos .

Proof (1) If f − λ ∈ Md and L ∈ Kd then L( f − λ) ≥ 0, i.e., L( f ) ≥ λ. It follows
that f̄(d) ≥ λ for any such λ so f̄(d) ≥ f(d).

(2) If d1 ≤ d2 then Md1
⊆ Md2

and the restriction map L 7→ L|Pd1
maps Kd2

into

Kd1
. The inequalities fd1

≤ fd2
and f̄d1

≤ f̄d2
are clear from these two facts.

(3) Clear from MS =
⋃

d≥1 Md.

(4) Clear: The restriction map L 7→ L|Pd
maps K̄S into Kd.

Corollary 2.2 [7] [8] If KS is compact and r2 − ‖x‖2 ∈ MS for some real number r,

then

lim
d→∞

f(d) = lim
d→∞

f̄(d) = f ∗.

Proof Combine Corollary 1.3 with Proposition 2.1.

A major shortcoming of Lasserre’s method is the lack of control over the degree,
i.e., how large does one have to take d, in general, for f(d) and f̄(d) to be close to f ∗? A

major positive feature of Lasserre’s method is that even if f(d) and f̄(d) are not close to
f ∗, they do provide reliable lower bounds for f ∗. From a practical point of view this
can be useful.

Unfortunately, the only cases where bounds on the degree are known are cases
where KS is not compact. For example, we have the following:

Proposition 2.3 If KS contains an n-dimensional cone then f(d) = f̄(d) = f sos
= f̄ sos

whenever 2d ≥ deg( f ).

Note: This applies in particular in the case S = ∅ (global optimization).

Proof If f − λ ∈ MS and 2d ≥ deg( f ) then, by degree considerations (see the proof
of [6, Theorem 3.5]), f − λ has a presentation f − λ = σ0g0 + · · ·+ σsgs, σi a sum of
squares of degree ≤ 2d−vi , i = 0, . . . , s. This implies f(d) ≥ f sos . Since MS is closed,

the rest is clear.

3 A Refinement of Lasserre’s Method

Denote by int (KS) the interior of KS in R
n in the Euclidean topology. The new results

in this section are all in the case int (KS) = ∅. The case int (KS) 6= ∅ is already

covered in [7] [8].

Fix an ideal a in R[x] consisting of polynomials which vanish on KS. Then KS ⊆ V

where V ⊆ R
n denotes the zero set of a. If int (KS) 6= ∅, then necessarily a = {0}

and V = R
n.
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To keep the notation as simple as possible we assume always that a ⊆ MS. If
this is not the case to begin with, it can be achieved simply by adding the elements

h1,−h1, . . . , ht ,−ht to S where h1, . . . , ht is a set of generators for the ideal a, using
the identity

∑

rihi =

∑ 1

4

(

(ri + 1)2 − (ri − 1)2
)

hi =

∑ 1

4
(ri + 1)2hi +

∑ 1

4
(ri − 1)2(−hi).

Of course, adding h1,−h1, . . . , ht ,−ht to S does not change KS.
We define new objects P ′

d, M ′
d, K ′

d , f ′
(d) and f̄ ′

(d) (depending on a) which are in

some sense more appropriate than Pd, Md, Kd, f(d) and f̄(d). In case a = {0} these

coincide with the objects Pd, Md, Kd, f(d) and f̄(d) defined in Section 2.
Denote by P ′

d the image of Pd in R[x]/a and by M ′
d the image of Md in R[x]/a.

Denote by K ′
d the set of all linear maps L : P ′

d → R satisfying L(1) = 1 and L(M ′
d) ≥ 0.

For f ∈ R[x], denote by f ′ the image of f in R[x]/a, i.e., f ′
= f + a. For f ∈ R[x]

of degree ≤ 2d define

f ′
(d) = sup{λ ∈ R | ( f − λ) ′ ∈ M ′

d}, f̄ ′
(d) = inf{L( f ′) | L ∈ K ′

d}.

Parts (1)–(4) of Proposition 2.1 carry over immediately with f(d), f̄(d) replaced by
f ′
(d), f̄ ′

(d) (assuming a ⊆ MS). Using the natural surjection Md → M ′
d and the natural

injection K ′
d ↪→ Kd we see that f ′

(d) ≥ f(d) and f̄ ′
(d) ≥ f̄(d).

For the remainder of the section we assume that a is the ideal of all polynomials

vanishing on KS. We also assume that S has been adjusted, if necessary, so that a ⊆ MS.

Theorem 3.1

(1) M ′
d is closed in P ′

d (in the Euclidean topology).

(2) M ′
d =

⋂

L∈K ′

d
{ f ′ ∈ P ′

d | L( f ′) ≥ 0}.

Proof If KS = ∅ then a = (1), M ′
d = P ′

d = {0} and K ′
d = ∅. The result is clear in

this case. Thus we may assume KS 6= ∅.
We prove M ′

d is closed in P ′
d by a simple modification of the proof of [12, Propo-

sition 2.6]. Choose a set of monomials xα, α ∈ Λ(d) whose cosets modulo a form a
basis for P ′

d. For later use we insist that 0 ∈ Λ(d). Let

I :=
{

i | i ∈ {0, . . . , s}, vi ≤ 2d, g ′
i 6= 0

}

.

Clearly 0 ∈ I. For i ∈ I, let

Qi := {g ′ | g ∈ R[x] has degree ≤ d − vi/2}.

Choose a set of monomials xα, α ∈ Λi of degree ≤ d − vi/2 whose cosets modulo a

form a basis of Qi modulo Qi ∩ Ann(g ′
i ). Each element of Md is represented modulo

a by a sum of the form

∑

i∈I

`i
∑

j=1

h2
i jgi
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where hi j is some linear combination of the monomials xα, α ∈ Λi . Using the Gram
matrix description of sums of squares, we can (and we do) choose `i = |Λi |. Consider

the map

Φ :
∏

i∈I

(

Qi

Qi ∩ Ann(g ′
i )

) `i

→ P ′
d

defined by

(hi1, . . . , hi`i
)i∈I 7→

∑

i∈I

`i
∑

j=1

h2
i jgi .

Coordinatizing in terms of the coefficients, one checks that Φ : R
M → R

N where M =
∑

i `
2
i , N = |Λ(d)| is homogeneous of degree 2, i.e., Φ(z) =

(

Φ1(z), . . . , ΦN (z)
)

where each Φi is homogeneous of degree 2. As in the proof of [12, Proposition 2.6]
we see that Φ

−1(0) = 0. By [12, Lemma 2.7] Φ is a closed map (even a proper map).

In particular, Φ(RM) is closed. Since Φ(RM) is identified with M ′
d this proves that M ′

d

is closed in P ′
d.

The rest of the proof is standard. Suppose f ∈ p ′
d, f /∈ M ′

d. We want to construct
L ∈ K ′

d such that L( f ) < 0. Consider the hyperplane H in P ′
d through f0 perpendic-

ular to f − f0 where f0 is a point on M ′
d closest to f . Since M ′

d is convex f0 is unique
and M ′

d lies on the opposite side of H from f . Since M ′
d is a cone, 0 ∈ H. Thus we

have a linear map L0 : P ′
d → R with L0( f ) < 0, L0(M ′

d) ≥ 0. If L0(1) 6= 0 then
L0(1) > 0 and we take L = λL0 for suitable λ > 0. Suppose L0(1) = 0. In this case

fix L1 ∈ K ′
d (e.g., fix a point p1 ∈ KS and define L1 ∈ K ′

d by L1(g) := g(p1)) and take
L = L1 + λL0, λ sufficiently large.

Corollary 3.2 If f ∈ R[x] has degree ≤ 2d then f̄ ′
(d) = f ′

(d).

Proof For λ ∈ R, there are only two possibilities: If f ′ − λ ∈ M ′
d then f ′

(d) ≥ λ. If
f ′ − λ /∈ M ′

(d) then, by Theorem 3.1, there exists L ∈ K ′
(d) such that L( f ′ − λ) < 0,

i.e., L( f ′) < λ, so f̄ ′
(d) < λ. Coupled with the fact that f ′

(d) ≤ f̄ ′
(d), this implies

f ′
(d) = f̄ ′

(d).

Notes 3.3 (1) In [7] [8] this same result is proved, but only in the case int (KS) 6= ∅.

(2) Theorem 3.1 implies that ‘sup’ can be replaced by ‘max’ in the definition of

f ′
(d) (provided, of course, that {λ ∈ R | ( f − λ) ′ ∈ M ′

d} 6= ∅).

(3) Suppose f sos ∈ R. If f − f sos ∈ MS then f ′
(d) = f sos for d sufficiently large.

Conversely, if f ′
(d) = f sos then f − f sos ∈ MS.

We also note the following strengthening of Proposition 2.1.

Corollary 3.4

(1) For any f ∈ R[x] of degree ≤ 2d, f̄(d) ≤ f sos .

(2) limd→∞ f(d) = limd→∞ f̄(d) = f sos .

Proof (1) Since f̄(d) ≤ f̄ ′
(d) and f ′

(d) ≤ f sos this is immediate from Corollary 3.2.

(2) Combine (1) and Proposition 2.1.
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4 Computation of f ′
(d) and f̄ ′

(d)

We indicate briefly how f ′
(d) and f̄ ′

(d) can be computed. In case a = {0} this is precisely

the computation of f(d) and f̄(d) described in [7] [8]. We use notation from the proof

of Theorem 3.1. P ′
d is identified with R

N where N = |Λ(d)|. For each i ∈ I, `i := |Λi |.
Denote by S

`i the vector space of symmetric `i×`i matrices and define the linear map
Ψ :

∏

i∈I S
`i → P ′

d by

A = (A(i))i∈I 7→
∑

i∈I

∑

α,β∈Λi

xαA(i)
αβxβgi .

An element f ′ in P ′
d belongs to M ′

d iff f ′
= Ψ(A) with each A(i), i ∈ I positive

semidefinite (PSD for short). Thus to compute f ′
d we must maximize λ ∈ R subject

to the constraint

f ′ − λ = Ψ(A) and each A(i), i ∈ I is PSD.

Decompose P ′
d = R

N as R × R
N−1 and let Ψ = (Ψ0,−Ψ1) be the corresponding

decomposition of Ψ. Thus Ψ0(A) = a0 − λ where a0 is the coefficient of x0 in f ′.

Consequently, to compute f ′
(d) we must

(1)

{

minimize: Ψ0(A)

subject to the constraints: Ψ1(A) = p and each A(i), i ∈ I is PSD

where p is the projection of − f ′ onto R
N−1. This is a semidefinite programming

problem [18].

Consider the dual map Ψ
∗ : P ′

d
∗
→ (

∏

i∈I S
`i )∗. (

∏

i∈I S
`i )∗ is identified with

∏

i∈I S
`i via the scalar product 〈A, B〉 :=

∑

i∈I Tr(A(i)B(i)). L ∈ P ′
d
∗

belongs to K ′
d iff

L(1) = 1 and Ψ
∗(L) is PSD. Computing f̄(d) amounts to minimizing L( f ) subject to

the constraints that L(1) = 1 and Ψ
∗(L) is PSD. Coordinatizing P ′

d
∗

using the dual

basis and decomposing L as L = (1, y), y ∈ R
N−1 we see that a0 − L( f ) = yT p and

Ψ
∗(L) = Ψ

∗
0 (1) − Ψ

∗
1 (y). Consequently, to compute f̄ ′

(d) we must

(2)

{

maximize: yT p

subject to the constraint: Ψ
∗
0 (1) − Ψ

∗
1 (y) is PSD.

This is the dual problem to (1) [18].1

The computation can be implemented on a computer if a Gröbner basis for a is
known. In doing this it would seem that there are important advantages in choosing
a as large as possible. Not only would one expect the approximations f ′

(d) and f̄ ′
(d)

to be better but also the matrix size is reduced, allowing one to attempt previously
inaccessible problems.

1Added March 15, 2003. In recent independent work this refinement of Lasserre’s algorithm is consid-
ered in more detail in cases where the algebra R[x]/a is zero dimensional. See the preprint ‘Semidefinite
representation for finite varieties’ by M. Laurent.
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It is also worth noting the relationship between the map Ψ and the map

Φ :
∏

i∈I

(

Qi

Qi ∩ Ann(g ′
i )

) `i

→ P ′
d

in the proof of Theorem 3.1. Instead of identifying
∏

i∈I (
Qi

Qi∩Ann(g ′

i )
)`i with R

M where

M =
∑

i∈I `2
i , we can identify it with

∏

i∈I R
`i×`i . Φ is just the composite map

∏

i∈I

(

Qi

Qi ∩ Ann(g ′
i )

) `i

→
∏

i∈I

R
`i×`i →

∏

i∈I

S
`i

Ψ
→ P ′

d

where the middle map is given by (Bi)i∈I 7→ (BT
i Bi)i∈I .

5 Stability Assumptions

Suppose S = {g1, . . . , gs}, gi ∈ R[x], deg(gi) = vi , i = 1, . . . , s. We say KS is
stably compact if KS remains compact for all sufficiently small perturbations of the
coefficients of the g1, . . . , gs, i.e., if there exists real ε > 0 such that for all polynomials

δ1, . . . , δs ∈ R[x], if deg(δi) ≤ vi and the coefficients of δi are ≤ ε in absolute
value for each i, then K{g1+δ1,...,gs+δs} is compact. We say f ∈ R[x], deg( f ) = v,
is stably bounded from below on KS if f remains bounded from below on KS for all
sufficiently small perturbations of the coefficients of f , g1, . . . , gs, i.e., if there exists

real ε > 0 such that for all δ, δ1, . . . , δs ∈ R[x], if deg(δ) ≤ v and deg(δi) ≤ vi and
the coefficients of δ and the δi are ≤ ε in absolute value, then f + δ is bounded below
on K{g1+δ1,...,gs+δs}. These two concepts are closely related; see Theorem 5.3 below.

Suppose f ∈ R[x]. A presentation

f − λ = σ0 + σ1g1 + · · · + σsgs,

σi a sum of squares in R[x], i = 0, . . . , s, witnesses the fact that λ is a lower bound
for f on KS. In practice, because semidefinite programming computations are done

using floating point arithmetic, and also because the f and g1, . . . , gs may not be
known exactly, there is an error term e:

f − λ = σ0 + σ1g1 + · · · + σsgs + e.

If f attains its minimum value at p∗, all we can safely say is that λ + e(p∗) is a lower

bound for f on KS. If we have no a priori knowledge of p∗ then this is not satisfactory.
Even if the individual coefficients of e are small, if ‖p∗‖ is large, |e(p∗)| could be large.

If KS is stably compact then the situation is better, for then we have an upper
bound rε for ‖p∗‖ given by Theorem 5.1 (2) below and, consequently, we also have

an upper bound for |e(p∗)|. We will show that this remains true whenever f is stably
bounded from below on KS; see Corollary 5.4 below.

We begin by considering stable compactness. Stable compactness is easier to check
than compactness. Let biγ denote the coefficient of xγ in gi . Decompose gi as gi =
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∑vi

j=0 gi j where gi j =
∑

|γ|= j biγxγ , the homogeneous component of gi of degree j.

By definition, |γ| = γ1 + · · · + γn.

Theorem 5.1

(1) KS is stably compact if and only if the function max{−g1v1
, . . . ,−gsvs

} is strictly

positive on the unit sphere.

(2) If ε > 0 is a lower bound for the function max{−g1v1
, . . . ,−gsvs

} on the unit sphere,

then KS lies in the ball centered at the origin with radius

rε = max
{

1,
∑

|γ|<vi

|biγ |/ε : i = 1, . . . , s
}

.

Notes 5.2 (1) The computation of a lower bound ε > 0 for max{−g1v1
, . . . ,−gsvs

}
on the unit sphere is itself a problem of polynomial optimization on a compact
semi-algebraic set: Just take ε = min{ε1, . . . , εs} where, for each i ∈ {1, . . . , s},

εi is a positive lower bound for −givi
on the unit sphere subject to the constraints

g jv j
− givi

≥ 0 for j 6= i. There are obvious problems with this if s is too large.
(2) One way to ensure stable compactness is to include r2 − ‖x‖2 in the set S to

begin with for some r ∈ R.

Proof of Theorem 5.1 Assume KS is stably compact. For p on the unit sphere (i.e.,

‖p‖ = 1) consider the one variable polynomials

gi(t p) = gi0 + gi1(p)t + · · · + givi
(p)tvi ,

i = 1, . . . , s and the corresponding intersection of KS with the half line {t p : t ∈
R, t ≥ 0}. Let S̄ = {ḡ1, . . . , ḡs}, ḡi = gi + ε(δ1x1 + · · · + δnxn)vi , where

δi :=

{

1 if pi ≥ 0

−1 if pi < 0
.

Then

ḡivi
(p) = givi

(p) + ε(|p1| + · · · + |pn|)
vi ≥ givi

(p) + ε‖p‖vi = givi
(p) + ε.

Choose ε sufficiently small so that the set KS̄ is compact. Then the intersection of
KS̄ with the half line {t p : t ∈ R, t ≥ 0} is compact so ḡivi

(p) ≤ 0 for some i,

i.e., givi
(p) ≤ −ε for some i. This proves that the function max{−g1vi

, . . . ,−gsvs
}

is strictly positive on the unit sphere. Conversely, if max{−g1vi
, . . . ,−gsvs

} is strictly
positive on the unit sphere, then using the fact that f 7→ f (p) is a continuous func-
tion of the coefficients, this will remain true for any sufficiently small perturbation

of the coefficients of the gi . Thus to complete the proof of (1) it suffices to prove
assertion (2).

To prove (2), we make use of the standard fact that the real roots of a polynomial
tn + a1tn−1 + · · · + an are bounded by max{1,

∑n
i=1 |ai |}. Fix p on the unit sphere,
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fix i such that givi
(p) ≤ −ε, and consider the largest non-negative root of gi(t p)

(assuming it has a non-negative root). For t ≥ 0, t > this largest root, gi(t p) is

strictly negative, so t p is not in KS. We know that

max

{

1,

vi−1
∑

j=0

|gi j(p)|

|givi
(p)|

}

is an upper bound for this largest non-negative root. Now |givi
(p)| ≥ ε. Also,

for j < vi , |gi j(p)| = |
∑

|γ|= j biγ pγ | ≤
∑

|γ|= j |biγ ||p
γ | ≤

∑

|γ|= j |biγ |. Thus
∑vi−1

j=0 |gi j(p)| ≤
∑

|γ|<vi
|biγ |, and the points of KS on the half line {t p : t ∈ R,

t ≥ 0} are contained in the interval t p : 0 ≤ t ≤ max
{

1,
∑

|γ|<vi
|biγ |/ε}. Letting

p vary now on the unit sphere we see that KS is contained in the ball centered at the
origin with radius rε = max{1,

∑

|γ|<vi
|biγ |/ε : i = 1, . . . , s}.

Theorem 5.3 The following are equivalent:

(1) f is stably bounded from below on KS.

(2) KS∪{− f} is stably compact.

Proof (1) ⇒ (2). Fix p on the unit sphere. As in the proof of Theorem 5.1, let
S̄ = {ḡ1, . . . , ḡs}, ḡi = gi + ε(δ1x1 + · · · + δnxn)vi , where

δi :=

{

1 if pi ≥ 0

−1 if pi < 0
.

Also, let f =
∑v

j=0 f j be the decomposition of f into homogeneous parts, and let

f̄ = f − ε(δ1x1 + · · · + δnxn)v. Choose ε > 0 so small that f̄ is stably bounded on
KS̄. Then, looking at the intersection of KS̄ with the half line {t p : t ≥ 0}, we see
that either f̄v(p) ≥ 0 or ḡivi

(p) ≤ 0 for some i ∈ {1, . . . , s}, i.e., either fv(p) ≥ ε or
givi

(p) ≤ −ε for some i ∈ {1, . . . , s}. It follows from Theorem 5.1 (1) that KS∪{− f}

is stably compact.
(2) ⇒ (1). If KS∪{− f } is stably compact then this remains the case for small per-

turbations of the coefficients of f , g1, . . . , s. Thus it suffices to show that KS∪{− f}

compact implies f is bounded below on KS. But this is clear. On KS∪{− f} f is

bounded below by some λ. On KS∪{ f }, f is bounded below by 0. Thus, on KS, f

is bounded below by the minimum of λ and 0.

Corollary 5.4 Suppose f is stably bounded from below on KS with KS 6= ∅. Fix a

lower bound ε > 0 for max{ fv,−g1v1
, . . . ,−gsvs

} on the unit sphere. Normalize so that

0 ∈ KS and f (0) = 0. Denote by aγ the coefficient of xγ in f . Then minimizing f on

KS is equivalent to minimizing f on the compact set KS∪{ρ2
ε−‖x‖2} where

ρε = max
{

1,
∑

|γ|<v

|aγ |/ε,
∑

|γ|<vi

|biγ |/ε : i = 1, . . . , s
}

.

Proof According to Theorem 5.1(2), KS∪{− f } lies in the closed ball centered at the
origin with radius ρε.
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Conclusions 5.5 (1) One can proceed as follows: First compute ε > 0, a posi-
tive lower bound for the function max{ fv,−g1v1

, . . . ,−gsvs
} on the unit sphere. This

serves to confirm that f is indeed stably bounded from below on KS. Then mini-
mize f on the compact set KS∪{ρ2

ε−‖x‖2}. In this way, it is possible to apply Lasserre’s
method with ensured exact results even in cases where KS is not compact.

(2) The method applies in particular to global optimization, i.e., S = ∅: First

compute a positive lower bound ε for fv on the unit sphere. This serves to confirm
that f is indeed stably bounded from below on R

n. Then minimize f on the closed
ball centered at the origin with radius

ρε = max
{

1,
∑

|γ|<v

|aγ |/ε
}

.

(3) In the test examples considered by Parrilo and Sturmfels in [11], f is stably
bounded below on R

n. In all these examples exact results are obtained without make

the reduction to the compact case described above. This raises the question of when
such reduction is actually necessary.

(4) In cases where f is not stably bounded from below on KS, any procedure
for approximating f ∗ using floating point computations involving the coefficients is

necessarily somewhat suspect.
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