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Abstract

We are concerned with the problem of the existence and uniqueness of regularly varying (in
Karamata's sense) solutions <p of the linear functional equation

in a right neighbourhood of x = 0. Under suitable conditions on the given functions / and h, the
uniqueness of solutions depends essentially on whether the series Sh ° / ' converges or diverges; here
f denotes the i-th functional iterate of /. The existence of solutions may be proved under further
assumptions.

The case of the more general linear functional equation

] = g(x)<p(x)+h(x)

may be reduced to that of equat ion ( * ) .

Introduction

The present paper has been inspired by Seneta (1971) who proved the
existence and uniqueness of regularly varying solutions y for the homogeneous
linear equation

(1) y[f(x)] = g(x)y(x).

Our purpose is to investigate to what extent those results can be generalized to
the case of the inhomogeneous equation

(2) <p[f(x)] = g(x)<p(x)+h(x).

We start with preliminary results and terminology. A continuous function F,
defined in a right vicinity / of the origin and positive in a right vicinity /, C / of
the origin, is said to be regularly varying whenever for every A > 0 there exists a
positive and finite limit limJt^0+ F(Ax)/F(x). If this is the case, this limit is
necessarily of the form
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(3) Jim_F(Ax)/F(jc)= A",

with a real constant 8, and the convergence in (3) is uniform with respect to A in
every compact interval contained in (0, °°). The number 8 in (3) will be referred
to as the exponent of F. If 8 = 0, then F is called slowly varying, and every
regularly varying function F has a representation

(4) F(x) = x'L(x),

where 8 is the exponent of F and L is a slowly varying function. If F is regularly
varying, with an exponent 5, then, for every e > 0, the inequality

(5) xs+' <F(x)<x6'

holds in a suitable vicinity of the origin. [Cf. Feller (1966), Karamata (1930),
Korevaar, van Ardenne-Ehrenfest and De Bruijn (1949)].

Let I denote an interval of the form (0, a] or (0, a), where 0 < a ^ °°. In the
sequel we shall make the following assumptions regarding the given functions /,
g, h in equation (2).

(i) / is defined, continuous and strictly increasing in /, 0 < f(x)< x in /,
f(x)/x is monotonic in / and 5 = limx^0+ f(x)/x G (0,1).

(ii) g is defined, positive, continuous and monotonic in /, and g(0 + ) =

(iii) h is defined and continuous in / and of constant sign in a vicinity of the
origin.

Write

(6) & . ( * ) = "fj[ « [ / ' ( * ) ] . n = l , 2 , - ; G o ( x ) - 1,
i=0

where / ' is the /-th iterate of /. We shall make use of the following (cf. Seneta
(1971))

THEOREM OF SENETA. Under conditions (i) and (ii), the function

(7) yo(*)= \limf"(x)/r(x0)Y
0limGn(xo)/Gn{x),

where

(8) So = log g(0 +) / logs

and Xo is arbitrarily fixed in I, is defined, continuous and positive in I, and is a
regularly varying (with exponent 80) solution of equation (1). The general regularly
varying solution of (1) is given by the formula

y(x)=cyo(x),

where c is an arbitrary positive constant.

https://doi.org/10.1017/S144678870001524X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001524X


[3] A linear functional equation 137

Put

(9) <Hx)=<p(x)/y^x).

Evidently <p is regularly varying if and only if \p is regularly varying, and <p
satisfies equation (2) if and only if ip is a solution of

(10)

Therefore in the sequel we may restrict ouselves to the case where g(x) = 1, i.e.,
we may study the equation

(11) V[f(x)] = <p(x)+h(x)

instead of (2).

1. Uniqueness

We have the following

LEMMA 1. Under conditions (i) and (Hi), if (p is a regularly varying solution
of equation (11) in /, then there exists (finite or infinite) limit

(12) • lim+<p(x).

Limit (12) is finite if and only if the series

(13) SM/'OOI
i=0

converges.

PROOF. We need consider only the case, where <p is a slowly varying
function, for otherwise limit (12) is zero or infinity (according as the exponent of
(p is > 0 or < 0) in view of (5) applied to <p.

By iterating equation (11) we get

(14) * [ / " ( * ) ] = < ? ( * ) + 2 M / ' O O L n = l , 2 , - - .
i-0

Since the terms of series (13) have a constant sign (at least from some i on), for
every x £ / there exists a finite or infinite limit

Jim <p [ /"(*)] ,

and this limit is finite if and only if series (13) converges. So it is enough to show
that, for every decreasing sequence yn of positive numbers, we have
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(15) lirn<p(yn) = lim<p(xn),

where xn = f(x0), with x o £ / arbitrarily fixed. There is no loss of generality in
assuming that y0 = x0.

For every n there exists a k = k(n) such that yn G(xk + ,,xk]. We put
x * = xk(n). Then x * is a subsequence of *„, possibly with repetitions of terms; in
any case

(16) \imcp(x*) = lim<p(xn).

Fix s', 0 < s ' < s. Since <p is slowly varying, we have

lim <p(Ax)/<p(x) = 1
x—>0+

uniformly in [s', 1]. On the other hand, we have for sufficiently large n

V *

whence

(17) .lim <p(yn)/?(**)= 1-

Now (15) results from (16) and (17).
It may be worth while to note that, without any further assumptions, a

slowly varying function need not approach a definite limit as x —» 0 + , as may be
seen from the example of the function <p(x)= expsin log log x~'.

THEOREM 1. Under conditions (i) and (Hi), if series (13) converges, then
equation (11) may have at most a one-parameter family of regularly varying
solutions <p. These solutions, when they exist, are given by the formula

(18) ¥>(*)= C - £ / ! [ / ' ( * ) ] , CSO.
i=0

PROOF. Let <p be a regularly varying solution of (11). By Lemma 1 there
exists a finite limit

(19) C = Jim <p(x)§0.

Letting n—>°° in formula (14) and taking (19) into account we obtain (18).
The situation is different in the case where series (13) diverges. Namely, we

have the following

THEOREM 2. Under conditions (i) and (Hi), if series (13) diverges, then either
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equation (11) has no regularly varying solution, or every continuous positive
solution of equation (11) is regularly varying (with the same exponent).

PROOF. Let <p0 be a regularly varying solution of equation (11). By Lemma 1

lim <pa(x) = + °°.
x—0+

Let <p be an arbitrary continuous positive solution of equation (11). Then the
function a — <p — <p0 is a continuous solution of the equation

a[f(x)] = a(x),

and hence a is bounded in /. Consequently

.. <p(kx) .. <po(\x)+ a(Ax) <PO(AJC)

hm y v / = hm y v ( —^-rr1 = lim , / ,
*-o+ <p(X) «-*o+ <po(jc) + a (X) x^o+ (pa(x)

i.e., <p is regularly varying with the same exponent as <p0.
Let us note that the general continuous solution of equation (11) depends on

an arbitrary function [cf. Kuczma (1968)]. Therefore it seems that in the case
where series (13) diverges the class of asymptotically regular functions is better
suited for equation (11) than that of regularly varying functions [cf. Coifman and
Kuczma (1969)].

Of course, in general it may happen that series (13) converges for sorne
values of x in /, and diverges for other; but it follows from Lemma 1 that in such
a case equation (11) cannot have regularly varying solutions.

2. Existence

If series (13) converges uniformly on every compact subinterval of /, then
[and only then; cf. Kuczma (to appear)] functions (18) actually fulfil condition
(19). It follows that for C > 0 functions (18) are slowly varying. However, for
C = 0 it is necessary to make stronger assumptions to ensure that function (18) is
regularly varying.

LEMMA 2. If f fulfils condition (i), and h, defined, continuous and positive in
I, is a regularly varying function with an exponent S > 0, then the function

i=0

also is regularly varying with the exponent 8.

PROOF. Take an arbitrary e > 0 such that e < min (s, 1 - s) and

s, = (s + e)*(l + e ) < l .
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and L(x) = x sh(x) so that L is a slowly varying function. Lastly, fix a positive
H < 8.

We may find an A > 0 such that the inequalities

(20)

(21)

(22)

s-e <f(x)/x <s + e,

0<h(x)<x»,

hold for x G (0, A) (cf., in particular, (5)). It follows from (20) and (22) that series
(13) converges uniformly on every compact subinterval of /. Consequently 4> is a
continuous and positive function in /.

Relations (20) and (21) imply that

(s + e)' and (1 -e ) ' < [(x) ^l + E^

for i G ( 0 , A) and i = 1,2,....

Since for x 6 ( 0 , A / A ) we have Ax G (0, A) , we get hence for x G (0, A /A)
and i = 1,2,. . .

and

A ( s - e ) ' <

- e y < L(x)

Thus we obtain the estimation, valid for x G(0, A/A),

fc(Ax)
fi(x) fc(x) + h(x)

L(x)

,

= A'
L(x)

and similarly, for x G(0, A/A),

L(x) ^1

L(x) 1-s, '
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x
,L(Xx)

h(x) ' L(x) 1-s/

Hence we obtain on letting x—>0 +

8 1 .. . ,<J>(Ax) .
(23) A6 —

Now we let e —* 0 and we get by (23)

,. <t>(Xx) A6

(24)

(24) is valid for every A > 0 ; in particular, for A = 1 (24) becomes

,„, . .. 4>(x) 1
(25) iim

+ hoo = 1^7^
Relations (24) and (25) imply that

lim ———̂  = As,
o+ <J)(x)

which was to be proved.
As an immediate consequence of Theorem 1 and Lemma 2 and of the

remarks preceding Lemma 2, we obtain the following

THEOREM 3. Suppose that f fulfils condition (/), and h, defined, continuous
and negative in I, is such that - h is a regularly varying function with an exponent
8>0. Then equation (11) has exactly one-parameter family of regularly varying
solutions. These solutions are given by formula (18) and are slowly varying for
C > 0, and regularly varying with the exponent 8 for C = 0.

For the case where series (13) diverges we have the following simple result.

THEOREM 4. Suppose that f and h fulfil conditions (i) and (Hi) and,
moreover, h is monotonic in I and the limit lim,^0+ h(x) is finite and positive. Then
every continuous and positive solution (p of equation (11) in I is slowly varying.

PROOF. Since \imr^o+h(x)^0, series (13) diverges and so, in view of
Theorem 2, it is enough to show that equation (11) has at least one slowly varying
solution.

Set g(x)= exph(x). This function fulfils condition (ii) and

(26) H m g ( x ) > l .

By the Theorem of Seneta the equation
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has a regularly varying solution yo(x), and it follows by (26) that limI_0+ fo(x) =
oo. Consequently the function

<po(x)= logfoCO

is a slowly varying solution of equation (11).

3. General linear equation

Below we translate our Theorems 1 - 3 to the case of the general linear
equation (2). We obtain these results applying Theorems 1 — 3 to equation (10),
where i/f is defined by (9) and y0 by (7). Theorem 4 has no such a readily available
analogue for equation (2).

In the theorems below Gf are given by (6) and 80 by (8).

THEOREM 1'. Under conditions (/), (ii), and (Hi), if the series

h Gi+1(x)

converges, then equation (2) may have at most a one-parameter family of
regularly varying solutions (p. These solutions, when they exist, are given by the
formula

(28) y(*)=Cyo(x)-Sy<xM cso.

THEOREM 2'. Under conditions (i), (ii), and (Hi), if series (27) diverges, then
either equation (2) has no regularly varying solution, or every continuous positive
solution of equation (2) is regularly varying (with the same exponent).

THEOREM 3'. Suppose that f and g fulfil conditions (i) and (ii), and h,
defined continuous and negative in I, is such that — h is a regularly varying
function with an exponent 8 > 80. Then equation (2) has exactly one-parameter
family of regularly varying solutions. These solutions are given by formula (28)
and for C > 0 have the exponent 8n, whereas for C = 0 the exponent 8.
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