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0. Introduction

With respect to Teichmiiller spaces, many beautiful results are
obtained by Teichmiiller, Ahlfors, Bers, Maskit, Kra, Earle, Abikoff, and
others. For example, the boundary consists of b-groups, and the aug-
mented Teichmiiller space is defined by attaching a part of the boundary
to the Teichmiiller space. By using the augmented Teichmiiller space, a
compactiﬁcation of the moduli space of Riemann surfaces is accomplished
(cf. Abikoff [1], Bers [2]).

On the other hand Schottky spaces and Schottky groups are studied
by Akaza, Bers, Chuckrow, Marden, Maskit, Zarrow, and Sato, but
results about this direction are inferior in comparison with those about
Teichmiiller spaces. For example, the augmented Schottky space corre-
sponding to the augmented Teichmiiller space has not yet been defined
in the “natural” way. However it is reasonable that Schottky spaces
have properties similar to Teichmiiller spaces and have rather useful
properties in some aspects. With respect to this, Bers [3] introduced the
augmented Schottky space in his sense, and studied automorphic forms
on the fiber spaces over the space. The augmented Schottky space in
the sense of Bers means the space which consists of all Schottky groups
of genus g > 2 and all extended Schottky groups representing Riemann
surfaces with only non-dividing nodes. Each point in the space are
represented by the so called (1, p, g)-method. However it seems that it is
difficult to represent extended Schottky groups corresponding Riemann
surfaces with dividing nodes by this method. If we do not attach such
extended Schottky groups to the Schottky space, we can not define the
augmented Schottky space corresponding to the augmented Teichmiiller
space. Then it gives rise to a problem whether or not the coordinates
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introduced by the (4, p, @)-method are natural.

This is the first part of the paper entitled “On the augmented
Schottky spaces and automorphic forms”. The main objects of the first
part are the following three: (1) To introduce new coordinates to the
Schottky space (Theorem 1), (2) to define the augmented Schottky space
corresponding to the augmented Teichmiiller space, and (3) to consider
relations between the augmented Schottky space and Riemann surfaces
with or without nodes (Theorem 2). In the second part [8], we will treat
automorphic forms on the fiber spaces over the augmented Schottky
space.

In §1 we will state definitions and give an example. In §2 we will
state some results about surface topology. In §3 we will introduce
multi-suffix which plays an important role to clarify and to simplify the
later statements. In §4 we will introduce the new coordinates to the
Schottky space and in § 5 we will define the augmented Schottky space
by using the new coordinates. In §6 we will consider relations between
the augmented Schottky space and Riemann surfaces with or without
nodes. Last we have to note that in this paper we will only consider
Riemann surfaces with at most g non-dividing nodes and at most 2g — 3
dividing nodes and extended Schottky groups representing the Riemann
surfaces. For the general case, we will treat elsewhere.

The author wishes to express his deep gratitude Professor K. Oikawa
for many advices and suggestions.

1. Definitions and an example

1-1. Definition of Schottky group. Let C,CY,---,C,, C,; be a set of
28, & = 1, mutually disjoint Jordan curves (we call them defining curves)
on the Riemann sphere which complize the boundary of a 2g-ply connected
region w. Suppose there are g Moébius transformations Ay, - .-, A, which
have the property that A, maps C, onto C; and Aw) Nw=¢,1<j< g.
Then g necessarily loxodromic transformations A, generate a (marked)
Schottky group G = (A, ---, A,> of genus g with o as a fundamental
region. We call v a standard fundamental region for G, and C, and Cj
defining curves of A, (j =1,2,---,8).

1-2. Definition of the Schottky space. We say two marked Schottky
groups G = (A, ---, A,> and G = (A,, ---, A,) being equivalent if there
exists a Mobius Transformation T such that A, = TA,T-},j=1,2,---,8.
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The Schottky space of genus g, denoted by ©,, is the set of all equivalent
classes of Schottky groups of genus g = 1.

Let G =<4, ---, A,) be a marked Schottky group. Let 2, (|2;] > 1),
p; and g, be the multiplier, the repelling and the attracting fixed points
of A, respectively. We normalize G by setting p, =0, ¢, = o and
p. =1. Then a point in &, is identified with ¢ = (4, - - -, 4,; @2, D5y s, - - -
Pe» @5) € €2,

>

1-3. A remark on the coordinates of &,. In the previous paper [7],
we defined a Schottky space &, as the set of all points

= (211 D1, 9y Az, D2y Qs ¢ -0,y zg, Dy, Qg) € ésg = (C U {oo})ag ’

where, 1,,p; and q; (j=1,2,---,8) are as defined in §1-2. We define
a boundary point #, of &, by setting #, = lim #, with #,¢ &, and #,¢&,.

n—co

However we show by the following example that the definition of the
boundary by using this coordinates is not complete.

ExXAMPLE. Set

A, 2) = (1 + (r/m)z + (2/n) + (r[n))[(rz + (1 + (r[n))

and B, (2) = (72— 29)/(z— 4). Then G, , = (A, ,, B, > are Schottky groups.
We have

%, = (1 + (4r/n) + @2r*/n®) + Y(@&r[n)2 + (r/n) + (4r*[n)) + (°[nY) ,
— V@n + r)rnt, V@n + r)rnd, (T + 3V 5)/2, (11 — v/ 5)/2, (11 + ¥V 5)/2)).

We have

A, (2) =1lim A, .(2) = 2/(rz + 1)

and

fT,oo = lim %r,n = (1; 0: 09 *, %k, *) ’

n—co

where * denotes the same elements as in the above %, .
Next let n fix and r tend to co. We have

A..(2)=1lim A, () =1/n

and
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Fum = lm #, , = (00, —1/n,1/n, *, %, %) .

n—sco

Furthermore we have

lim #,., = (1,0,0, %, x, ¥)

700

and

lim %, , = (c0,0, 0, %, *, %) .

n—s00

Hence the following diagram is not commutative:

TT)n ; TT»‘”

r — o l’l’—>00
~ n_)w ~
R

The second column means that the boundary points (1,0, 0, (7 + 3v 5)/2,
(11 — v/5)/2, (11 + v 5)/2) represent infinite numbers of Riemann surfaces
which are not conformally equivalent. Thus the definition of boundary
by the (2, p, g)-method is not complete.

In this paper, we will introduce new coordinates to the Schottky
space ©, and will consider the space which is the union of &, and a
part of the boundary.

1-4. Riemann surfaces with nodes. A closed Riemann surface with
nodes S, is a compact complex space each point P of which has a
neighborhood isomorphic either to a disk |z| < 1 in C (with P correspond-
ing to z = 0) or to the set |2| <1, |w| <1, 2w =0 in C* (with P corre-
sponding to z = w = 0). In the later case, P is called a node. Every
component of S\{nodes} is called a part of S.

We classify nodes into the following two kinds. Cut off a closed
Riemann surface with nodes, S, at a node P and denote by S the result-
ing set, that is, S = S — {P}.

(1) If S is still connected, then P is called a nondividing node.

(2 If S is not connected, then P is called a dividing node.

In this paper we mainly consider Riemann surfaces with at most g
non-dividing nodes and at most 2g — 3 dividing nodes.
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2. Topological preliminaries

2-1. Let S be a compact Riemann surface of genus g=2. If
mutually disjoint, simple loops on S, 6, d,, ---, 6,, have the following
property, then we call 3 = {6,,6,, ---,d,} a basic system of loops: Each

component of S — CJ d; (we call it a cell) is a sphere with three disks
j=1

removed, that is, a planar and triply connected domain.

ProprosiTioN 1. (1) n =3¢ — 3. (2) The number of cells is 2g — 2.
(3) At least g numbers of 9;, for example 9,, - - -, d,, are non-dividing, and

S — Lg) 6, is a sphere with 2g disks removed.
=1

Proof. Let m be the number of cells. Each cell has three boundary
loops and hence there are 3m disks altogether. It is trivial that m > 1.
Each loop d; has two sides d;. Since m > 1 and S is connected, for at
least one j,d; and d; are boundaries of distinct cells. If we join the two
cells along the boundaries §; and §;, we have a sphere with four disks
removed. This and the remaining m — 2 cells constitute m — 1 blocks.

If m — 1> 1, then for at least one %, §; and §; are boundaries of
distinct blocks. Again we join the two blocks along the boundaries d;
and ;. Whenever the above operation is performed, the total number
of disks on the spheres decreases two. If we perform the above operation
m — 1 times, all cells are connected together, and we get a planar surface
S*, since S is connected. The number of disks on S* is 3m — 2(m — 1)
=m + 2, that is, S* is a sphere with m + 2 disks removed. S* is the

k
part of S with a part of Y, for example 4, ---,d,, removed: S — | J;
i=1

=S8*, Since S* is connected and planar, we have k=g from the
definition of genus. We have the third assertion.

Since m + 2 = 2g, we have m = 2g — 2, which is the second asser-
tion. Furthermore the number of the loops is g+ (m — 1) = 3g — 3,
which is the first assertion. Our proof is now complete.

Remark. The choice of loops 4, ---,d, in (8) is not necessarily
unique, that is, there may be non-dividing loops among d,.,, - - -, 0, (see
the Fig. 1 below). We note that they divide S together with 4, -- -, d,.
There may or may not be dividing loops among d,, - - -, 0,.
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Fig. 1

2-2. If the number of non-dividing loops in a basic system of loops
Y is equal to g, then we call 3 a standard system of loops. From now
on we let 3 denote a standard system of loops. We denote by «,, - - -, a,
the non—dividix;g loops in X and by 7y, -« -, 75-s the dividing loops. The
8y, -+, 0, in (3) of Proposition 1 are uniquely determined in this case.

ProposiTiON 2. The two sides af of each loop «; (j=1,---,8) are
boundary of the same cell.

Proof. S* =8 — ng a; is a sphere with 2g disks removed. If ¢} and
i=1

«; are not boundary curves of the same cell, then there is a loop 7,
which separates «; from «;. Then 7, does not divide S, which contradicts
1 being a dividing loop. Our proof is now complete.

Next we consider the third boundary curve of the cell containing «,.
In the case of g = 2, the boundary curves of the two cells are two sides
of the same loop (we denote it by 7,). In the case of g = 3, the boundary
curves are all distinct forj = 1,2, - - -, g. Thus the number of the boundary
curves is equal to g. Let 7, (j =1,2, -, 8) be the boundary of the cell
containing «;. In the case of g =3, g =2g — 3. Hence there are no
“r-loops” other than 7, :--,7,. However in the case of g = 4, there are
“r-loops” other than 7y, ---,7, and we denote them by 7,.,, * -+, rsp-s

PropositTiON 3. In the case of genus g = 4, either of two componenis
of S—y, contains more than one (two or more) “a-loops” for each
j=g+1332g—3'

Proof. We remove the cells bounded by «* and 7, (j=1,---,8)
from S* =S — C) a;. Let S** be the resulting surface. Then S** is a

j=1

sphere with g disks removed. Each component of S** — y; is neither a
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disk nor a ring domain. Thus either component contains more than one
7x loops. Our proof is now complete.

Remark. Let “a-loops” on two components of S — 7, be a;u, @jq,
Sy iy @y Xy s Agemy (J(A) <JR) <+ - <J(m)’j(1) <.;(2) < <.;(n)),
respectively. Then we say that the loop 7, gives a partition {j(1),j(2),
co, Jm)} U (), @), - -+, J(m) of {1,2, -+, ).

There are g numbers of cells bounded by «f and 7,, and we denote
them by o, for j=2,8,---,g and o, for j = 1. We call them terminal
cells. We call the g — 3 remaining cells not terminal cells. We call 7,
(G=1,2,---,8) terminal loops and 7, (j =g+ 1,---, 28 — 3) not terminal
loops.

3. Multi-suffix

3-1. Let G be a fixed marked Schottky group: G = (A4, ---, A,).
Let X ={ay, - -, a7, 74} be a standard system of loops on
S = 2(G)/G as in §2, that is, @, - --,a, are terminal loops and 7., - -,
T2¢-s @re not terminal loops. We will represent y, as r(1,i,---,i,) by
using multi-suffix (1,1, - - -, i,) introduced in the following paragraphs.

The dividing boundary loop of the cell ¢, containing the loop «; is
7:. Let o, be the cell which is the opposite side of ¢, with respect to 7,
and we write it as o, = (go; 7). In the case of g =2, 0, =0,. In the
case of g = 3, o, is not terminal. We denote by 7(1,0) and 7(1,1) the
boundary loops of ¢, other than 7, according with the following rule:
We denote by [a;; 7(1, 0)] (resp. [o,; 7(1, 1)] be the union of all cells which
lie in the opposite part of ¢, with respect to (1, 0) (resp. (1, 1)). Let i(1, 0)
(resp. i(1, 1)) be the minimum of i with «; C [a,; 7(1, 0)] (resp. «; C [ay; 7(1, D].
Then we should have i(1, 0) < i(1, 1).

We denote by o(1, 0) (resp. o(1, 1)) the cells (oy; 7(1, 0)) (resp. (as; 7(1, 1)))
which lies on the opposite side of ¢, with respect to (1, 0) (resp. 7(1, 1)).
If ¢(1,0) (resp. o(1,1)) is not terminal, then we denote by 7(1,0,0) and
7(1, 0, 1) (resp. 7(1,1,0) and 7(1, 1, 1)) the boundary loops of the cell 4(1, 0)
(resp. o(1,1)) other than y(1, 0) (resp. 7(1, 1)) according with the following
rule; Parts [o(1,0); r(1,0,0)], [a(1,0);7(1,0,1D], [¢@Q,1);r@,1,0)], and
[¢(1, 1); (1, 1, 1)] are defined similarly to the above. Let i(1,0,0) (resp.
i(1,0,1), i(1,1,0) and i(1, 1, 1)) be the minimum of i with «; C [6(1, 0); 7(1, 0, 0)]
(resp. [¢(1, 0); (1, 0, )], [0(1, 1); 7(1,1,0)] and [a(1, 1); 7(1, 1, 1)]). Then we
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should have i(1, 0, 0) < i(1,0,1) and i(1,1,0) < i(1,1, 1).

If ¢(1,0,0), ¢(1,0,1), ¢(1,1,0) or o(1,1,1) are not terminal, the same
process is repeated. That is, in general, suppose 7,,7(1,%,), - - -, r(L, iy, - -+,
i,) have been determined and (a(1,i;, - - -, Z,—1); 71, 81y - - -, 8)) = 0(1, 8y, - -+, 8,)
is not terminal, where i, =0 or 1 forv = 1,2, ---,p. The boundary loops
of the cell ¢(1,1i, ---,i,) are y(1,i,, - -+, i), v, &y, -+ +, 1, 0), and 71,2, - - -,
i, 1), where y(1,%, ---,%,0) and y(1,i, ---, i, 1) are determined as follows.
The parts [¢(1, i, ---,3,); r(1, 8y -+, 2, 0)] and [o(L, 2y, ---,3,); v(L, 0y - - -,
i, 1)] are defined similarly to the above. Let i(1,i,---,%,,0) and
i, --+,i, 1) be the minimum of i with «, C [¢(1, i), ---,2); 7,4 - -,
i,0)] and e, C [6(1, i, - - -, 2,); (L, 8y, - - -, 3, 1)], respectively. Then we should
have i(1,,, - --,3,, 0) <i(1, i, - -, I, 1).

Thus 2g —3loops 7; (j = 1,2, - - -, 2g — 3) are expressed as y(1, iy, - - -, 1,)
by using multi-suffix.

3-2. Here we present two examples.

ExamprLE 1. Let Riemann surface S, “a-loops” «y, ---,, and “r-
loops” 7y, - -+, 724-s be as in the following Fig. 2.

Fig. 3

We denote cells by o,,--+,0, as in Fig. 3, where the picture of S is
destorted for the sake of convenience. Next we express it as a tree in
Fig. 4 below. Here every dot ® denotes a terminal cell, every white
circle O denotes a not terminal cell and every segment—denotes a “y-
loop”. If we represent “‘y-loops” in Fig. 4 by multi-suffix, we have Fig. 5
below. We have the following: 7, =7(1,0), 7, =7r(1,1), 7. = r(1,0,0),
7 =7101, 7.=17(10,00), 7=17r(100,1), r,=7(1,0,1,0), and 7, =
7d,0,1, 1).
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7(1,0,0,0)

7(1,0,0,0)

(1,0,0,1)
o(1,0,1,0)

7(1,0,1,0)

a(1,0,1)

% 7(1,0,1,1)
o(1,0,1,1)
a(1,1)
Fig. 4 Fig. 5

ExampLE 2. Let S be the same as in Example 1. Let a standard
system of loops X is as in Fig. 2. By similar ways to Example 1, we
have the following Fig. 3, Fig. 4, and Fig. 5. Thus we have the follow-
ing: 7, =17(1,0), r;=7(L, 1), 1. =7(1,0,0), 75=7(1,0,1), 7. =71(10,0,0),
7. =71(1,0,0,1), 7, = 7(1,0,0,0,0), and 7, = r(1, 0, 0, 0, 1).

https://doi.org/10.1017/50027763000024892 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024892

160 HIROKI SATO

4. New coordinates

4-1. Here we will introduce new coordinates to the Schottky space.
We fix a marked Schottky group G, = (A, -+, Ap). Let 2 = {a,, --
Cgi 71y - **s Tog-s) be a fixed standard system of loops on the Riemann
surface S, = 2(G,)/G, as in the previous section, that is, a,,---,@, are
“a-loops” associated with the above marking and 7, -:-,7, are terminal
loops and 7..5, -, 72-s are not terminal loops. We remark that each
1, =1,2,---,2g — 3) gives a partition of {1,2,---,g}. From now on

Ty

we use these partitions associated with 3. If necessary, we use the
representation of “r-loops” based on multi-suffix.

4-2, Let G=<A, ---,A,) be a marked Schottky group. Let 2,
(4,1 > 1), p; and g, be the multiplier, the repelling and the attracting
fixed points of A, (j=1,2,---, g), respectively. We normalize G by
setting p, =0, g, = o and p, = 1. Then a point in &, is identified with

T = ('21, tt Xg; Q3 Py Qs * * ',pg9 qg) € Cc*-3,

Now we will introduce new coordinates

T = (tn ceey, tg; 01 * .’ng_a) c C? s
where f,and p, 6 =1,2,---,8;j=1,2, ---,2g — 3) are defined as follows.
We define ¢, by setting ¢t,=1/2, ((=1,2,---,8). Thus t,e D* =
{z]0 < 2| < 1).
Next in order to define p, (j =1,2,---,2g8 — 3), we determine the
numbers k(j), £(j), m(j), and n(j) which are =1 and <g, by the follow-
ing Table 1; here we write j = (1,4, ---,3,) if r, = ¢(1, 4, - - -, 2,).

Table 1
L =@y [ BB B O = b, 1)
s b1y s by, . .
d G<i<g | @ZlLe+1sj | (wzlg+1sj
o <2 —3) < 2g —3)
k(j) 1 J 1 1
. (1’ ib ) i,u—l, 1, (19 il, Tty i,u—l’ 0,
20 1
v ! 0,---,0 0,0
(19 ih tt i,u—l; 09 (1, il, ) ip—l’ 1’
m(j 2 1
(J) (),...,()) (),...’0)
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Qs - by 1,
1,1,0, | 0,--+,0)ifi,=0| (L,iy+,8,-1,0,1, | (L, -+, 800 L, 1,
-+, 0) (Liu"',i,.-nO, 0,---,0) 0,---,0)
0,---,0)ifi, =1

n(j)

In Table 1, (1,4, -+, 2,24, 0,0,---,0), y(L, &y, - - +5 8,1, 1,0, - -+, 0), (1, 2y, - - -,
i,.,1,1,0,---,0) and so on denote terminal loops. If x =1, then we
regard y(1, %, -+, i,-1, 0) and (1,3, - --,7,-,, 1) as (1, 0) and (1, 1), respec-
tively.

4-3. As examples, we consider the two cases stated in § 3.

Case 1. (Example 1 in § 3)

N 1 2 3 4 5 6 7 8 9
k(j) 1 2 3 4 5 6 1 1 1
76) 1 2 3 4 5 6 3 4 2
m(j) 2 1 1 1 1 1 2 2 4
n(j) 3 5 2 6 2 4 4 5 6
Case 2. (Example 2 in § 3).

N 1 2 3 4 5 6 7 8 9
k(j) 1 2 3 4 5 6 1 1 1
76) 1 2 3 4 5 6 3 5 4
m(j) 2 1 1 1 1 1 2 2 2
n(j) 3 6 2 2 2 2 5 4 6

4-4. The coordinate p, is now defined as follows:

(1) For j=1,2,---,8 we determine T, Méb (the set of all Mébius
transformations) by T,(pi) =0, T/(qwyp) = ©, and Ty(pny) =1 and
define p, by setting p; = Ty(Duncp)-

(2 For j=g+1,---,28g — 3, we determine T,e M6b by T,(piy)
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=0, Ty(pus) = =, and Tpn) = 1 and define p; as p; = Ty(Pxiy)-

We note that p,eC—{0,1} (j=1,2,---,2¢ —3). By the above
things, we obtain a mapping ¢ by setting @(G) = (&, - - -, L5 01, - * * P2g-3)
e D*s X (C — {0, 1}y,

ProrositioN 4. Two equivalent marked Schottky groups G = {4, - - -,
A and G = (4,, -+, A,), that is, A, = UA,U"", Ue Méb, have the same
coordinates t, and p;.

Proof. Set ¢(G) = (¢, - -, tes 015 - ‘,Pzg—a) and SZ’(G) = (ix, . ',fg;ﬁl, cr
frg-s). It is trivial that ¢, =%, (i =1,2,---,8). For p, first we consider
the case (1). We set p, = U(py) and ¢, = U(q,) (k= 1,2, -- -, g), where
D, and g, are the repelling and the attracting fixed points of A,, respec-
tively. Then we easily see that p, and §, are the repelling and the
attracting fixed points of A,, respectively. We determine f’je Mob by
setting T,(ﬁ,,ij)) =0, TG, = o, and TPuy) =1 and define g, by
setting g; = Ty(P.»). Then we have T, = T,U-'. Thus we have p, = g,,
since §; = Tj(ﬁn(j)) = T, U (U(Duis)) = TyPnip) = p» We can similarly
prove the case (2). Our proof is now complete,

Remark. We will see later that reverse of this proposition holds.

Thus we can define a mapping ¢ of &, into D*¢ X (C — {0,1})**~* by
setting o([G]) = (¢, - - -, 253 1y - -+, P2g-3), Where [G] denotes the equivalence
class of G, that is, a point in &,. We denote by &,(2) the image of &,
under the mapping.

- 4-5. Next we consider the converse. Let G, S, and X' be as in 4-1.
We will show that 2,,p, and q,, j=1,2,---,g, are uniquely determined
from a given point

T = (tb Y tg; P15 ***s ng-s) € D*s X (C - {Oa 1})2g—3

by the process opposite to the above, where we set p, = 0, ¢, = oo, and
p.= 1

Lemma 1. (1) Let «, 8,7 are mutually distinct points in C and let
T e Mob be determined by setting T(0) = a, T(c0) = B, and T(1) =1y. If
peC —{0,1}, then T(o) # @, B,7-

(2) Let a,y,6 are mutually distinct points in C. Suppose peC —
{0,1}. Let TeMob be determined by setting T(0) =«, T(1) =y, and
T(p) = 0. Then T(c0) #* a,7,0.
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The proof is easy and so we omit it here.

(1) We determine p,;, = p(1,1,0, -- -, 0) by setting p,,, = o
(2) Next we determine p,,; =p@d, %, --,%,.1,0,1,0,---,0) and p,
=p1,i,-++,1,4,1,1,0,---,00 (. =1). For p=1, p(1,0,1,0,---,0) and
p(1,1,1,0,-..,0) are dertermined from p,, p, and p(1, 1,0, --,0) by the
process opposite to one in 4-2. Suppose p(1,i;, ---,8,.4,1,0,---,0) and
p(1,4,---,0,.4,0,0,---,0) are dertermined. Then by the process opposite
to one in 4-2, we can determine p(1,i,---,%,.4,0,1,0,---,0) and p(1, i,
~o38,-1,1,1,0,---,0). From (1) and (2) by the induction, we determine
Ds, Dss - -+, e  That is, we have the following.

Lemma 2. Set r(1) = (1,1,0,---,0), r(j) = A, 4y, - -+, %,.4,0,1,0, ---,0)

for j=@,i,---,i,.,0) end r(j) = 1,4, ---,1,.,1,1,0,---,0) for j= (1,1,
“+y1,1,1). Then the mapping j— r(j) of the set {1, g+ 1,8+ 2,---,

2g — 3} onto {3,4, ---, g} is bijective.

@) Forj=23,---,g, we determine g, by setting g, = ’_f’j(oo), where
’f’, eMob (j=@,i,---,1,)) is determined by setting Tj(O) = p,, T,(l) = py,
and :{’,(pj) =p(Liy ) ip, 1,0, ---,0) if i, = 0 and T,(0) = p,, T,(1) = p,,
and T,(p,) =p(1, 4, -, 8,-5,0,---,0) if i, = L

(4) We define 2, G = 1,2, .-, g) by setting 1, = 1/t,.

Thus we obtain # = (4, - -+, 255 Qs P3, Qs = * *» Py Q) from ¢ = (&, - -+, &3
Q1> * * *» Pog-s). Furthermore we determine A;e Méb from ¢ as follows:
The multiplier, the repelling and the attracting fixed points of A, are
1;,p, and gq;, respectively. Thus we obtain a mapping 4 of D*¢ X (C —
{0, 1})*~* into Mob*f by setting () = (A, - - -, A,> (we denote it by G(z)).

Remark. G(z) may or may not be a Schottky group.
4-6. Now we have the following theorem.

TrHEOREM 1. Let the mappings ¢: @, — D*¢ X (C — {0,1D** and
¥ D*8 X (C — {0,1})%7° — M&b® be as above. Then ¢ = id. and p¢|S,(2)
= id, where id. and |S,(2) denote the identity mapping and the restric-
tion of the mapping \ to the set ©,2), respectively.

5. Augmented Schottky spaces

5-1. Let G, and 2 be a fixed marked Schottky group and a standard
system of loops on S, = 2(G,)/G, as in §3. LetIC{1,2,.--.,g}, JC{L,2,

https://doi.org/10.1017/50027763000024892 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000024892

164 HIROKI SATO

-+, 2g — 8}, |I| = number of elements in I, and |J | = number of elements
in J. We define subsets 67/S,(3) of B(2) = S(2) U 06,2) C Dt X Cr-s)
where D = {z:|2| < 1}.

(1) For I =J = ¢, we define §*?S,(2) as d**S,(3) = S,(2).

(2) For I+ ¢ and J = ¢, 67/S,(2) (we denote it by §’S,(2)) is the
set of all points

T = (tn ) tg; P51y ** '“023—-3) € Dg X (C - {09 1})2g—3

having the following properties (i)-(iv).

(i) t,=0foriecland ¢, + 0 for iel

By the same way as in the previous section 4-4, we can uniquely
determine p, =0, ¢y =, p, =1, @5, Ps, - *,Dp q, from z, since p, #1
for j=1,2,.--,2¢g — 3. Thus for each i¢ I, we have the Mobius trans-
formation A,(z, 2) whose multiplier, the repelling and the attracting fixed
points are A, = 1/t,,p, and gq,, respectively.

(ii) Az, 2), ie I, generate a Schottky group (we denote it by G(z)).

@iii) The 2|I| points p,, q, (i, j e I) are distinct.

(iv) The 2|I| points p, and q, (i,j€ I) lie in some standard funda-
mental region for G(z).

We call p, and ¢, with ie I the extended repelling and the extended
attracting fixed points, respectively for the later convenience.

5-2. (3) For I = ¢ and J # ¢, 6*'S,(2) (we denote it by §7S,(3)) is
the set of all points

T = (tly Tty tg; 015 ° * '9p2g—3) € D*¢ X (C - {0})2g—-3

having the following properties (i)-(iv).
(i) p,=1for jedJ and p, + 1 for je .

5-3. For the purpose of stating the remaining properties, we need
a preparation. Let J = {k, &y, -- -, B} C {1,2,---,2g — 3} with & <k <
-+ <k, Then p,, =pr,= - = pr, = 1. First suppose k, = 1, that is,
o= 1

1) We set p,=0, g, = o0, and 2 = 1/t,, Let A, be the Mobius
transformation whose multiplier, the repelling, and the attracting fixed
points are 1, p, and gq,, respectively. Set G,(z) = (A,>. Then the point
1 lies in some standard fundamental region for Gy(z). We call the point
1 the right distinguished point associated with k, and denote it by p;} = 1.
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2) We consider all of the following sequences:

Case 1. p(L,i)# 1, -, p(L,iy -, 0) + 1, (1,8, --+,3,) %+ 1 and
71,8y - - -, i,) is terminal.

Case 2. p(1,i) # 1, -+, p(L, 85, -+, i) # L, (L, 8y « -+, 2,,) = L.

We perform the same process as in the previous section by using
0, o0, and 1 instead of p,, p, = p(1,0, - - -, 0) and p(1,1,0, - - -, 0), respectively.
Then we can determine a number for each p(1,i, ---,1,) 1=y, <y for
Case 1, 1 < v, < py — 1 for Case 2). That is, we get the following:
1. SUppose P(l, ih Tty ivx—-ly 1) :Ié 19 p(ly il’ f Yy iv;-—la 1’ 0) :/ﬁ 1: P(l, i19 Y
i»;—l) 1’ 0, 0) *+ 1’ ) P(l, ila v ',ivx—ly 1’ 0: ) 0) #*1 (Vl é /’tl) and 7(17 i!’ Tty
&
iul—n 19 0, ) 0) is terminal. That iS, P(l, il)’ ) P(l, il; ) ivl—l)’ P(l, ih
£
Ty iu,—-l) 1), P(l, il’ Y iv1—19 19 O)’ Ty P(l, il’ Tty ivl—l’ 1’ 0’ Tty 0) iS a sequence
(21
in Case 1. Then we determine p(1, i,, - - -, 1,,-1, 1, 0, - - -,0) from p(1,,, - - -,2,,_1)
£y
by the same way as in the previous section.

2- Suppose P(L il) ) iv;—l, 1) i 1, .0(1, il; ) iu;—l’ 1, O) # 1, ) P(l, il’
cylyo,1,0,--+,0)~ 1 and (1, 4y, - -+, 4,,-4, 1,0, - - -,0)=1, that is, p(1,1i,),
—_—— ——

41—-1 I3

e 00y ey Ty, s 0, 0y ey By, -0+, 1,0, - -+, 0) is a sequence in Case
2. Then we determine a number from p(1, i, -- -, i,_,) by the same way as
in the previous section. We denote it by p*(1, ¢, - -+, 1,,-1, 1,0, - - -, 0) and
&
call it the right distinguished point associated with (1,1, - - -, i,,_1, 1,0, - - -, 0).
5

3. We determine q(1, i, - - -, ,,) from p(1,, -+, i,) in Case 1 by the
same way as in the previous section.

Let there be g, numbers of sequences of Case 1 and n, — 1 numbers
of sequences of Case 2. We denote by 7,4, 712 s 71en the terminal
loops of sequences belonging to Case 1. We regard the point 0 as the
left distinguished point associated with %, and denote it by pr. We de-
note by By, B @ * * *» Pim-1, the right distinguished points which occur
in sequences of Case 2.

Remark. If p(1,0) # 1, ---,p(1,0,---,0) # 1, p(1, 0, - - -,0) = 1, then we

01-1 41
set p*(1,0,---,0) = oo. Similarly if p(1,1) #1,---,0(1,1,0,---,0) # 1,
N—— Ny e’

23 41-1
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0(1,1,0,---,0) = 1, then we set p*(1,1,0,---,0) = 1.
N—— SN—_——

' 51

We set 4,4 = 1/t,e, 6 =1,2,---,8,). Let A,, be the Mdobius trans-
formation whose multiplier, the repelling, and the attracting fixed points
are, Ay, Digy and @i, respectively. We set G(r) = (Aiqy « * * Asen)-

3) Next we consider the general case. We treat the following two
cases:

Case 1. p(Li -+ in) =1, 0L iy -y dgs) # 1y oo oLy sy -+ ) # 1
and y(1,1i, - - -, ip,,,) is terminal.

Case 2. p(1,iy,---,0,)=1,p(1,1;, -, ) #1000, 00,0, -, lppn-) # 1
and p(1,%,, - - -, 8,,,) = L.

Let y(1, 4y, -+ -, i) = 7v,» We use 0,00 and 1 instead of p,, p(1,i,, - - -,
i, 0,---,0) and p(1, i, - -+, ix, 1,0, - - -, 0), respectively. By the same way
as in the case 2), we determine p and q from each p(1,i,---,%,,) (1 < v,
< pe4q for Case 1, and 1 <y, < g, — 1 for Case 2).

Let there be g, numbers of sequences of Case 1 and n, — 1 numbers
of sequences of Case 2. Then we get n, — 1 numbers of right distinguished
points Pjuy, « - 5 Pim-1, associated with 4(1), - - -, é(n, — 1), respectively. We
denote by 7.y 7uay *** *» Tegn terminal loops of sequences belonging to
Case 1. We regard the point 0 as the left distinguished points associated
with k,, where 7., = r(1,i,, - - -, i,,), and denote it by p;,. We set A, =
1ty G=1,2,---,8). Let A,;, be the Mobius transformation whose
multiplier, the repelling, and the attracting fixed points are Ay, p.;, and
Qu), respectively. We set G(r) = (A, * 5 Asgp)-

4) Last we consider the following case: p(1,i,, - --,i,,_) = 1, p(1, i,

coy e =1 and (1,3, - - -, i,,) is terminal (g, = g,y + 1).

Let (1,%,---,i,) =k, that is, y(1,4;, - -+, %) = 14, We set p,, =0,
Qi, = o and 2, = 1/¢, Let A,, be the Mobius transformation whose
multiplier, the repelling, and the attracting fixed points are 2, p;, and
Q:,, respectively. Set G(r) = (A;,). Then the point 1 lies in some
standard fundamental region for G/(r). We call the point the left distin-
guished point associated with &, and denote it by p;, = 1.

Remark. For g = 2, we have the following. We set p, =0, g, =
and A, = 1/t,. Let A, be the Mdobius transformation whose multiplier, the
repelling, and the attracting fixed points are 4, p,, and g, respectively.
Set Gyz) = (A,). Then the point 1 lies in some standard fundamental
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region for Gy(z). We call the point 1 the left distinguished point associated
with %, and denote it by pr = 1.

We treat the case of k, = 1, that is, the case of p, #+ 1, similarly to
the above. We consider the following sequences:

Case 1. p,#1, p(L,i)#1, -, 0,8y ---,1,) #+ 1 and y(1, 3y, - -+, 2,,) is
terminal.

Case2. p,#+1,p(1,i)=1, -, 001,45+, 0n_y) F=1and p(1,2,, - - -, i) = 1.

Let there be g, numbers of the sequences of Case 1 and n, numbers
of the sequences of Case 2. Then by the same way as in the above, we
determine n, right distinguished points psuy, -« « -, Diwy for e(1, iy, ---,13,,) (1
<y, < for Case 1 and 1 <y, < g, — 1 for Case 2) and a Mdbius trans-
formation group Gi(z) = (Ao - *» Asgyy. We omit the detail here.

By the above things, we get |J|+ 1 (=m + 1) numbers of groups
(some of which may be the trivial group): G(z), G\(z), - - -, G,.(z). Further-
more we obtain distinguished points By, - -+, Biwm-1, Dz, for each ¢ =1,2,
+++ym and Bay, * 5 Do

5-4. Now we can write the remaining requirements as follows.

(ii) For each i = 0,1, ---,m, Gy(z) is a Schottky group or the trivial
group.

(iii) For each i = 1,2, - - -, m, n, distinguished points pH7u), - - -, Pitn—1)»
i, are distinct and n, distinguished points pgu,, - - -, Diny» Dr, are distinct.

(iv) For each i =0,1, ---,m, the above n, distinguished points lie
in some standard fundamental region w,(z) for G,(z).

5-5. (4) For I+ ¢ and J # ¢, the set 67°7S,(3) is defined by com-
bining the definitions of the case (2) and case (3).

Remark. In the case (3) and the case (4), we have m + 1 (=|J| + 1)
compact Riemann surfaces

8.) = QGANIG), 8i) = AGLNIG,(@), - -+, Sue)
= (G (2))|G ().
We say that z represents m + 1 Riemann surfaces Sy(z), Si(z), - -+, S.(c)
and write S(z) = C_)o S,(z). Let [],: 2(G(r)) — S(z) be the natural projec-

tion. Set pj., = [1dPiw,) and DPi,, = [[LDin). We call them right and
left distinguished points on S,(z) associated with p;,, and pj,,, respectively.
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We give definitions of the following sets by using 677/&,(2): €)(2)
= 08(2), GJ(2) = §1B(23), SL7(3) = -¥C(2), ©}(3) = BY2I)
LcI McJ Lcr

McT

with I=1{1,2,---, 8}, 63 = &) withJ ={1,2, ---, 2¢ — 3} and &*(2)
= GL/(2) with I=1{1,2,---,g} and J = {1,2,---,2g — 3}.

DEeFINITION. We call the set @;‘(Z) the augmented Schottky space
associated with X.

Remark 1. The mappings ¢ and + defined in §4 are naturally
extended to &} and S}(2), respectively, where &} is the augmented
Schottky space in the sense of Bers (cf. Bers [3]).

Remark 2. From Theorem 1, we see, for the above mappings ¢: S}
— De X (C — {0,1D%* and +:Df X (C — {0,1})**~* — Mob?, ¢ =id. and
o¥|S5(2) = id.

From Remarks 1 and 2, we may identified S} with &}(2).

Remark 3. Let 2 = {a, -+, a7y, ) 726~} and 3= {@, - @ty
72¢-s} be standard systems of loops on a compact Riemann surface of
genus g. Then there is a canonical bijection of &}(3) onto ©#(5). Let
¥ (resp. ¢) be the mapping of S}(2) (resp. &) onto &} (resp. @;(f))
stated in the above Remark 1. Then @y is the desired mapping.

Remark 4. Let 3 and 3 be distinct standard systems of loops on a
compact Riemann surface of genus g. We can not necessarily identify
&%) with S3) for the following reason. For ze /S 3), we have
{J| + 1 Schottky groups Gy(z), Gi(z), - - -, Gn(z) (m = |J|) and m + 1 Riemann
surfaces S/(z), S(z), - -+, Sn(r). Butanyte @g(f) may not represent Riemann
surfaces Sy(z), Si¢), - - -, Sn(z). For example, let X and 3 be the standard
systems of loops associated with Case 1 and Case 2 in § 3, respectively.
Let

T = (tls Tty te; 015 025 * * * 5 Pey 1: 13 1) € 5[7’8,9)@(1(2) .

Then we have four Riemann surfaces Si(z), Si(r), Si(z), and S(z). But there
are no t € @g(f’) representing the Riemann surfaces.

Remark 5. &*(5) C Df X (C — {0},

Remark 6. Each point ¢ = (¢, -+, 8,3 04 * -+, Pg-5) C @;"(Z’)\@g(Z') has
the following property: At least one of p,, j =1,2,---,2¢ — 3, is equal
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to one or at least one of ¢, i=1,2,---,g, is equal to zero. Thus
@;’,‘(2)\642) is the intersection of 9€,(3) (C D¢ X C?¢-%) with finitely many
complex hyperplanes.

5-6. ProrosiTioN 5. The augmented Schottky space ©i(Z) is a
domain in C*7* and a subset of S,(3) U 3S,(2). ForeachIC{1,2,---,8}
and each JC{1,2,---,2g8 — 3}, 0""'€,(2) is a domain in D*¢~ "l X (C —
{0, 1))*~*-1Y! and SL7(2) is a subdomain of &¥(3).

Proof. That ©}(2) is a domain is proved by a method similar to
Bers [3]. Here we will prove that ©,3) is a domain. By using the
techniques in the above two cases, we may prove that @;‘,‘(2) is a domain
in C*73,

Let 7€ @3(2). Suppose 7€ §’G,(2). Let the Riemann surface S(r)
associated with r have m + 1 (m = |J|) parts, that is, S(z) = C) S,(z).
j=0

For z, we have m + 1 Schottky groups (including the trivial group) G(z),
G(z), - -, Gu(r). We write

Gé(T) = <A£(1)(T)’ Tty Al(gz)(T)> (Z = 0> 1, ) m) .

Then let the distinguished points be p;u(c), - -+, Py (), Where Py, (c) =
Pe(z) ¢ =1,2---,m). Let p,;(r) and q,;(r) be the repelling and the
attracting fixed points of A,; (), j=1,2,---,8, respectively. p;u(z),
-+, Dimp(t) lie in a suitable fundamental region o/r) for G(r) by the
definition of the augmented Schottky space.

We normalize G,(z) by setting piu,(c) = 1, p,ay(z) = 0, and g,q)(z) = oo
“¢=12---,m) (for £ =0, we set pju(r) = 1 instead of p;,,(r) =1). We
denote it by G(r) again. Let defining curves of the groups G,(z) be
Ciy(2), Ciy(2), - -+, Cuggp(7), Clg (). Let o' € D5 X (C — {0})**~* satisfy |/ — 7}
< ¢ for sufficiently small ¢ > 0. Let L = {k|p(<') = 1}. We may assume
that L J. We will show that ¢ €§'G,3) C S,(3). Let L =dJ\{k}.
Suppose that the components of z, are equal to those of ¢ except p,,
which satisfies the condition 0 < |g,,(z) — pi ()| <e. First we will show
7, € 6¥6,(2) and then 7’ € G, (2).

Let o(1, 1, -- -, im/)(f) =1, o(1,%;, - - -, iml+l)(f) #1000 0, T,,-1)()
#1, p(L, 0 - -+, im)("') =1, 00,3, ---, i/u+1)(7) #1000, iy,*—l)(f) #1,
(L, 0y -, e )(e) = L.

Remember that y,, = 71,4, - -+, i,,) and 7., = (1, 8y, -+, 8,,). We as-
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sume that g, > 1 and g, = 1. For r, we define

Gk;(z.l) = (At 2), - - -, Ae(g,)(fn 2))

and

Gilz) = (Avaey, 2), - - -, Aqu,,)(fu 2)) .

It is easily seen that both G, [(t) and G, (z,) (=G4, (r)) are Schottky groups,
since the difference between ¢, and z is small. We normalize G’,,,(r,) by
setting p,ay(z)) = 0, @,a)(z)) = 0 and Py,,(r) = 1, where we note that
Dinp(z) lies in a standard fundamental region w,(r,) for G,“(r,) (=G (7).
Similarly we normalize G,(z;) by setting p,u(z;) = 0, q,q(z;) = oo, and
Di () =1 (we set p;(r) = Prafz)). We represent the normalized groups by
the same notations. We choose their standard fundamental regions as
follows and denote them by o/z,) and w,(z,): C,u)(z), Ciay(7) = Aiay(z1, Ciir(7)),
) Ct(gJ)(T)’ Cz’<g,,)(fx) = Ae(m)(‘fn Cz(g,)(f)); Crw(@), Cow(r) = Avuy(ti, Coy(7)),
oy Coig(2), Clrigon(t)) = A, (t1s Crg,n(v)) are defining curves of Gz,
and G,(z,), respectively. Then pyu,(cy), * - -5 Pitne—1(71) lie in o,(z;) and py (zy),
. 'aﬁl’(n,»)(ﬁ) lie in w,(z,).
We determine 7'e Mob by setting T(0) = 1, T'(o0) = pi,(zy), and T'(1)
= 0. For simplicity we write p instead of p,,(zr;). Then we have

T(2) = o(z — D)z — p)

and T(p) = co. Since w,(r) = w,(r;) and the distinguished points of G,(z)
and G,(r,) are the same, the point 1 may be regarded as an interior
point to w)(z,), where wj(r;) = w,(r;) — {distinguished points}. Since z, is
sufficiently close to z,0;,(z,) is sufficiently close to 1. Thus we may regard

{zllz = 1| <1 — per)]""} C wie(zy)

Set ¢:|z — 1| = |1 — p,(z))|”*. Under the mapping T, the circle ¢ is mapped
to the small circle c:

lw— 1] = |z|lp — 1llz — o] < 4[1 — o,

where w = T(2). p — 1 is sufficiently small so we have the following
properties:

(i) p is contained in the interior to c.

(ii) The defining curves of the group Gyz) = (A (1,2), +  +5 Ay (71, 2))
= {An(7,2), -+ -, Augy(z, 2)) lie in the exterior to c.

We set G.(z) = T(Gu(r))T-'. Then the multiplier 2,((z) of
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TA, ), 2T (j=1,2,---, g) satisfies |, ;(z,)| > 1. Furthermore T'(C, ),
T(Clay -+, T(Cl,,) are defining curves of G.(z) and are contained in
the interior to ¢. Thus the free product of G,(z,) and Ge,(rl) is a Schottky
group by Maskit’s Combination Theorem (we denote it by G,(z,)). Hence
7, € 51 (2).

Next we consider the case g, =0 or g, = 0. For example, let g, =0
and g, = 0. Then G(7), G(z), G;(z), and G,(r,) are all the trivial groups.
We normalize G(r)), GAz)), Piay (7)) = 0, Diny(7;) = o0, and pi(r) = 1; Py y(zy)
=0, Ppay(r;) = o and pj(z) = 1. Since 7, is sufficiently close to z, the
distinguished points pj o (z), - -, Pirm,s(r1) lie in the exterior to a small
circle ¢ around the point 1. We determine T'e Mo6b by setting 7'(0) = 1,
T(c0) = p (), and T(1) = 0. By a similar way to the above, we can
show that r, € §°G,(2).

Finally if we note that 5L@g(2) is open, which is easily seen, we see
7 €56,3) from the fact r,€5°S, () and the following: the difference
between 7' and z; is small except p, for ke d and p,(z") = pu(c,) for ked.

In general, if L C J, we perform the above operation |J| — |L| times.
Then we see that ¢ € §“S,(%). Thus &) is open.

That C%'g(Z) is connected is seen from the following well-known fact:
If A is connected and A C BC A, then B is connected.

Since the other parts of the proposition are easily proved, we omit
the proof in detail here. Our proof is now complete.

6. Augmented Schottky spaces and( Riemann surfaces

6-1. Throughout this section, let a marked Schottky group G, =
{Ay, -+, Agpy be given and let a standard system of loops X on S, =
ANGY)/G, be given. Let S be a marked Riemann surface with nodes. We
call the set 3/ = {af, - - -, &5 71, - - *, 73g—s} Of loops and nodes on § satisfying
the following condition a standard system of loops and nodes: Each com-

2g-3
ponent of S — Lg) o — i) 77 is a planar and triply connected region of
j=1 =1

type [3, 0], [2, 1], [1, 2], and [0, 3], where a surface of type [m, n] means a
sphere with m disks removed and n points delated. From now on we
only consider standard systems of loops and nodes satisfying the follow-
ing condition: Each ¢} (j =1,2,---,2g — 3) gives the same partition of
{1,2,---,8} as 75

6-2. (1) Let reS,(2). In this case, it is well-known that S(z) =
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2(G(1))/G(r) is a compact Riemann surface without nodes of genus g.
(2) Let ted'©,(2) (I +# ¢). By the same way as in §5, we can
determine

pl(r) = 0’ QI(T) = 0, p2(T) = 1’ Qz(f), s '9pg(7)’ qg(T)

from z. Let G(z) be the Schottky group determined from z (see §35).
Then S(z) = 2(G(z))/G(z) is a compact Riemann surface of genus g — |I|
on which there are |I| distinguished pairs of points: p(z), §z), iel,
where p,(r) is the image of p,(z) under the mapping 2(G(r)) — S(zr) and
§(z) the image of g,(zr). We denote by S‘(z-) the Riemann surface S(z)
with the points p,(r) and G,(r) identified for every iel. Then .§(z-) is a
compact Riemann surface of genus g with |I| non-dividing nodes.

(3) Let t€8’©, () (J + ¢). Let J ={ky,---, k,}. By the same way
as in the previous section, we have m +4 1 Schottky groups (including
the trivial group) Gy(z), Gi(z), - - -, G,.(z). Then each 2(G/(z))/G,(z) = S(z)
4 =0,1,---,m) is a compact Riemann surface of genus g, on which
there are n, distinguished points p;u), - -+, Pim,y. Exactly in the same way

as in §4, we consider the following sequence: ---,po(1,%,, ---,%,_) =1;
oL dy, by ) F L e 00 0, ) ¥ Lp(L 0y 0, 8,) = 15 0(, 0 -
i#;+1) *+1,---, P(l iu o 'm+1 1) * 1, P(L iy - ) im+1) =1 (or P(l, By ooy imn)
+ 1if yQ,4, - - -, 1,,,,) is terminal).

Let 7., = r(l, iy -+ +y3,,) and 74, = r(1, 8y - - -, 3,,_,). Then we denote by

Pi, (resp. p;) the image of right (resp. left) distinguished point p;,
(resp. pi,) under the natural projection 2(Gy,(z)) — Si,(z) (resp. (G, (7))
— S;,(1)). By identifying p;, with p;, we connect S,/ (z) and S,,(z). The
resulting surface is expressed as S,,(z) + S;(z). We perform this opera-
tion for each S(z), - - -, S;,(r) and each distinguished pairs of points (for
Si(z), we need a trivial modification). At last we have a compact Riemann
surface

S(z) = Sy(z) + Su(@) + -+ + Sk,,.(T)

of genus g, + g, + -+ + g, (=g) with m dividing nodes.

(4) Let r€0"7Cy(cr) (I + ¢,J + ¢). By using the above methods (2)
and (3), we obtain a compact Riemann surface of genus g with |J| dividing
nodes and |I| nondividing nodes:

S(2) = 8(0) + Su@®) + -+ + S0 .

We call S(¢) the Riemann surface with nodes associated with z.
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6-3. Next we consider the converse. Let S be a compact Riemann
surface of genus g without (with) nodes. Suppose there is a standard
system of loops (and nodes) 3" = {af, - - -, a}; 71, -+ *» 7%-s} on S such that
each 7, gives the same partition of {1,2, ---, g} as 7,€2. We call 3’ is
compatible with ¥ and denote by X'~23. We denote by (S,2”) a pair of
the above S and 2".

(1) Let S be a compact Riemann surface of genus g without nodes
and let 3’~2. Then it is well-known that there exists a e ©,(3) with
2(G(2)|G(z) = S.

(2) Let S be a compact Riemann surface of genus g with only non-
dividing nodes and 2'~2%. Let I={i, ---,i}C{1,2,---, 8} be the set of
i such that o, are non-dividing nodes on S. Along each «;, (k= 1,2,
.-+, %), we cut off S and then we have a Riemann surface S with ||
pairs of punctures. We attach a point to each puncture. Then we have
a compact Riemann surface S of genus g — |I]. The 2¢ attached points
are denoted by p,,, @, - - *» Di, @i, We regard that each «; (i ¢ I) is a loop
on S. Let G be the marked Schottky group G = (A;|ie¢I) having a
standard fundamental region o whose defining curves are projected to «f
(iel). Let A,p, and q, (i ¢I) be the multiplier, the repelling, and the
attracting fixed points of A,(2), respectively. We denote by p,, G, -,
D, Q;, the lifts of p,, §., - -, D:,» @, in the interior to . Then by the
same way as in §4, we can determine p,, ---,0,;€ C — {0,1} from p,,q,
(&) and p,, §, (ieI) corresponding to the given partitions of {1,2, - - -, g}
associated with 5. We set ¢, = 1/2, (i¢I) and ¢, =0 (ic I). Then, from
the given S we obtain

s = (b, -, tes 01, "0 0 ng—S) eDs X (C— {0’ 1})2‘?—3

such that 2(G(zs))/G(zs) = S. Obviously 7€ §'&S,(2).

Then we have the following. For the given (S,2’) we determine a
Schottky group G representing S and distinguished points p,, 4, (i€ I) on
8.

Remark. The determination of p;, and g, (ie ) from p, and §, is not
unique. Thus g is not uniquely determined from S. It depends on a
choice of a standard fundamental region w for G. We show it by the
following example. Let g =2 and I={2}. Then ¢ =0. Let p, =0,
g, = oo and ¢, = 1/4. We may p, = 1. Let w, and v, be standard funda-
mental regions for G as in Fig. 6 and Fig. 7, respectively. We take ¢,
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= 2 in Case 1. Then g, = 1/2 in Case 2. Thus

_ {(4, 0; 2) in Case 1
* 7 14,0;1/2)  in Case 2.

1
3/2
- @1 /.2

Fig. 6 (Case 1) Fig. 7 (Case 2)

(8) Let S be a compact Riemann surface of genus g with only m
dividing nodes and 3'~3. Let J={k, - -, k,} C{1,2,---,2¢ — 3} be the
set of {k,} such that y;, are dividing nodes on S. Along each 7, (¢ = 1,2,
.-.,m) we cut off S and obtain m + 1 Riemann surfaces, S,, S, ---,S,,
with punctures. We attached a point to each puncture. Then we have
compact Riemann surfaces S, (¢ =0,1,---,m). We call the attached
points distinguished points. Let the “a-loops” on each S, be a,qy, - - -, @y,-
Let G, be the marked Schottky group G, = (A, -, As,,> having a
standard fundamental region », whose defining curves are projected to
@,q- We denote by Piay, - - -y Dipy the lifts of psay, - - ) Dimy, respectively
to the interior of a standard fundamental region w,. Let 2, p.;, and
Q. be the multiplier, the repelling, and the attracting fixed points of
A, (). By the process opposite to one in § 5, we determine 4, numbers
of p from p,;y, ¢y =1,2,---,8) and Py, G =1,2,---,n,). We easily
see that h, = 2g, + n,— 3. We set ¢,,, =1/2,;, (=1,2,---,8;¢=0,1,
..., m). Thus we determine h, + h, + --- + h, numbers of p. We set
p; =1 for jeJ. By the above things, we determine A, + A, + --- + &,
+ m numbers of p. We have

ght‘i'm:g(zgc‘*'nz"'3)+m=2g—‘3o

Thus from the given S and X', we determine
Tg = (ti, .t ',.tg; Py *°°y p2g~3) € D*gX(C - {0})2g-3

such that S coincides with the Riemann surface associated with z;. It
is easily seen that rg3ed/6,(3). In this case, we note that the same
remark as in the previous case (2) holds.
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(4) Let S be a compact Riemann surface of genus g with ¢ non-
dividing nodes and m dividing nodes. Then by a method similar to the
above two cases (2) and (3), we can determine

Tg = (tl’ ) tg; P1y "y ng-a) € Dgx(C - {0})2g—3

from the given S such that r5e€d"7/S,(2) and S coincides with the
Riemann surface associated with zg.

6-4. By collecting the above results, we have the following theorem.

THEOREM 2. (1) For ted"/S,2), there exists a Riemann surface S
of genus g with |I| non-dividing nodes and |J| dividing nodes associated
with t in the sense of 6-2.

(2) Conversely, give any (S,2’), where S is a compact Riemann surface
of genus g with |I| non-dividing nodes and |J| dividing nodes and 2’ is
a standard system of loops and nodes on S compatible with Y. Then
there exists a e 6"'S,(2) such that S coincides with the Riemann surface
associated with t in the sense of 6-2.
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