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Predicting long-term response to selection
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Summary

Lande’s equation for predicting the response of trait means to a shift in optimal trait values is

tested using a stochastic simulation model. The simulated population is finite, and each individual

has a finite number of loci. Therefore, selection may cause allele frequencies and distributions to

change over time. Since the equation assumes constant genetic parameters, the degree to which

such allelic changes affect predictions can be examined. Predictions are based only on information

available at generation zero of directional selection. The quality of the predictions depends on the

nature of allelic distributions in the original population. If allelic effects are approximately

normally distributed, as assumed in Lande’s Gaussian approximation to the continuum-of-alleles

model, the predictions are very accurate, despite small changes in the G matrix. If allelic effects

have a leptokurtic distribution, as is likely in Turelli’s ‘house-of-cards’ approximation, the

equation underestimates the rate of response and correlated response, and overestimates the time

required for the trait means to reach their equilibrium values. Models with biallelic loci have limits

as to the amount of trait divergence possible, since only two allelic values are available at each of

a finite set of loci. If the new optimal trait values lie within these limits, predictions are good. if

not, singularity in the G matrix results in suboptimal equilibria, despite the presence of genetic

variance for each individual trait.

1. Introduction

Understanding the dynamics of phenotypic evolution

is important, not only for predicting how traits should

respond to selection, but for knowing how much can

be assumed about past selective forces, given present-

day trait distributions. Selection experiments have

added greatly to our understanding of short-term

response, and the results have been, for the most part,

consistent with theoretical expectations (Falconer,

1989; Roff, 1997). Patterns of long-term evolutionary

change must be studied primarily using non-exper-

imental methods, given the difficulties associated with

collecting suitable data.

There is a large body of theoretical work on long-

term selection, but most of this concerns mutation-

stabilizing selection balance (e.g. Lande, 1975; Turelli,

1984; Barton, 1986; Keightley & Hill, 1988; Burger et
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al., 1989). These models assume that the population’s

mean phenotype is already at or near the optimum,

and are used primarily for predicting how much

genetic variance can be maintained at equilibrium,

given various assumptions concerning genetic details.

Most directional selection theory is concerned with

truncation selection, as used in laboratory experiments

(e.g. Robertson, 1970; Bulmer, 1980; Hill, 1982;

Keightley & Hill, 1987), and has therefore focussed

mainly on short-term responses in small populations.

Here, I use a stochastic model to simulate long-term

response in finite populations undergoing directional

selection to a new set of optimal trait values.

The basic equation for predicting response to a

single generation of directional selection is

R¯ h#S, (1)

where R is the response in the trait mean, h# is the

narrow-sense heritability, and S is the selection

differential. The multivariate version of (1) is

∆Z- ¯Gβ (2)
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(Lande, 1979), where ∆Z- is a vector of changes in trait

means, G is the genetic variance–covariance matrix,

and β is the selection gradient, often written as the

product of the inverse of the phenotypic variance–

covariance matrix (P−") and the vector of selection

differentials (s).

Extending (2) to more than one generation of

selection presents two distinct problems. The first is

that G must be assumed to remain constant over time.

How likely this is remains controversial, and empirical

findings are equivocal (Shaw et al., 1995). The second

problem is that directional selection (β) is unlikely to

continue at constant intensity for long periods of time

in natural populations. Even in experiments using

truncation selection, the force of artificial directional

selection is likely to be opposed by natural selection,

acting either on the selected or on correlated traits

(Lande & Arnold, 1983; Zeng & Hill, 1986; Hill &

Keightley, 1988). There is strong evidence that

stabilizing selection for intermediate trait values is

common in nature (Endler, 1986). Therefore, it is of

some interest to investigate the predictive ability of

equations that model directional selection as a shift in

the optimal values of a set of traits, under multivariate

Gaussian selection. The standard equation for shifted

optima (Lande, 1980a) is

∆Z- ¯G(W­P)−"(θ®Z- ), (3)

where W is a symmetrical matrix, the diagonal

elements being the strength of stabilizing selection

acting on each trait (large values¯weak selection)

and the off-diagonal elements ameasure of the strength

of correlational selection. The superscript ‘®1 ’

indicates matrix inversion, and θ is a column vector of

trait optima. In modelling evolution with this equation

it is assumed that an environmental change has

brought about a change in θ, causing directional

selection until the traits have evolved to their joint

optima. Therefore, the strength of directional selection

decrease as Z- approaches θ, but the strength of

stabilizing selection (W, the curvature of the fitness

surface) remains constant. Hereafter, I will refer to (3)

as ‘peak-shift ’ selection, since the fitness optimum has

been shifted to a new location. This should not be

confused with the use of the term to describe the shift

of a population’s genotype from one fitness peak to

another in speciation through genetic drift.

Equation (3) still requires a number of assumptions,

the most important of which are multivariate nor-

mality of genotypic and phenotypic trait values in

both current and descendant populations, and con-

stant G and P matrices. These assumptions will be

violated to some extent in finite populations with

finite numbers of loci. The consequences of such

violations are studied here using stochastic simula-

tions.

In this study I use simulated populations, subject to

the laws of Mendelian inheritance, to investigate the

accuracy of (3), given various assumptions about the

genetic details. The trajectories of the simulated

populations’ trait means are compared with predic-

tions from (3) that are based solely on information

available at generation zero of directional selection.

Changes in the variance, skew and kurtosis of the

distribution of genotypic values are compared with

those found or expected in previous models.

It is well established that the level of genetic

variance that can be maintained by mutation-stabi-

lizing selection balance (with or without genetic drift)

depends on assumptions made about the distribution

of mutational effects at each locus (Turelli, 1984).

These assumptions have also been shown to be

important in terms of the response expected when an

equilibrium population is subjected to exponential

directional selection (Burger, 1993) of the form

w(z)¯ e(sz), (4)

where w(z) is the mean fitness of individuals with

phenotype z, and s is the strength of directional

selection. Therefore, it follows that the accuracy of (3)

should also depend on the genetic details of the

starting population. This section briefly describes the

three genetic models that will be simulated in this

paper. For a thorough review, see Bulmer (1989).

Models of mutation–selection balance can be

classified into two groups: those that assume the

mutational (and therefore allelic) effects are con-

tinuously distributed, and those that assume effects

are discrete and finite. Models of the first type are

generally based on the continuum-of-alleles model of

Crow & Kimura (1964). This assumes an effectively

infinite number of alleles at each locus, producing a

continuous distribution of effects. Lande (1975)

extended this model to multiple loci, and developed a

formula for the equilibrium variance now known as

the Gaussian approximation to the continuum-of-

alleles model. This assumes that mutational effects, α,

are normally distributed at each locus, and that the

variance of these effects is small compared with the

standing per locus allelic variance (α#'σ#
a
). The

Gaussian approximation requires (Burger et al., 1989)

α#% 4µV
s
, (5)

where µ is the haploid per locus mutation rate, and

V
s
¯ω# (the strength of stabilizing selection on each

character, equivalent to the diagonal elements of W in

equation 3)­σ#
E

(the environmental variance).

Lande argued that under these conditions muta-

tion–selection balance could maintain levels of genetic

variance consistent with those seen in natural popu-

lations. Turelli (1984) showed that maintaining

observed heritabilities under Lande’s assumptions

would require per locus mutation rates far in excess of
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what is usually thought to be realistic. He proposed an

alternative formula for the equilibrium genetic vari-

ance, called the ‘house-of-cards’ (HC) or ‘rare allele ’

approximation. This applies when the variance of

mutational effects at each locus is large compared

with the standing allelic variance (α#(σ#
a
), and

requires (Turelli, 1984)

α#& 20µV
s
. (6)

This causes mutational effects to swamp the existing

variance at each locus. The net effect is that most

genetic variance is maintained by small numbers of

mutant alleles at each locus, each of large effect. This

tends to produce highly leptokurtic allelic distri-

butions.

In the second type of model it is assumed that only

a small number of allelic values are possible at each

locus, with mutational effects limited to moving from

one value to another. The first such models assumed

two possible alleles (Latter, 1960; Bulmer, 1972,

1980). These have since been extended to include three

(Turelli, 1984; Houle, 1989) and five (Slatkin, 1987a)

alleles. Since the allelic values are fixed, traits are

restricted to a finite range of genotypic values if the

number of loci is finite. When multiple traits are

considered, there are also limits on the divergence

between traits. With three or more traits, these limits

are determined by the eigenstructure of the G matrix

rather than by the correlations between pairs of traits.

In this paper, three main types of initial population

are simulated. The first two are continuum-of-alleles

models that have either normal (¯Gaussian) or

leptokurtic (¯HC) allelic distributions at equilibrium.

Both of these assume normally distributed mutational

effects, and will be referred to as ‘continuous effects ’

populations. The third population type has two

discrete values (®0±5 and 0±5) per allele, with equal

forward and backward mutation rates, and will be

referred to as ‘discrete effects ’ populations. The

response in populations with continuous leptokurtic

mutational effects is also compared with the main

continuous effects results.

2. The model

The main simulations consist of 4000 diploid indi-

viduals, with three genetically correlated traits. Sexes

are separate but identical, and all data are averaged

over the two sexes. Mating is random, and gener-

ations are non-overlapping. Populations are given

20000 generations to reach stabilizing selection–

mutation–drift equilibrium (hereafter simply equi-

librium) before the start of directional selection. The

trait means (Z- ) start and remain near their optimal

values (θ) throughout this initial phase. Under most

initial conditions the genetic variances decline steadily

for the first few thousand generations before reaching

their equilibrium levels (generally before generation

10000). To simulate directional selection, the optimal

value for trait 3 is shifted upwards by 10 phenotypic

standard deviation units. All other conditions are

identical in both the equilibrating and directional

phases, for a given population type. For the directional

phase of a given population type, five replicates of

1500 generations are run.

Although all the graphs shown are from only three

initial populations, many others with different par-

ameter values were simulated, to check the generality

of the results, in terms of the effect of population size

(N¯ 4000 or 400), magnitude of peak-shift and

stabilizing selection intensity (W).

(i) Creating the population

Each individual has L¯100 unlinked loci. Popu-

lations with continuous allelic effects are initialized by

assigning a random normal variate with mean zero

and standard deviation 1 to each allele in each

individual. Discrete effects populations are randomly

assigned a ®0±5 or 0±5 at each allele. Each of the three

traits is controlled by n¯ 50 loci, randomly assigned

from the 100 available per individual. The pleiotropic

relationship between traits was produced by randomly

assigning 50 ‘1 ’s to each row of a 3 (traits)¬100 (loci)

matrix B (equivalent to Wagner’s (1989) B matrix).

All other elements of B are assigned to ‘0’. A ‘1 ’ at

element B
ij

indicates that locus j contributes its allelic

values to trait i. Columns with no ‘1 ’s represent loci

that are not assigned to any trait, and are therefore

selectively neutral. All individuals use the same B,

which is assumed to be constant. The same matrix is

used for all simulations discussed in this paper.

(ii) Assigning trait �alues

The genotypic value of each trait in an individual is

defined as the sum of all allelic values at all loci that

code (via B) for that trait, and is therefore additive

between and within loci. The expected average

genotypic value for all traits is zero before directional

selection. Phenotypic values equal the genotypic

values, plus a random normal deviate with a mean of

zero and a standard deviation set so as to produce an

initial heritability of 0±5 for all traits. This heritability

is in general higher than that present after the

population has equilibrated. The environmental vari-

ance for each trait remains constant throughout

selection. The environmental deviates added to each

genotypic value within an individual are independent ;

thus the expected environmental covariance between

traits is zero.
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(iii) Assigning sur�i�al probabilities and selecting

parents

Each offspring is assigned a survival probability,

according to

w(Z)¯ exp (®0±5(Z®θ)T W−"(Z®θ)) (7)

(Lande, 1980a), where superscript ‘T’ indicates matrix

transposition. For directional selection, θ for trait 3

(θ
$
) is set to ­10σ

P
(phenotypic standard deviation

units). θ for all other traits remains at zero throughout

the simulation. Equation (7) gives values between 0±0
and 1±0, and can be interpreted as the probability of

survival. Therefore, selection is frequency-indepen-

dent, since the fitness of each individual, and the

population as a whole, is determined solely by its

proximity to the optimal vector of phenotypes. From

those individuals that survive viability selection in the

previous generation, males and females are randomly

assigned to monogamous pairs. Pairs are then

randomly sampled with replacement, each time pro-

ducing one offspring of each sex. Offspring consist of

a random haploid complement of genes from each

parent. Offspring phenotypes and fitnesses are

assigned as above. This procedure is repeated until

there are enough surviving offspring to replenish the

original population. The number of offspring that

have to be sampled in order to re-establish the initial

population size is therefore a measure of the mean

fitness of the population. This method of ‘viability ’

selection (as used in Baatz & Wagner, 1997) produced

results virtually identical to the alternative whereby

parents were sampled (with replacement) each gen-

eration in proportion to their fitness (w) and produced

offspring that automatically survived to stock the next

generation (results not shown). All statistics and data

are collected only from the surviving offspring.

Mutations are applied after selection, and do not

affect that individual’s phenotype. Mutational effects

are added to the value of pre-existing alleles. The

formula for the house-of-cards (HC) approximation

for the equilibrium genetic variance assumes that

mutational effects are ‘essentially independent ’

(Turelli, 1984) of pre-existing allelic values. However,

this assumption is required in order to simplify the

mathematics, and is not intended as a statement

concerning the actual effect of mutations in real

populations. Therefore, HC populations in this paper

have mutational effects of relatively high variance,

and low mutation rates (compared with the Gaussian

populations), but do not implement the simplification

required for Turelli’s approximation.

(iv) Constants, and parameter estimates

G and P are estimated at generation zero of directional

selection, from the genotypic and phenotypic values

of all individuals. The diagonal elements of W are set

to 15 times the environmental variance of each

corresponding trait. This is a value within the range of

experimental estimates (Johnson, 1976; Turelli, 1984).

The off-diagonal elements of W are set to zero. For

the continuous effects models, genetic variance (V
G
)¯

2nσ#
a
F100, assuming global linkage equilibrium.

Since the heritability of each trait is set at 0±5, V
E

¯
the initial V

G
. Mutational heritability (h#

M
), defined as

the mutational variance V
M
(¯ 2nµα#)}V

E
, is set to

0±001, a value consistent with empirical findings

(Lynch, 1988; Houle et al., 1996). Given V
E

¯100

and 2n¯100, µα# must equal 0±001 to produce this

value (note that V
E

is not set to the conventional 1±0).

The Gaussian simulations use µ¯ 0±001 and α#¯1±0.

While this violates α#'σ#
a
, it does create Gaussian

allelic distributions at equilibrium (confirmed by

simulation). To simultaneously satisfy h#
M

¯ 0±001, α#

'σ#
a
, and n¯ 50 would require mutation rates on the

order of 10−#. The HC simulations use µ¯ 0±0001 and

α#¯10±0. For populations with discrete allelic effects,

a µ of 0±0001 is used as the rate at which each allele

changes from 0±5 to ®0±5, or vice versa. In all

populations, the number of mutations per generation

is drawn from a Poisson distribution with a mean of

2LµN.

For populations with leptokurtic mutational effects,

the reflected gamma distribution is used, where the

density function of mutational effects α (randomly

assigned either a positive or negative sign) is given by

kb e−kααb−"}Γ(b), (8)

where Γ is the gamma function, b is a shape parameter

and k is a scaling parameter adjusted so as to produce

a mutational variance of 0±001 V
E

as in the above

simulations with normally distributed mutational

effects. The value of b is set to 0±5 to produce a highly

leptokurtic distribution, as in several previous simu-

lation studies (e.g. Keightley & Hill, 1989; Burger &

Lande, 1994).

3. Results

Fig. 1 shows the observed and predicted trajectories of

the trait means for the different models. The prediction

for all three traits is very accurate for the Gaussian

population (Fig. 1A). The discrepancy between the

average observed and predicted values is never greater

than 0±3σ
P

for any generation. With a population size

of 400 (results not shown) the predictions were nearly

as good (maximum discrepancy¯ 0±6σ
P
). The predic-

tions for the HC population (Fig. 1B) are much less

accurate, with discrepancies as large as 3±7σ
P
. In this

population, (3) underestimates the rate of response

and correlated response, while overestimating the

time required to reach equilibrium. Predictions for N

¯ 400 HC population underestimated the true re-
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Fig. 1. Response of trait means to shifted-optima selection on trait 3. Units are phenotypic standard deviations. (A)
Gaussian conditions. (B) House-of-cards conditions. (C ), (D) Biallelic loci. All peak-shifts are for ­10σ

P
, except (C )

which is for ­5. Filled symbols, continuous lines : simulation results. Open symbols, dashed lines : predictions from (3).
Trait 1, triangles ; trait 2, circles ; trait 3, squares. Heritabilities (averaged over traits) of the starting populations were
0±44, 0±14, 0±16 and 0±16 for (A)–(D) respectively. All graphs in this paper are based on the average of five replicate runs.

sponse by 2±7σ
P
. When the starting population from

Fig. 1B was given a θ
$
shift of ­5σ

P
instead of ­10,

the results were qualitatively similar, with average

discrepancies as large as 1±4σ
P
.

The quality of predictions from biallelic models

depends on the relationship between the peak-shift

and the selection limit (see Section 4). Fig. 1C shows

that when the peak-shift (5σ
P
in this case) is within the

limit, predictions are good, and the average dis-

crepancy was never larger than ­0±2σ
P
. Average

discrepancies in the 400 population size (results not

shown) approached ­0±3σ
P
. In Fig. 1D, a peak-shift

of 10σ
P
, as in Fig. 1A and B, exceeds the limit,

resulting in suboptimal evolutionary equilibria. Popu-

lation size and mutation rate have no effect on this

limit.

For all three types of population, running the

directional phase of selection without mutation has

virtually no effect on the trajectory of the means.

Therefore, for the continuous effects populations,

there is enough standing variance to easily move 10σ
P
.

For the biallelic population, mutation rate has little

effect on anything but the equilibrium variance (see

Section 4).

Fig. 2 shows the changes in several genetic

parameters caused by directional selection, for the

continuous effects models of Fig. 1A and B. In the

Gaussian population, genotypic variances increase by

15–25%, peaking at generation 80–90 (Fig. 2A). The

variances of traits 1 and 2 change more than that of

trait 3, despite the means being displaced far less. In

the HC population (Fig. 2b) the variance peaks at

generations 30–80, with a 6-fold increase in trait 3 and

a 4-fold increase in traits 1 and 2. When the HC

population was run at N¯ 400, variance still increased

by up to 4 times. With N¯ 400 and V
s
¯ 60 (rather

than 16 as in the main simulations), variance increased

by a factor of 1±8, although there was not a noticeable

increase until about generation 20.

The skew and kurtosis of the Gaussian population’s

trait genotypic values remain near the values of

normal distributions (0±0 and 3±0 respectively). In the

HC population the skew for all traits is initially near

0±0. The skew in traits 1 and 2 remains near 0 except

for the first 15–25 generations, when there is a positive

skew of up to E 0±3. The skew for trait 3 reaches a

higher peak (E 0±4), but continues to decline for

hundreds of generations. Kurtosis was high in the

starting population (E 3±4) but was quickly driven to

normal levels, and then steadily increased from

generation 300 onward. It eventually returned to pre-

directional selection levels. These figures show how

the genetic characteristics of the populations continue

to evolve long after the trait means have reached an

apparent equilibrium.

Fig. 3 shows the genetic changes in the biallelic

populations from Fig. 1C and D. As with the

continuous effects models, both populations initially

show an increase in genetic variance. Notice that in

Fig. 3B the population maintains variance for all
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Fig. 2. Genetic variances, skews and kurtoses for (A) Gaussian, and (B) house-of-cards populations corresponding to
Fig. 1A and B respectively. Genetic variances are standardized to the level in generation zero. Note that the scale is
different for the two variance graphs. Trait 1, thin dotted line ; trait 2, thin continuous line ; trait 3, thick continuous
line.

traits, despite the trait means being at a suboptimal

equilibrium. The normality of the starting population

is a consequence of the symmetry of the allelic effects

(®0±5 and 0±5) about the optimum (0±0). This

guarantees that directional selection will produce

skew and positive kurtosis proportional to the peak-

shift, given the restrictions on mutational effects.

In Fig. 4 the effect of directional selection on genetic

correlations in the four populations is shown. Only in

the Gaussian population do the correlations remain

relatively constant (Fig. 4A). In HC populations (Fig.

4B) the patterns of change are irregular and are

apparently very dependent on the exact starting

conditions and the nature of the peak-shift. In the

biallelic population (Figs 4C,D) correlations increase

as loci unique to trait 3 increase the frequency of their

high alleles. Fig. 4D shows that pairwise correlations

of less than 1±0 do not guarantee that traits will reach

their optima in biallelic models if there are more than

two traits in the system. This effect has previously

been noted in algebraic models of multitrait systems

(Slatkin, 1987b ; Charlesworth, 1990).

Textbook descriptions of changes in the genetic

correlation during directional selection are usually

based on the biallelic model, as is appropriate for

small, laboratory populations that are often derived

from crosses between lines. The changes expected in

large continuum-of-alleles populations (Fig. 4A,B)
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Fig. 3. Genetic variances, skews and kurtoses for biallelic populations where the selective optima θ is either (A) within or
(B) beyond the selection limit. Genetic variances are standardized to the level in generation zero. (A) and (B) correspond
to the populations from Figs. 1C and D respectively. Symbols as in Fig. 2.

are far less intuitive, due to the presence of con-

tinuously distributed allelic (mutational) effects.

The median allelic skew and kurtosis from the HC

population are shown in Fig. 5, where loci have been

classified according to the combination of traits they

control. There are eight classes (0, 1, 2, 3, 1­2, 1­3,

2­3, 1­2­3), containing 19, 7, 11, 14, 13, 10, 6 and

20 loci respectively. The 19 neutral loci of class ‘0 ’ are

not shown in this figure, as they do not respond in any

directed manner to the directional selection encoun-

tered here. As directional selection starts and rare

alleles with large positive effect on trait 3 increase in

frequency, the skew for the four classes that include

trait 3 moves to a high level. (Note that the exact value

of the skew in the equilibrium population is highly

variable between generations, so these classes may

start with almost any value.) The other non-neutral

classes generate skew in the opposite direction at the

point where the net selective forces start favouring

smaller values of traits 1 and 2 (compare with Fig.

1B). This effect of having both directions of skew in

different subsets of genes will tend to produce genetic

distributions that are less skewed than their underlying

allelic effects. This is important because standard

Gaussian predictions such as (3) assume that genetic

variance remains constant on directional selection.

Barton & Turelli (1987) have shown that this is a

consequence of assuming that there is no allelic skew.

At the post-directional selection equilibrium, nega-

tive skew was highly significant in classes 3 (®1±6) and
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1­3 (®1±03) (based on the median skew per class per

generation, averaged over generations 2000–5000,

measured every 50 generations to reduce autocor-

relation (Keightley & Hill, 1988; Burger et al., 1989)).

Thus, these two classes account for most of the

negative skew seen in the genotypic distribution of

trait 3 in the same simulations (Fig. 2B). Although the

variability amongst replicates is very small for the

predicted and observed trait means, it increases rapidly

with increasing moments of the genotypic distribution.

As an example, two other sets of five replicates under

the same conditions produced (a) a long-term de-

pression in the skew for trait 2, and (b) no long-term

depressions. It is likely that the populations can move

between different equilibrium states (as in Barton,

1986), which can have a large influence on the

behaviour of the higher moments but less on the

variance and, especially, the means. However, on the

introduction of directional selection, all replicate sets

behaved qualitatively as described above for Fig. 5.

The kurtosis of the trait 3 classes declines rapidly on

directional selection, again due to selection for rare

alleles. The decline in kurtosis for the other classes is

much weaker, and is generated by the same processes

that produce negative skew.

The continuum-of-alleles simulations with lepto-

kurtic mutational effects produced the expected

results : greater allelic leptokurtosis, and therefore a

greater increase in variance in response to directional

selection than populations with normally distributed

mutational effects (results not shown). A mutation

rate of 0±001 produced a maximum average deviation

between simulation and equation that was approxi-

mately 5 times as large, and an increase in variance

that was twice as large, as in the population of Fig.

1A. Lowering the mutation rate to 0±0001 (at a fixed

mutational heritability) resulted in 4-fold increase in
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genetic variance over that of the population in Fig.

1B, but little difference in the accuracy of trait mean

predictions.

4. Discussion

This paper attempts to answer a relatively straight-

forward question: If a change in environmental

conditions causes selection for a new value of a single

trait, can Lande’s shifted optima equation be expected

to accurately predict the trajectory by which this trait,

and any others correlated with it, will evolve? The

answer, like that to the question of how much variation

can be maintained through mutation–selection bal-

ance, depends crucially on the nature of mutational

effects. As almost nothing is known about the

frequency, magnitude or distribution of mutations at

typical polygenic trait loci, it is not possible to assess

the predictive accuracy of the equation. All that can

be done, at least until more empirical data are

available, is to show what conditions are required for

making accurate predictions and to describe, quali-

tatively, the nature of the errors produced when these

conditions are not met. Like other models, this

simulation makes numerous simplifying and un-

realistic assumptions. For instance, dominance, trait

value epistasis and physical linkage are absent, and

fitness is determined completely by multivariate

Gaussian selection on the trait values. However, the

simulation is not primarily intended as a model of

how evolution works. Rather, it makes assumptions

consistent with those from standard quantitative

genetic theory, and asks how the unavoidable com-

plications associated with finite populations and finite

numbers of loci are likely to affect the predictions of

a specific equation.

The main results from this paper can be summarized

as follows:

(1) If allelic distributions are approximately

Gaussian, (3) can produce very accurate predictions,

based only on information gathered at generation

zero of directional selection. These predictions were

accurate despite the fact that the genetic variances

changed by more than 20% during the directional

selection phase. Such populations start with little

genetic skew or kurtosis, and this changes little with

directional selection. Thus, under these conditions,

evolutionary trajectories may be understood in terms

of the simple parameters of (3).

(2) Under HC conditions, the predictions can be

very inaccurate. Equation (3) underestimates the rate

of response and correlated response, and overestimates

the time it takes for the traits to get to their equilibrium

values. In most of the populations tested, including

that in Fig. 1B, correlated responses were also of

greater magnitude than predicted, sometimes mark-

edly so. Directional selection can result in very large

increases in genetic variance as initially rare alleles

increase in frequency.

(3) If mutational effects in continuum-of-alleles

populations are leptokurtically distributed, directional

selection will cause larger increases in genetic variance

for any given mutational heritability. This causes the

trait means to respond more quickly than predicted,

even in high mutation rate (¯ smaller mutational

effect) populations.

(4) For biallelic models, (3) makes good predictions

as long as the peak-shift does not require trait mean

equilibrium values that are more divergent than can

be accommodated by the genetic architecture of the

‘species ’ (see below). Predictions become progressively

worse as the optimum exceeds the selection limit. In

such cases, suboptimal equilibria will be reached,

despite the presence of genetic variation in each

individual trait.

(5) For many of the parameter combinations used

to test the generality of the main results, peak shifts of

10σ
P

resulted in genetic variances and covariances at

the new equilibrium that were remarkably close to

those seen in the population before directional

selection. Therefore, interpretation of the role of drift

versus selection in shaping the G matrix should be

made with caution. It may be that the changes in G

brought about by selection to new optima are often

temporary, even in relatively small populations. If this

is the case, the changes in G found in short-term

laboratory selection experiments may be funda-

mentally different from those expected between

populations or closely related species that have been

experiencing different selection regimes for long

periods of time.

Peak-shift models of the sort considered here have

received relatively little theoretical attention, and

most of this has dealt with very different types of

questions. For instance, conservation biology issues

have motivated research on the ability of a population

to keep up with an optimum that is changing either

gradually or randomly (Lynch & Lande, 1993; Burger

& Lande, 1994; Burger & Lynch, 1995). Charlesworth

(1993) considered an optimum that could also change

cyclically, to study the effect of directional selection

on the evolution of sex and recombination. Each of

the above studies used a single trait, and did not use

the univariate form of (3) to describe the evolution of

the mean phenotype. Zeng (1988) used a modification

of (3) to look at the effects of correlational selection on

patterns of long-term correlated response in infinite

populations. Other papers have considered the evol-

ution of two traits, one under stabilizing and the other

under exponential directional selection (e.g. Burger,

1986; Wagner, 1988; Baatz & Wagner, 1997). Barton

& Turelli (1987) used allelic recursion equations to

simulate peak-shift selection in a single-trait system,
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using moment-generating functions to make pre-

dictions for the mean and higher moments.

This is the first paper to test the predictions of (3) by

simulation. Although more general predictive equa-

tions are available (Barton & Turelli, 1987; Burger,

1993), they require detailed information about higher

genetic moments or cumulants that are generally

unobtainable. In addition, none of these have been

extended to multivariate systems. Equation (2) and its

descendants, including (3), are popular because they

attempt to predict, or at least explain, evolution in

terms of a small number of relatively familiar

parameters that can, in principle, be estimated.

(i) Causes of prediction error

The rapid increase in genetic variance seen in the HC

population (Fig. 2B) causes the means to respond to

selection far more rapidly than predicted by (3). This

increase in variance as a result of directional selection

has been shown previously in single-trait simulations

by Barton & Turelli (1987; peak-shift), Keightley &

Hill (1989; pure directional [w¯Z ]), Burger (1993;

exponential) and Burger & Lande (1994; shifting

optimum). The increase is largely due to selection for

rare alleles that initially contribute little to the

variance. As these alleles increase in frequency they

contribute more to the variance, and soon cause the

mean to increase at an accelerating rate (Barton &

Turelli, 1987). For a fixed mutational variance,

lowering the mutation rate will result in equilibrium

populations that have less genetic variance but higher

allelic skew and kurtosis. The accelerated response to

the mean is not simply a consequence of the lower

equilibrium heritability (see caption for Fig. 1) in HC

populations. Increasing this heritability to Gaussian

population levels, either by decreasing the strength

of stabilizing selection or increasing the total (L)

and trait-specific (n) number of loci, did reduce the

amount by which the variance increased during

directional selection. However, the quality of the

predictions was only slightly improved, with the dis-

crepancy between observed and predicted response

remaining roughly an order of magnitude greater than

in the Gaussian populations (results not shown).

In using (3) it is assumed that the distribution of

genotypic values is, and will continue to be, multi-

variate normal, and therefore that the dynamics of

trait mean evolution can be described completely in

terms of the mean and variance. HC populations have

far more evolutionary potential, in terms of rate of

response, than Gaussian populations with the same

variance. Therefore, heritability is not an accurate

predictive statistic in such populations.

An increase in genetic variance is seldom seen in

artificial selection experiments, which would seem to

be evidence against the generality of HC conditions

(discussed in Keightley & Hill, 1989). Burger (1993)

concluded that a significant increase in variance is

unlikely if N
e

is less than about 500. This figure was

based on typical parameter estimates for the HC

model, combined with the fact that genetic variance in

his model converged to the mutation–drift equilibrium

level under a particular form of exponential selection.

For the peak-shift selection used in the present

simulation, HC populations with an N of 400 (N
e
F

300) still had a 4-fold increase in variance. When the

intensity of stabilizing selection was decreased (N¯
400, V

s
¯ 60), there was a 1±8-fold increase in variance.

Therefore, Burger’s conclusion may not extend to all

forms of directional selection. However, the N
e

in

selection experiments is typically much smaller than

300. In addition, we know nothing about how existing

univariate estimates of stabilizing selection intensity

should be adjusted when considering multivariate

systems. Therefore, failure to detect increased variance

in selection experiments probably cannot be taken as

evidence against the HC model.

(ii) Selection limits in models with discrete allelic

effects

Discrete effects models have been used extensively in

quantitative genetics (e.g. Latter, 1960; Bulmer, 1972,

1980; Barton, 1986, 1989; Turelli & Barton, 1990).

They may be interpreted either as a realistic rep-

resentation of the allelic effects for at least some loci,

or as a method of simplifying the analysis of

continuous effects models (Houle, 1989). In the latter

case, results such as those in Fig. 1C may lead to

unwarranted confidence in the predictive ability of

standard theory – such as (3) – if HC conditions are

the norm. The lack of rare alleles of large effect in the

biallelic simulation has produced a result consistent

with (3) because the behaviour of the variance is more

similar to that seen in the Gaussian than in the HC

population. Here, trying to extend the results of the

‘simplifying’ model to the situation with continuous

effects would bias the conclusions.

Alternatively, if discrete effects models are taken as

a realistic representation of allelic effects, the limit

problem deserves some consideration, at least when

modelling the evolution of trait means. To see why the

limit occurs, consider a system of 20 genes with free

recombination, where loci 1–12 and 9–20 control

traits 1 and 2 respectively. If the two traits are selected

in opposite directions, the correlation between traits

will approach 1±0 as the loci unique to each trait fix in

the appropriate direction. Genetic variance for both

traits remains, however, since loci 9–12 will still be

segregating. The amount of divergence between traits

is a function of the number of loci unique to each trait,
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and their allelic effects. The same situation exists for

systems of three or more traits, except that pairwise

correlations at the limit no longer have to be 1±0 (e.g.

Fig. 4D), since each trait will generally share

segregating loci with more than one other trait. At a

suboptimal limit, as in Fig. 1D, the genotypic fitness

of the population cannot increase, since mutations

cannot improve upon the alleles that are already

present. Therefore, mutation rate has no effect on the

limit. In Fig. 1D, the eigenvalue corresponding to an

increase in trait 3 and a decrease in the other traits is

near zero, so the G matrix is nearly singular for that

direction of response. It is not completely singular

because mutation continue to produce genotypes that

are slightly less fit than those at the limit.

If the alleles at each locus are typically restricted to

a finite number of values, the simulations suggest that

the situation found in Fig. 1D might be common,

since all it requires is a large peak-shift (¯prolonged

directional selection). This situation would be char-

acterized by a lack of response in a population, despite

the presence of genetic variance for each trait, genetic

correlations less than 1±0, and non-zero values for the

coefficients of the phenotypic selection gradient

(measured as in Lande & Arnold, 1983). These non-

zero coefficients exist because environmental variance

can produce phenotypes more fit than those at the

genetic limit, but this fitness difference is not heritable.

There are in fact several examples of such a lack of

response in natural populations (e.g. Price et al., 1988;

Alatalo et al., 1990; van Tienderen & de Jong, 1994;

Weis, 1996), although in most cases the authors have

provided compelling evidence for simpler explana-

tions. These include the effect of missing traits on the

analysis, and non-heritable traits influencing the focal

trait(s) and fitness through different pathways (Price

et al., 1988; Rausher, 1992).

It should be noted that in discrete effects populations

with allele frequencies near fixation (as when di-

rectional selection has driven the population to a

suboptimal selection limit), subsequent selection in

the direction of the rare allele causes a pattern of

response similar to that seen in HC populations

(results not shown). Genetic variance increases as the

rare alleles become more common, and the trait

means respond to selection more rapidly than pre-

dicted by (3). However, the response is very slow

compared with HC models, due to much lower initial

heritabilities.

Although this paper has examined the predictive

ability of only one equation, a large number of other

theoretical models are based on the same underlying

assumptions, stemming from the use of (1). These

include models for the evolution of sexual size

dimorphism (Lande, 1980b), phenotypic plasticity

(Via & Lande, 1985), maternal effects (Kirkpatrick &

Lande, 1989) and epigenetic effects (Atchley & Hall,

1991), to name but a few. If ‘house-of-cards’

assumptions are more realistic than those of the

Gaussian model, some of the conclusions of these

models are likely to be at least quantitatively

inaccurate. For instance, in Lande’s (1980b) paper on

the evolution of sexual size dimorphism he models the

situation where sexual selection for increased values

of a trait in males causes a temporary, maladaptive

increase in the homologous trait in females. Given

typical genetic correlations between the sexes, he

concludes that the time for the traits in each sex to

reach their equilibrium values may be on the order of

millions of generations. From the simulation results in

this paper, HC conditions might be expected to reduce

that time substantially.

Given current estimates of mutation rates and

mutational heritabilities, it is likely that allelic effects

are leptokurtically distributed. Therefore, directional

selection in moderate to large-sized populations is

likely to cause an increase in genetic variance. Because

of this, Gaussian-based quantitative genetic models

will often underestimate the rate at which trait means

respond to selection. In models involving stabilizing

selection, this will result in overestimates of the time

required for populations to reach equilibrium.
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