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Extension Property and Universal Sets

Łukasz Kosiński andWłodzimierz Zwonek

Abstract. Motivated by works on extension sets in standard domains, we introduce a notion of the
Carathéodory set that seems better suited for themethods used in proofs of results on characterization
of extension sets. A special stress is put on a class of two-dimensional submanifolds in the tridisc that
not only turns out to be Carathéodory but also provides examples of two-dimensional domains for
which the celebrated Lempert heorem holds. Additionally, a recently introduced notion of universal
sets for the Carathéodory extremal problem is studied and new results on domains admitting (no)
ûnite universal sets are given.

1 Extension Property and Carathéodory Sets

1.1 Introduction and State of Affairs

For a setV ⊂ D,whereD is a domain inCn ,we denote byO(V) the set of holomorphic

functions deûned on V as the set of all f ∶V → C such that for arbitrary w ∈ V , there
are an open neighborhood W of w in D and a holomorphic g∶W → C such that f
coincideswith g onV∩W . ByH∞(V),wemean the algebra of boundedholomorphic
functions on V . In what follows, many results could be formulated and proved for
any algebras of holomorphic functions on V containing polynomials; however, we
restrict ourselves to the special case of the algebra of bounded holomorphic functions.
Additionally, for the simplicity of formulations and clarity of presentation, we always
assume that the setV has analytic structure in the sense thatV is always to be assumed
to be an analytic set in the given domain D. his means that V is relatively closed in
D, and for every point x ∈ V ⊂ D, there exist an open set U ⊂ D containing x, and
f1 , . . . , fm ∈ O(U) such that V ∩U = {z ∈ U ∶ f j(z) = 0, j = 1, . . . ,m}.

he analytic set V ⊂ D has the extension property if for any f ∈ H∞(V), there is
an F ∈ H∞(D) such that F ≡ f on V and ∥F∥D = ∥ f ∥V .

he origin of the problem of the existence of norm preserving extensions of
bounded holomorphic functions goes back toRudin’s book ([22,heorem 7.5.5]). he
key step in that area of research can be found in [4]where the problemwas solved for
the bidisc. More precisely, the following result was proved.

heorem 1.1 (see [4]) Let V be a relatively polynomially convex subset of D2. hen

V has the extension property if and only if it is a retract.
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Recall that V ⊂ D is a retract if there is a holomorphicmap r∶D → D such that its
range is V and r∣V is the identity. It is an obvious observation that any retract has the
extension property.

Later,Kosiński andMcCarthy proved, relying on theLempert theory, that the same
statement as above holds for the class of two-dimensional strictly convex domains D
(see [15]). hey also showed some necessary formof the setswith the extension prop-
erty in suõciently smooth strongly linearly convex domains in higher dimensions.
Such sets must be totally geodesic.

On the other hand, in the paper [2], the authors described the sets with the exten-
sion property in the symmetrized bidisc and found out that in this case there are sets
with the extension property that are not retracts.
Although the problem of the characterization of the extension sets in the simplest

case of the polydisc has been studied, it is very frustrating that only some partial
results on that topic have been obtained. In this context let us mention results in
[6, 10, 14,20].

he situation in the tridisc D3 was studied in [14].
As one looks at the proofs of results describing the extension sets in a series of

papers in quite diòerent situations, a weaker form of the extension property is more
natural to work with. Namely, the existence of norm preserving extensions of some
extremal functions is essential. And in principle, the results on the description of
extension sets just mentioned can be generalized to that new notion. his is formally
done in Section 2, where the proofs are given in a detailed and partially novel way in
the bidisc only; in other cases, they aremerely outlined.

Studying the tridisc D3 ,the authors showed that one-dimensional sets with the
extension property are precisely retracts (that was later generalized to arbitrary poly-
discs in [20]), and for two-dimensional sets with the extension property they found
a necessary condition ([14, heorem 6.1]). he last form was, as indicated in [14],
not suõcient for the set to have the extension property. hen authors considered a
class of two-dimensional subsets that are uniqueness varieties for three dimensional
and non-degenerate 3-point Pick interpolation problem in D3 (see [14, Remark 7.4]
and [13]). In our paper, we will show that these two-dimensional subsets do satisfy
our new notion, but they are not retracts. his is surprising as such a phenomenon
occurs neither in the bidisc nor in domains studied in the literature so far. herefore,
this class of two-dimensional algebraic subsets is one of the objects that attracts our
attention. More precisely, we look at analytic submanifolds Mα deûned as the sets

{(z1 , z2 , z3) ∈ D3 ∶ α1z1 + α2z2 + α3z3 = α1z2z3 + α2z1z3 + α3z1z2},

where α1 , α2 , α3 ∈ C are not all zeros.

Remark 1.2 (i) Recall that a characterization of retracts in the polydisc as the sets
being graphs of holomorphic functions over lower dimensional polydiscs comes from
[11]. Note that if α3 ≠ 0, the surface Mα can be written as a graph of a function given
by the formula

(1.1) z3 = ψ(z1 , z2) = ω
az1 + bz2 − z1z2

bz1 + az2 − 1
,

718

https://doi.org/10.4153/S0008414X20000139 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000139


Extension Property and Universal Sets

where a = α1/α3, b = α2/α3, and ω = α3/α3. In particular,Mα is a graph of a function
over the ûrst two variables from D2 if and only if ∣a∣ + ∣b∣ ≤ 1, that is, ∣α1∣ + ∣α2∣ ≤ ∣α3∣.
herefore, the above-mentioned result of Heath and Suòridge [11] implies that the
variety Mα is not a retract of the tridisc exactly when ∣α i1 ∣+ ∣α i2 ∣ > ∣α i3 ∣ for all possible
permutations (i1 , i2 , i3) of the set {1, 2, 3}—we shall say that such a triple satisûes the

triangle inequality.
(ii) he family {Mα} is stable under automorphisms ofD3 in the following sense:

if z ∈ Mα andm ∈ Aut(D3)maps z to 0, then m(Mα) = Mβ for some β. To prove this,
it is enough to consider the case α3 ≠ 0 (permute the coordinates, if necessary). Let
us represent Mα as in (1.1). Note that the function ψ is inner in the following sense:
∣ψ(z1 , z2)∣ = 1 for almost all z1 , z2 in the unit circle. Trivial computations show that m
transforms Mα to a surface of the form

z3 = φ(z1 , z2) ∶=
Az1 + Bz2 + Cz1z2

Dz1 + Ez2 + F
,

where F ≠ 0. It can be assumed that F = 1. It is also simple to observe (properties of
m) that φ is inner. his fact is crucial for the rest of our reasoning.

he following observation is trivial: if

(1.2) λ z→ γ1λ + γ2

1 + γ3λ

is inner (that is maps almost all points from the unit cirle to the unit circle), then
γ3 = γ1γ2 and either ∣γ1∣ = 1 or ∣γ2∣ = 1.

Let us apply this observation to λ ↦ φ(λ,ωλ), where ω is a unimodular constant
(almost arbitrary). If γ1 appearing in (1.2) is unimodular, we get that ∣C∣ = 1 and

(1.3) φ(z1 , z2) = C
Ez1 + Dz2 + z1z2

Dz1 + Ez2 + 1
.

If, in turn, ∣γ2∣ = 1, then either B is unimodular and φ(z1 , z2) = Bz2 orA is unimodular
and φ(z1 , z2) = Az1. Certainly the last two cases cannot occur (otherwise, Mα would
be of the form z3 = ω jz j for some j = 1, 2). In particular, m(Mα) is of the form (1.3)
and consequently can be written as Mβ for β = (cE , cD,−c), where c2 = C.

Note also that β satisûes the triangle inequality if and only if α does. his is an
immediate consequence of the fact that m takes holomorphic retracts to holomorphic
retracts and the previously mentioned description of such sets.

(iii) All the results for Mα presented below are non-trivial preciselywhen the triple
α satisûes the triangle inequality; otherwise, the sets are biholomorphic to the bidisc.

he notion that is new and is basic in our paper is that of an (inûnitesimally)
Carathéodory set to be deûned below. To deûne the objects we use notion of the
Carathéodory pseudodistance (Carathéodory-Reiòen pseudometric) that is an exam-
ple of aholomorphically invariant function. Since basicproperties ofholomorphically
invariant functions are essential for us, we ask the reader to consult the book [12] on
the fundamental properties of these functions.
By ρ we denote the hyperbolic metric on the unit disc D ∶= {λ ∈ C ∶ ∣λ∣ < 1}. We

also denote T ∶= ∂D.
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We deûne the Carathéodory pseudodistance

cV(z,w) ∶= sup{ρ(F(z), F(w)) ∶ F ∈ O(V ,D)}.

Its inûnitesimal version, the Reiòen–Carathéodory pseudometric, is deûned below

γV(w;X) ∶= sup{∣F′(w)X∣ ∶ F ∈ H
∞(V), ∥F∥ ≤ 1, F(w) = 0},

where w ∈ V is a regular point (w ∈ Vreg), and X is an arbitrary vector from the
tangent space TwV .
A function F for which the supremum in the deûnition above is attained is called

extremal (resp. inûnitesimally extremal) for the pair (z,w) (resp. (w;X)).
Note that if V is an analytic set in D, then cV(w , z) ≥ cD(w , z) for any w , z ∈ V

and γV(w;X) ≥ γD(w;X) for any w ∈ Vreg, X ∈ TwV .

Deûnition 1.3 Let V be a set (an analytic variety) in a subdomain D of Cn .
We say that V is a Carathéodory set if

cD(z,w) = cV(z,w) for all z,w ∈ V .

We say that V is an inûnitesimal Carathéodory set if

γD(w;X) = γV(w;X)

for any regular point w ∈ Vreg and X ∈ TwV .

As we have already announced, the (inûnitesimal) Carathéodory sets are the ones
that admit the norm preserving extensions of (inûnitesimally) extremal functions.

It is an elementary observation that if V has the extension property, then it is a
Carathéodory set. Any Carathéodory set is an inûnitesimal Carathéodory set. In
Section 2, we brie�y sketch how the known proofs on results describing extension
sets presented above apply to the situation of the Carathéodory sets. Note here that
any Carathéodory set must be connected.

1.2 Link to the Lempert Theory

While trying to characterize the sets having the extension property (or Carathéodory
sets), the impact of the Lempert theory of holomorphically invariant functions in
convex domains turns out to be essential. First recall that for the domainD and points
w , z ∈ D, we deûne the Lempert function

lD(w , z) ∶= inf {ρ(0, t) ∶ ∃ f ∈ O(D,D) such that f (0) = w , f (t) = z}.

Note that the deûnition of the Lempert function can be easily extended to arbitrary
subsets M ⊂ Cn (with D replaced by M). In case there is no holomorphic mapping
joining w, z lying entirely in M we deûne lM(w , z) ∶= ∞. We can also deûne the
inûnitesimal version of the Lempert function. We deûne

κV(w;X) ∶= inf {∣λ∣∶ ∃ f ∶D→ V , f (0) = w , λ f ′(0) = X},

where w ∈ Vreg and X ∈ TwV . he function κV is called the Kobayashi–Royden

pseudometric.
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We call a holomorphic mapping f ∶D → D a complex geodesic if there is a holo-
morphic function F∶D → D such that F ○ f is an automorphism of the unit disc.
In particular, for any λ, µ ∈ D we have the equality ρ(λ, µ) = cD( f (λ), f (µ)), λ,
µ ∈ D. We call the function F to be the le� inverse of the complex geodesic f . We
also say that the complex geodesic f passes through w , z ∈ D (resp. (w;X) ∈ D ×Cn) if
w , z ∈ f (D) (resp. w = f (λ) and X is parallel to f ′(λ) for some λ ∈ D).

hemain result in the Lempert theory is the following.

heorem 1.4 (see [18,19]) Let D be a convex domain inCn . hen cD ≡ lD . Moreover,

if D is also bounded, then for any two points w , z ∈ D (resp. w ∈ D, X ∈ Cn), we can

ûnd a complex geodesic f ∶D→ D passing through w , z (resp. (w;X)).

Actually, for taut domains D ⊂ Cn (i.e., such that any sequence of holomorphic
mappings fk ∶D → D is a normal family), the fact that cD coincides with lD is equiv-
alent to the existence for any pair of points w , z ∈ D of a complex geodesic passing
through them. It is quite natural to call any taut domainD such that cD ≡ lD a Lempert

domain. he Lempert theorem states that any bounded convex domain is a Lempert
domain. Note that the complex geodesics in D are proper holomorphic embeddings
of the unit disc into the domain D.

Deûnition 1.5 Let V be an analytic subset of a domain D in Cn .
We say that V is totally geodesic in D if for any z,w ∈ V , z ≠ w there exists a

complex geodesic f ∶D→ D passing through z and w that lies entirely in V .
We say that an analytic setV inD is inûnitesimally totally geodesic if for anyw ∈ Vreg

and any X ∈ TwV , we ûnd a complex geodesic f ∶ D → D such that f (0) = w, the
vector X is parallel to f ′(0) and the image of f lies entirely in V .

Proposition 1.6 Any (inûnitesimally) totally geodesic set V in a Lempert domain D

is an (inûnitesimally) Carathéodory set.

Proof Choose distinct points z,w ∈ D and a holomorphic function F∶V → D. Let
f be a complex geodesic passing through z,w that lies in V . Choose λ, µ ∈ D so that
f (λ) = z, f (µ) = w. hen, by the Schwarz lemma,

ρ(F(z), F(w)) = ρ(F( f (λ), F( f (µ)) ≤ ρ(λ, µ) = lD(z,w) = cD(z,w).

Consequently, cV(z,w) ≤ cD(z,w), which ûnishes the proof in the ûrst case. he
proof in the inûnitesimal case goes along the same lines so we skip it. ∎

1.3 Main Results

Aswe already announced the following theoremis one of themain results of our paper
(seeheorem 3.1): the set Mα = {z ∈ D3 ∶ α1z1+α2z2+α3z3 = α3z1z2+α2z1z3+α1z2z3}
is Carathéodory. Moreover,

lMα ≡ cMα ≡ (cD3)∣M2
α
.

Althoughwe do not knowwhether the sets Mα are always extension sets, the above
result gives not only a new insight into the understanding of the extension property
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and extends results of [14] but also provides an interesting class of Lempert domains.
Tomake the last statement clearwe introduce a class of two-dimensional subdomains
in D2. For a, b > 0, we deûne

Da ,b ∶= {z ∈ D2 ∶ ∣Fa ,b(z1 , z2)∣ < 1},
where

Fa ,b(z1 , z2) ∶=
az1 + bz2 − z1z2

az2 + bz1 − 1
.

Note that the function Fa ,b is the one that gives a solution z3(z1 , z2) of the equation
deûning Mα for suitably chosen α. Similarly as above the domain Da ,b is interesting
precisely when the triple {a, b, 1} satisûes the triangle inequality.
A direct consequence of the above result is the following (see heorem 3.6): the

domain Da ,b is a Lempert domain.

As we shall see later, the domains Da ,b are, under some obvious assumptions on
a and b, even not linearly convex (see Remark 3.7). he existence of such a class
of domains is interesting from the point of view of the Lempert theory, as the only
domain with all holomorphically invariant functions equal for which that equality
could not be concluded from the Lempert theorem is the tetrablock (introduced in
[1]); see [8]. Recall that the symmetrized bidisc was, at the time of its discovery, the
ûrst example posessing such a phenomenon (see [5, 7]). It turned out later that this
domain can be exhausted by strongly linearly convex domains,whichmade it possible
to deduce the equality of all holomorphically invariant functions on the symmetrized
bidisc from the Lempert theorem (see [21]).

In Section 4,motivated by a recent paper [2],we consider the universal sets for the
Carathéodory problem, i.e., the sets C ⊂ O(D,D), which can replace the set O(D,D)
in the deûnition of the Carathéodory pseudodistance of the domain D. We remark
that in dimension one under very mild and natural assumptions, the existence of a
ûnite universal set for the Carathéodory problem implies that the domain is the disc
(heorem 4.3).

It is noted in [2] that in dimension two the existence of a universal set with two
elements requires the domain to be the bidisc. We generalize this result showing that
the existence of a ûnite universal set lets the domain embed in the polydisc (possible
of higher dimension); see heorem 4.4. Additionally, the domains Da ,b ⊂ C2 turn
out to be examples of the ones admitting three and not two elements in the universal
set. herefore, the situation in dimension two diòers from that in dimension one and
there are other than the bidisc nice and non-trivial domains admitting a ûnite number
of elements in the universal set; see Example 4.5.

In Section 2, themain stress is put on extension and simpliûcation of the situation
in the bidisc, i.e.,heorem 1.1, which is the content ofheorem 2.3 and Corollary 2.4.
he characterization of Carathéodory sets in the situation of strictly convex, strongly
linearly convex and the symmetrized bidisc is sketched only as the methods from
[3, 14, 15] apply in the general case word by word.

In Section 5,we brie�y discuss the problemof a possible structure of universal sets
for the Carathéodory extremal problem in the Euclidean ball Bn andwe show how to
produce universal sets that are “smaller” than the ones obtained in the most evident
way.
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2 Carathéodory Sets Replace Extension Sets

his section studies connection between Carathéodory and extension sets. Its ûrst
aim is to describe Carathéodory sets in the bidisc showing that they are holomorphic
retracts. It is thus trivial that both notions coincide there, which, in particular, proves
and extends [4]. A�er amore detailed study of the case of the bidisc, we sketch how
the proofs in [3, 14, 15] can be applied to get the results describing Carathéodory sets
in the cases of strictly convex, strongly linearly convex domains and the symmetrized
bidisc—the proofs of (formally stronger) results follow exactly the same lines as in
appropriate papers.

Proposition 2.1 Let D be a domain in Cn and V ⊂ D an analytic set. Assume that
cV(z,w) = cD(z,w) > 0 for some z,w ∈ V (resp. γD(z;X) = γV(z;X) > 0, for some

z ∈ Vreg and X ∈ TzV ). If the function F∶D → D is extremal for (z,w) (resp. for (z;X)),
then F(V) is dense in D.

Proof Suppose that F(V) is not dense in D. Let ∅ ≠ △ ⊂ D, △ ∩ F(V) = ∅, be a
closed disc. In the ûrst case, the result follows from [3, Lemma 9.3], which gives the
existence of a holomorphic function β∶D/∆ → D such that

ρ(F(z), F(w)) < ρ(β(F(z)), β(F(w))) ≤ cD(z,w),

which contradicts the extremality of F. he inûnitesimal case follows the same idea
(andmakes use of the same [3, Lemma 9.3]). ∎

Below, we use the notion of balanced points introduced in [4]. A pair (z;w) ∈
D2 ×D2, z ≠ w (resp. (z;X) ∈ D2 ×C2, X ≠ (0, 0)) is called balanced (resp. inûnites-
imally balanced) if it satisûes the equality ρ(z1 ,w1) = ρ(z2 ,w2) (resp. γD(z1;X1) =
γD(z2;X2)). Note that being (inûnitesimally) balanced is invariant under holomor-
phic automorphisms ofD2 in the sense that if thepair (z,w) (resp. (z;X)) is (inûnites-
imally) balanced, then so is (a(z); a′(z)(X)) (resp. (a(z), a(w))) for any automor-
phism a ofD2. It follows from the Schwarz lemma that the (inûnitesimally) balanced
pairdetermines uniquely a complex geodesicpassing through them—in this case both
components of the geodesic are automorphisms of the unit disc).

Lemma 2.2 Let V ⊂ D2 be polynomially convex analytic subvariety. If there is a

balanced pair (z,w) such that z,w ∈ V and cV(z,w) = cD2(z,w) (resp. inûnitesimally

balanced pair (z, X) ∈ Vreg × TzV and γV(z;X) = γD2(z;X)), then V contains the

unique complex geodesic passing through them.

Proof he proof is standard, we are recalling it for the sake of completeness. Losing
no generality,we can assume that z = (0, 0). Since ((0, 0),w) (resp. ((0, 0);X)) forms
a balanced (resp. inûnitesimally balanced) pairwe get thatw2 = ωw1 (resp. X2 = ωX1),
∣ω∣ = 1. hen making use of the fact that the function z1+ωz2

2 is (inûnitesimally) ex-
tremal for ((0, 0),w) (resp. ((0, 0);X)), due to Proposition 2.1 we get that the set
{ z1+ωz2

2 ∶ z ∈ V} isdense inD, so thepolynomial convexityofV implies that {(λ,ωλ) ∶
λ ∈ D} ⊂ V , which ûnishes the proof. ∎
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heorem 2.3 LetV be an analytic subvariety ofD2 that is polynomially convex. hen

V is an inûnitesimal Carathéodory set if and only if it is a union of a discrete set and

complex geodesics.

Proof he only diõcult part is to show that any one-dimensional irreducible com-
ponent W of an inûnitesimal Carathéodory set is (equivalently, contains) a complex
geodesic.

he case when there is a point (z;X) ∈ Wreg × (TzW/{0}) that is inûnitesimally
balanced follows from Lemma 2.2.

Suppose that no pair (z;X) ∈ Wreg × (TzW/{0}) is balanced. hen without loss
of generality, we can assume that

γD(z2 , X2) < γD(z1 , X1) for every z ∈Wreg and X ∈ Tz(W)/{0}.
In particular, near every such z the variety W is a graph of a holomorphic function
over the ûrst coordinate. Moreover,

(2.1) ρ(z2 ,w2) < ρ(z1 ,w1)
if z,w ∈Wreg , z ≠ w are close enough to each other.

We shall prove that W contains a graph of a holomorphic function f ∶D→ D with
the property ∣ f (λ)∣ < ∣λ∣, λ ∈ D/{0} which would ûnish the proof.
First, note that near (0, 0), we get the existence of a holomorphic f0∶△(0, є)→ D

with the property ∣ f0(λ)∣ < ∣λ∣, λ ∈△(0, є)/{0} and {(λ, f0(λ)) ∶ λ ∈△(0, є)} =W ∩
△ (0, є)2. Below, we show how we can extend the function to the whole unit disc.
Denote K ∶= π1((W/Wreg) ∩ {∣z2∣ ≤ ∣z1∣}), which is a discrete subset of D/△ (0, є).
Deûne F as the family of all pairs (U , g) where△(0, є) ⊂ U ⊂ D, U is star-shaped

(with respect to 0), g∶U → D is holomorphic with ∣g(λ)∣ < ∣λ∣, λ ∈ U/{0} and g∣△ ≡
f0. he identity principle shows that for any two pairs (U j , g j) ∈ F we have g1 = g2 on
U1 ∩ U2. Consequently, the relation (U1 , g1) ≤ (U2 , g2) if U1 ⊂ U2 is a partial order
on F.

We deûne the extension as follows U ∶= ⋃(U ,g)∈F U and the function f ∶U → D
with the formula f (λ) ∶= g(λ) if λ ∈ U and (U , g) ∈ F. Note that the function f is
well deûned, holomorphic, coincides with f0 on△(0, є) and ∣ f (λ)∣ < ∣λ∣, λ ∈ U/{0}.
he element (U, f ) is a maximal element of F. It is suõcient to show that U = D.
Suppose the opposite. Take a point µ ∈ ∂U∩D such that the ray {rµ ∶ r ∈ [0, 1)} ⊂ U.
First note that f (µ) ∶= limU∋λ→µ f (λ) exists and ∣ f (µ)∣ ≤ ∣µ∣, as otherwiseW would
contain over µ uncountablymany points so the disc {µ}×Dwould be contained inW

which contradicts the irreducibility ofW . Note also that ∣ f (µ)∣ < ∣µ∣. To see it divide
[0, 1] into suõciently small intervals 0 = t0 < t1 < ⋅ ⋅ ⋅ < tN ∶= 1. Using (2.1), we get

ρ( f (µ), f (0)) ≤
N

∑
j=1

ρ( f (t j−1µ), f (t jµ)) <
N

∑
j=1

ρ(t j−1µ, t jµ) = ρ(µ, 0).

We claim that µ ∈ K. Suppose the opposite. hen (µ, f (µ)) ∈ Wreg. he set Wreg
is near the point (µ, f (µ)) the graph of a holomorphic function, which easily gives a
strictly bigger element than (U, f ), which contradicts its maximality.

Now we extend the function f as follows. We already know that int(U) is D. And
now proceeding similarly as earlier, assuming that f cannot be extended continuously
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to D, we get that at some point µ from ∂U ∩D the cluster set of f would contain un-
countablymanypoints fromD thatwould forceW to contain {µ}×D, a contradiction.
he continuous extension of f is then trivially holomorphic. ∎

Corollary 2.4 Let V be as in heorem 2.3. hen V is a Carathéodory set if and only

if it is a holomorphic retract.

Proof We already know that the Carathéodory set is connected. If V is not a single
point, then, byheorem 2.3, V contains the graph of a complex geodesic G that is, up
to a permutation of variables, of the form {(λ, f (λ)) ∶ λ ∈ D}, where f ∈ O(D,D). If
V is not equal to G, we can assume that (0, 0) ∈ V and f (0) ≠ 0. Note that ∣ f (λ)∣ <
∣λ∣ for λ ∈ D/{0} implies that f (0) = 0 which contradicts our assumption, while
∣ f (λ)∣ > ∣λ∣ for λ ∈ D∗ is impossible. herefore, there is at least one µ (and thus un-
countablemany) such that ∣ f (µ)∣ = ∣µ∣. For every such µ the pair (0, 0) and (µ, f (µ))
is balanced. herefore, these µ the variety V contains a geodesic {(λ,ωµλ) ∶ λ ∈ D},
where ωµ satisûes f (µ) = ωµµ. It is also elementary that the set of all these ωµ is
uncountable. From this, we simply get that V is the whole bidisc. ∎

he equivalence of the notions of the Carathéodory set and inûnitesimal
Carathéodory set should hold for varieties without singular points for a reasonable
class of V ⊂ D.

In the remaining part of the section,wewill describe relation betweenCarathédory
and extension sets in some classes of domains. Roughly speaking, both notions can
be replaced by each other in statements of all the results that have been obtained so
far. We will explain this brie�y below.

Recall that a domain D ⊂ Cn is linearly convex if its complement is the union
of complex aõne hyperplanes. A domain D with the smooth deûning function r

satisfying the inequality
n

∑
j ,k=1

∂2r

∂z j∂zk
(w)X jXk > ∣

n

∑
j ,k=1

∂2r

∂z j∂zk
(w)X jXk ∣

for any w ∈ ∂D, X ≠ 0 lying in the complex tangent hyperplane to ∂D at w is called
strongly linearly convex.

Remark 2.5 Using methods from this paper and those used in [15], we can get the
following result. Let a domain D in Cn be strictly convex or strongly linearly con-
vex. Let V be a relatively polynomially convex analytic subset of D. hen V is a
Carathéodory set if and only if it is totally geodesic.

In particular, if D is the Euclidean ball Bn or if n = 2, then any Carathéodory set
V is a holomorphic retract.

Remark 2.6 Except for examples described above, the extension property problem
was solved fully only in a particular example of the domain

G2 ∶= {(λ + µ, λµ) ∶ λ, µ ∈ D}
called the symmetrized bidisc. It turns out that both notions coincide there in a rea-
sonable class of domains. More precisely, an algebraic set V in G2 is a Carathéodory
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set if and only if it has extension property. Moreover, there are one dimensional
Carathéodory sets in G2 that are not complex geodesics.

To see this one needs to follow the proof in [3] to get that any Carathéodory set V
is either Vβ or Vβ ∪ Σ, β ∈ D, Vβ = {(β + βλ, λ) ∶ λ ∈ D} and Σ = {(2λ, λ2) ∶ λ ∈ D}
or there is a biholomorphicmapping ι∶D→ V . In the latter case, ρ(ι−1(z), ι−1(w)) ≤
cV(z,w) = cG2(z,w) for z,w ∈ V . hus, for ι(λ) = z and ι(µ) = w, we get ρ(λ, µ) ≤
cG2(ι(λ), ι(µ)) ≤ ρ(λ, µ), which means that ι is a geodesic.

Remark 2.7 he extension problem has been studied in the tridisc in [14], where
partial characterization of extension sets were obtained. One can modify arguments
used there along methods exploited within the proof of heorems 2.3 and 2.4 to get
that all the assertions of themain results for extension sets in [14] are also satisûed by
Carathéodory sets.

3 Carathéodory Sets in the Tridisc—the Case of the Sets Mα

Our ûrst andmain result of this section is the proof of the fact that the sets Mα—two-
dimensional algebraic submanifolds of D3 deûned earlier—are Carathéodory sets.
Moreover, the equality as in the Lempert theorem holds for them. he main result
is formulated below.

heorem 3.1 he set

Mα = {z ∈ D3 ∶ α1z1 + α2z2 + α3z3 = α3z1z2 + α2z1z3 + α1z2z3}
is Carathéodory. Moreover, lMα ≡ cMα ≡ (cD3)∣M2

α
.

What remains unclear for us is whether the sets Mα have the extension property.
Moreover, as we shall also see later in the section, the sets Mα give rise to a construc-
tion of two-dimensional domains (denote by Da ,b) that are Lempert. To the best of
our knowledge, the fact that the domainsDa ,b are Lempert cannot be proved bymeth-
ods developed by Lempert. his makes the sets extremely interesting from that point
of view—we shall address these problems at the end of this section.

he result is trivial ifM ∶= Mα is a retract. herefore, from now onwe assume that
this is not the case. In other words, the inequalities ∣α j1 ∣+ ∣α j2 ∣ > ∣α j3 ∣ are satisûed for
all permutations ( j1 , j2 , j3) of the set {1, 2, 3}. In the sequel, the triples α satisfying
this property will be called the ones that satisfy the triangle inequality. Note that if the
triple α satisûes the triangle inequality then α j ≠ 0, j = 1, 2, 3.
According to Proposition 1.6, to get the assertion it is suõcient to show that M is

totally geodesic. To prove it we shall ûrst show in Lemma 3.2 that it is inûnitesimally
totally geodesic. hen a topological argument will ûnish the proof.

Using Remark 1.2, we can make the following reduction. Instead of proving the
fact that Mα is Carathéodory for the ûxed α, it is suõcient to show that

lMα(0, x) = cMα(0, x) = cD3(0, x), x ∈ Mα

for any Mα being not a retract.
hen the idea of the proof of the above equality is the following. First, we show

the existence of a complex geodesic passing through the origin and arbitrary vector
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tangent to Mα at 0. It is theoretically possible that not all the points from the set Mα
will be achieved by such geodesics. But the use of some topological argument will
provide the existence of a geodesic passing through 0 and arbitrary point of Mα . At
the same time, we show that le� inverses to all such geodesics can be attained by one
of three functions: the projections of M onto one of the three axes.

We ûx now M = Mα being not a retract. Note that M can be written as

M = {z ∈ D3 ∶ z3 = ω
az1 + bz2 − z1z2

bz1 + az2 − 1
},

for some numbers a, b such that the triple {a, b, 1} satisûes the triangle inequality and
unimodular ω. Using a linear automorphism of D3, we can additionally assume that
a, b > 0 and ω = 1. Note that in such a case, T0M = {X ∈ C3 ∶ aX1 + bX2 + X3 = 0}.

We start the proof with the following statement.

Lemma 3.2 Deûne

X ∶= {γ = (γ1 , γ2) ∈ C2 ∶ (γ, 1) ∈ T0M and ∣γ1∣, ∣γ2∣ < 1}.

hen there are two continuous mappings

(ω, η) = (ω, η)(γ)∶XÐ→ T2

such that for any γ ∈ X the image of themapping

(†) Φγ ∶D ∋ λ z→ (λmγ1(ωλ), λmγ2(ηλ), λ)

lies in M (mν(λ) ∶= ν−λ
1−νλ , λ ∈ D, ν ∈ D).

he two existing mappings (ω, η) are such that both components diòer at each

argument.

Consequently, for any γ ∈ X, there are two non-equivalent geodesics (i.e., having
diòerent image) passing through the pair (0; (γ, 1)).

We also have the “inûnitesimal” version of the Lempert theorem at 0; namely, the
equality κM(0;X) = γM(0;X) holds for any X ∈ T0M.

Remark 3.3 he setX is geometrically lens (linear transformation of intersection of
two discs) with exactly two points γ, γ̃ from the closure that lie in T2.

Proof of Lemma 3.2 Let us recall that the triple {a, b, 1} satisûes the triangle in-
equality; it will be used in the sequel extensively.

Our aim is to show for any γ ∈ X the existence of exactly two pairs (ω, η)(γ) ∈ T2

(moreover, varying continuously) such that the equality

aλ
γ1 − ωλ

1 − ωγ1λ
+bλ γ2 − ηλ

1 − ηγ2λ
+ λ = aλ2 γ2 − ηλ

1 − ηγ2λ
+bλ2 γ1 − ωλ

1 − ωγ1λ
+ λ

2 γ1 − ωλ

1 − ωγ1λ

γ2 − ηλ
1 − ηγ2λ

holds for all λ ∈ D.
Keeping in mind that γ ∈ X, we easily get that the above equality holds if and only

if

aω + aηγ2γ1 + bη + bωγ1γ2 + ωγ1 + ηγ2 = −aγ2 − bγ1 − γ1γ2 .
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Keeping in mind that γ ∈ X (more precisely making use of the equality aγ1 + bγ2 +
1 = 0), we get that the last is equivalent to

aω(1 − ∣γ1∣2) + bη(1 − ∣γ2∣2) + aγ2 + bγ1 + γ1γ2 = 0.

he elementaryplanar geometricproperties show that toûnish theproof it is suõcient
to show that for all γ ∈ X, the following inequalities hold

∣a(1 − ∣γ1∣2) − b(1 − ∣γ2∣2)∣ < ∣aγ2 + bγ1 + γ1γ2∣
< a(1 − ∣γ1∣2) + b(1 − ∣γ2∣2).

To prove the right inequality, we consider the function

h(γ) ∶= ∣aγ2 + bγ1 + γ1γ2∣ − a(1 − ∣γ1∣2) − b(1 − ∣γ2∣2)
that is deûned on a complex line l containing X (that is identiûed as a subdomain of
l). he function h is subharmonic as a function of a complex variable. To prove the
desired inequality, it is suõcient to show that h is 0 on the boundary ofX. Take γ from
the boundary ofX. We can assume that ∣γ2∣ = 1. hen the elementary calculations give

h(γ) = ∣a + bγ1γ2 + γ1∣ − a(1 − ∣γ1∣2) = 0.

he proof of the second inequality goes as follows. Due to symmetry, it is suõcient
to show that

∣aγ2 + bγ1 + γ1γ2∣ + b(1 − ∣γ2∣2) > a(1 − ∣γ1∣2).
Note that the le� side of the above inequality is

∣aγ2 −
b

a
(bγ2 + 1) − bγ2 + 1

a
γ2∣+ b(1 − ∣γ2∣2)

= ∣b
a
γ
2
2 +

b

a
+ 1 + b2 − a2

a
γ2∣+ b(1 − ∣γ2∣2)

≥ b
a
∣γ2 − 1∣2 − b

2 + 2b + 1 − a2

a
∣γ2∣ + b(1 − ∣γ2∣2).

herefore, it is suõcient to show that for all γ2 ∈ D, we have
b∣1 − γ2∣2

a
− (b + 1)2 − a2

a
∣γ2∣ + b(1 − ∣γ2∣2) >

a2 − ∣bγ2 + 1∣2
a

.

Simplifying above and then dividing by 1 + b − a, the last is equivalent to
b∣γ2∣2 + (a + 1) − (b + 1 + a)∣γ2∣ > 0,

which is equivalent to the inequality

(1 − ∣γ2∣)(a + 1 − b∣γ2∣) > 0.

And the last inequality holds trivially. ∎

Remark 3.4 A small modiûcation of the proof of Lemma 3.2 gives a much wider
variety of complex geodesics having the components being the Blaschke product of
degree one or two. he idea is the following. For ∣ω∣ = 1, γ ∈ D, we put

φω ,γ(λ) = (λ γ − ωλ

1 − γωλ
=∶ λψ(λ), aλ + bλψ(λ) − λ2ψ(λ)

bλ + aλψ(λ) − 1
, λ).
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Our aimwill be to ûnd ω so that the abovemapping lies entirely in M, and the second
component is the Blaschke product of degree two.

Recall that the Schur algorithm gives that the square polynomial Aλ2 +Bλ+C has
both roots outsideD if and only if ∣C∣ > ∣A∣ and ∣C∣2 − ∣A∣2 > ∣BC −AB∣. Applying this
property to our function (coming from the denominator of the second component),
we get that the following inequality for ω that has to be satisûed

b
2 − ∣aγ + 1∣2 > ∣ − ab(1 − ∣γ∣2) + ω(aγ2 + (a2 − b2 + 1)γ + a)∣.

he above inequality is equivalent to the following one:

b(1 − ∣γ2∣2) > ∣a(1 − ∣γ1∣2) − ω(aγ2 + bγ1 + γ1γ2)∣,
where γ1 ∶= γ, γ2 ∶= − aγ1+1

b . And now we make use of the calculations conducted in
the proof of the previous lemma—to see that the above inequality holds for ∣ω∣ = 1
lying in a non-empty open arc.

he above reasoning gives the following property for the variety M. If only
X ∈ T0M is such that ∣X1∣ > ∣X j ∣, j = 2, 3, we get following functions

D ∋ λ z→ (λ, λmη(ωλ), f3(λ)) ∈ M ,

where η is suitably chosen and ∣ω∣ = 1 can be chosen from some non-empty arc.

he above result gives an example of a two-dimensional domain for which the
inûnitesimal version of the Lempert theorem holds. Namely, let

Da ,b ∶= {z ∈ D2 ∶ ∣Fa ,b(z1 , z2)∣ < 1},

where Fa ,b(z1 , z2) ∶= az1+bz2−z1z2
az2+bz1−1 .

Corollary 3.5 he following equality holds:

κDa ,b ≡ γDa ,b .

In the special case of the origin, we have the following formula:

κDa ,b(0;X) = max{∣X1∣, ∣X2∣, ∣aX1 + bX2∣}, X ∈ C2 , z ∈ M .

Having proven Lemma 3.2, we will show that M is the Carathéodory set. As we
already announced, the proof will be a consequence of Lemma 3.2 and a topological
argument.

Proof of Theorem 3.1 We show that

cM(0, z) = lM(0, z) = max{ρ(0, z j) ∶ j = 1, 2, 3}.
Belowwe use the notation as in Lemma 3.2. To show the above, it is suõcient to show
that for any x ∈ D∗ and any (λ1 , λ2) ∈ Mx , where

Mx ∶= {(λ1 , λ2) ∈ D2 ∶ (λ1x , λ2x , x) ∈ M},

there is a γ ∈ X such that Φγ(x) = (λ1x , λ2x , x). Denote Ψγ(x) ∶= (Φγ(x))1,2
x . To

ûnish the proof, it is suõcient to show that the function

ψx ∶X ∋ γ z→ Ψγ(x) ∈ Mx
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is onto. he properties of the functions (ω, η) imply that ψx is not only continuous,
but it also extends continuously onto the closure of X. Moreover, if ∣γ j ∣ = 1 is such
that γ ∈ X, then the extension satisûes the equality (ψx(γ)) j = γ j . BothX andMx are
simply connected two-dimensional surfaces bounded by union of two arcs and such
that ψx is a homeomorphism between the boundaries. Consequently, ψx is onto. ∎

As a direct consequence of the theorem, we get the equality of invariant functions
in a class of two-dimensional domains.

heorem 3.6 he domain Da ,b is a Lempert domain.

Remark 3.7 Note that if the triple {1, a, b} satisûes the triangle inequality, then the
domain Da ,b is never linearly convex. Actually, to see this take an arbitrary point
w ∈ ∂Da ,b ∩D2. hen ∣Fa ,b(w)∣ = 1. Assuming the linear convexity, we ûnd a vector
v ∈ C2/{0} such that ∣Fa ,b(w + λv)∣ ≥ 1 for λ close to zero. he minimum principle
for holomorphic functions implies that Fa ,b(w + λv) equals some unimodular con-
stant for λ close to 0, which in view of the explicit formula for Fa ,b easily implies that
either v1 or v2 is zero. Assume that v1 = 0. hen the function λ → Fa ,b(w + λv) is a
homography; the elementary calculations give that it is constant precisely when

bw
2
1 − (b2 + 1 − a2)w1 + b = 0.

But the above equation is satisûed only for ∣w1∣ = 1 (use the triangle inequality for the
triple {a, b, 1} to see that the roots of the above square equation are not reals), which
gives the contradiction.

Remark 3.8 As we saw, the Lempert heorem holds for the bounded hyperconvex
domain Da ,b that is not linearly convex. It would be desirable to decide whether the
domain Da ,b is not biholomorphic to a convex domain. Note that the domains Da ,b
are the next candidates for examples of that kind. Perhaps from the point of view of
the Lempert heory the domains Da ,b have much less nice properties than the ex-
isting examples of that type (the symmetrized bidisc and tetrablock). In any case, it
seems reasonable that an eòort should be undertaken to understand better the func-
tion geometric properties of that class of domains.

Remark 3.9 Let us underline oncemore that a study of a class of two-dimensional
submanifolds of the tridisc that appeared in the study of the extension property in
[14] led not only to introducing a new property that seems to be better suited in the
study of the extension property (Carathéodory sets), but also provides examples of
domains interesting for the geometric function theory.

4 Universal Sets for the (Infinitesimal) Carathéodory Extremal
Problem

In [2], the authors introduced the notion of universal sets for the Carathéodory ex-
tremal problem concentrating mainly on the problem in the symmetrized bidisc. In
this section,we concentrate on that topic presenting results on the domains admitting
ûnite universal sets.
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Let D be a domain in Cn . We say that C ⊂ O(D.D) is a universal set for the

Carathéodory (resp. for the inûnitesimal Carathéodory) extremal problem if for any
w , z ∈ D, w ≠ z (resp. w ∈ D, X ∈ Cn , X ≠ 0), there is an F ∈ C such that
cD(w , z) = ρ(F(w), F(z)) (resp. γD(w;X) = γD(F(w); F′(w)(X))).

Remark 4.1 Assume that D is c-hyperbolic and γ-hyperbolic (i.e., cD(w , z) > 0 for
all w , z ∈ D, w ≠ z and γD(w;X) > 0, w ∈ D, X ∈ Cn/{0}). If C is a universal set for
the Carathéodory extremal problem, then C is also a universal set for the inûnitesimal
Carathéodory extremal problem.

As to the problem of the existence of ûnite universal sets, we present a result on
one-dimensional domains and show that the domains Da ,b introduced in Section 3
are examples showing that the situation in dimension one and two are completely
diòerent. We also simplify and extend results on characterization of domains with
ûnite universal sets presented in [2].

Recall that the domain D is c-ûnitely compact if the Carathéodory balls {z ∈ D ∶
cD(w , z) < r} are relatively compact in D for all w ∈ D, r > 0.

4.1 Planar Domains with Minimal Universal Sets

Recall that for planar domains, c-hyperbolicity is equivalent to γ-hyperbolicity and
this is equivalent to the existence of a non-constant bounded holomorphic function
(see e.g., [12]).

he inûnitesimal version of the proposition below is the content of [9,heorem 1].
he non-inûnitesimal case can be obtained along the same lines.

Proposition 4.2 (cf. [9,heorem 1]) Let D be a planar domain. hen Carathéodory

extremals and inûnitesimal Carathéodory extremals are uniquely determined which

means that up to automorphisms of the unit disc for any w ≠ z (resp. w ∈ D), there

is only one F ∈ O(D,D) such that

cD(w , z) = ρ(F(w), F(z)),
(resp. γD(w; 1) = γD(F(w); F′(w))).

We show that in the case of the planar domains, the existence of ûnite universal sets
makes the domain (under some evident assumptions) the unit disc that is contained
in the following theorem.

heorem 4.3 LetD be a domain inC that has a ûniteuniversal set for the inûnitesimal

Carathéodory problem. hen D has a universal set consisting of one element. In partic-

ular, if D is additionally c-ûnitely compact, then it is biholomorphic to the unit disc.

Proof Without loss of generality, we can assume that D is γ-hyperbolic. Let C =
{Φ1 , . . . ,ΦN} be a minimal ûnite universal set for the inûnitesimal Carathéodory
extremal problem. It is suõcient to show that N = 1. Suppose that N ≥ 2. Denote
V ∶= Φ(D). he uniqueness of γ-extremals and the minimality of C imply that for
any z ∈ D, there is a j such that

γD(Φ j(z);Φ′
j(z)) > max{γD(Φk(z);Φ′

k(z)), k ≠ j}.
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On the other hand, theminimality of the set C implies that for any 1 ≤ k ≤ N there is
a z ∈ D such that

γD(Φk(z);Φ′
k(z)) > max{γD(Φ j(z);Φ′

j(z)) ∶ j ≠ k}.
A standard connectivity argument shows, however, that both statements cannot hold
simultaneously. ∎

4.2 Finite Universal Sets Induce Embeddings into Polydiscs

Below we generalize [2,heorem 2.3] with a simpler proof.

heorem 4.4 Let D ⊂ Cn be c-hyperbolic and γ-hyperbolic. Assume additionally

that C = {Φ1 , . . . ,ΦN} is a universal set for the Carathéodory extremal problem. hen

themapping

Φ ∶= (Φ1 , . . . ,ΦN)∶D Ð→ DN

is a holomorphic embedding. In particular, N ≥ n and Φ(D) is a connected complex

submanifold of dimension n.

Moreover, Φ(D) is a Carathéodory set. In particular, we get

cΦ(D)(w , z) = max{ρ(Φ j(w),Φ j(z)) ∶ j = 1, . . . ,N},
γΦ(D)(Φ(w);Φ′(w)(X)) = max{γD(Φ j(w);Φ′

j(w)(X) ∶ j = 1, . . . ,N}
w , z ∈ D, X ∈ Cn .

If D is additionally c-ûnitely compact, then Φ is proper so in the case n = N we get

that Φ(D) = Dn .

Proof he deûnition of the universal Carathéodory set gives

cD(w , z) = max{ρ(Φ j(w),Φ j(z)) ∶ j = 1, . . . ,N}
= cDN (Φ(w),Φ(z)),w , z ∈ D.

Let w , z ∈ D be such that Φ(w) = Φ(z). hen cD(w , z) = 0 and the c-hyperbolicity
implies that w = z. herefore, Φ is injective. Similarly, because of the fact that
{Φ1 , . . . ,Φn} is a universal set for the inûnitesimal Carathéodory extremal problem,
we get

γD(w;X) = max{γD(Φ j(w);Φ′
j(w)(X)) ∶ j = 1, . . . ,N}

= γDN (Φ(w);Φ′(w)(X))}, w ∈ D, X ∈ Cn .

Since D is γ-hyperbolic, we get that the rank of Φ′(w) is n.
We prove that V ∶= Φ(D) is a Carathéodory set. his can be seen as follows:

cDN (Φ(w),Φ(z)) = max{ρ(Φ j(w),Φ j(z)) ∶ j = 1, . . . ,N} =
cD(w , z) = cΦ(D)(Φ(w),Φ(z)) ≥ cDN (Φ(w),Φ(z)).

Assume that D is additionally c-ûnitely compact. We show below that Φ is proper.
Fix w ∈ D and let (zk)k have no accumulation point in D. hen the equality

cDN (Φ(w),Φ(zk)) = cD(w , zk)Ð→∞
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implies that (Φ(zk))k has no accumulation point in DN , which gives the desired
properness of Φ. ∎

4.3 Not Only Polydisc Admits Finite Universal Sets for the Carathéodory Extremal
Problem in Higher Dimension

It is shown in [2] that the projections are contained in any universalCarathéodory set
of the bidisc. It turns out that under evident assumptions domains Da ,b have similar
property—the three functions deûning Da ,b must lie in any universal Carathéodory
set. Moreover, the domains Da ,b are examples of (very nice, for instance c-ûnitely
compact) domains that admit the ûnite universal Carathéodory sets and but are still
not the bidisc. his shows that the situation in the case n = 1 diòers from the case of
bigger n. he fact that Da ,b is not biholomorphic to the bidisc follows for instance
from the fact that the indicatrix of Da ,b at 0 is the domain (see Corollary 3.5)

{X ∈ C2 ∶ κDa ,b(0;X) < 1} = {X ∈ C2 ∶ max{∣X1∣, ∣X2∣, ∣aX1 + bX2∣} < 1},
which is not linearly isomorphic to the bidisc under the assumption that the triple
{a, b, 1} satisûes the triangle inequality.

Example 4.5 Recall that Agler, Lykova, and Young remarked that in the bidisc
any universal set for the Carathéodory problem must contain (up to an automor-
phism) both projections. Similar property holds for the domains Da ,b . More pre-
cisely, if the triple {a, b, 1} satisûes the triangle inequality, then the universal set for
the Carathéodory extremal problem for the domain

Da ,b = {z ∈ D2 ∶ ∣az1 + bz2 − z1z2∣ < ∣bz1 + az2 − 1∣}
contains (up to automorphisms) three functions:

z z→ z1 , z z→ z2 and z z→ az1 + bz2 − z1z2

bz1 + az2 − 1
.

To show the above, note that it is suõcient to see that any of the functions z j (up to
an automorphism), j = 1, 2, 3, must belong to a universal set for the Carathéodory
problem in Mα being not a retract. Take such a variety. Consider the functions as in
Remark 3.4

D ∋ λ z→ (λ, λmη(ωλ), f3(λ)) ∈ M ,

where η is ûxed and ω is from some non-empty arc. hen one of the le� inverses
(call it F) of the function for the ûxed ω is a le� inverse for all ω from the given arc.
Consequently, the function F depends only on the ûrst variable and this equals z1.

Remark 4.6 It follows from [14] that any subdomain of C2 that has a universal set
composing of three elements is biholomorphic to a submanifold ofD3 that is a graph
of a holomorphic function for each choice of the coordinates. In particular, it is bi-
holomorphic to a domain of the form D = {(z1 , z2) ∈ D2 ∶ h(z1 , z2) < 1}, where h is a
holomorphic function such that z1 ↦ h(z1 , z2) (respectively z2 ↦ h(z1 , z2)) is injec-
tive for every z2 ∈ D (resp. z1 ∈ D). Some other properties of h were obtained in [14].
Recall that the results in [14] are stated with the additional assumption of polynomial

733

https://doi.org/10.4153/S0008414X20000139 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X20000139


Ł. Kosiński andW. Zwonek

convexity. However, here they can be dropped out. his forces two natural questions.
he ûrst one is if any domain with a 3-element (or ûnite) universal set comes from
the variety Mα .

he second one is more particular; namely,whether any domain having ûnite uni-
versal set is a Lempert domain.

5 Universal Sets for the Carathéodory Extremal Problem for the
Unit Ball B2

In the last section, wemake some remarks on the universal sets in the unit ball. he
results presented can be seen as the starting point for the further study of a possible
structure of (in some at themoment not well determined sense) small universal sets
for the Carathéodory extremal problem.

We startwith an easy observation that the unit ballBn , n > 1, does not have a ûnite
universal set for the Carathéodory extremal problem.

Proposition 5.1 he unit ball Bn , n > 1, does not have a ûnite universal set for the

Carathéodory problem.

Proof his is a direct consequence of [17, Lemma 5], which states the following.
Any two diòerent complex geodesics of the ball passing through 0 have diòerent
(up to automorphisms of the unit disc) le� inverses. ∎

Remark 5.2 he result on the existence ofmany complex geodesics passing through
0 in the symmetrized bidisc and tetrablock that admit only one (up to an automor-
phismof the unit disc) le� inverse can be found in [16]. he fact that the symmetrized
bidisc doesnot have a ûnite universal set follows from [2,heorem 3.1]. Consequently,
the same holds for the tetrablock.

he most standard and natural procedure producing a class of the universal set
for the Carathéodory extremal problem in the unit ball Bn is the following. As the
unit ball is an example of a Lempert domain, both notions, extremals and inûnitesi-
malCarathéodory extremals coincide. Moreover, the extremals are precisely the ones
being the le� inverses to complex geodesic, which in turn are parametrizations of
portions of complex lines lying in the unit ball. To produce an extremal to one of the
complex geodesics (represented by l ∩Bn), we can proceed as follows. Let a ∈ l ∩Bn
be the point of theminimal norm. Let Φa be the automorphism of the unit ball such
that Φa(a) = 0, Φa(0) = a: recall that

Φa(z) ∶= .

√
1 − ∥a∥2(⟨z, a⟩a − ∥a∥2z) − ⟨z, a⟩a + ∥a∥2a

∥a∥2(1 − ⟨z, a⟩) , z ∈ Bn

for all a ∈ Bn/{0} and Φ0 ∶= idBn .
Now we can apply the unitarymapping U such that U(Φa(l ∩Bn)) = D×{0}n−1.

And now the mapping Ψl ∶= U1 ○ Φa is one of possible Carathéodory extremals for
the points from the geodesic l .
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In the simplest case of n = 2, we can apply the above method and we see that the
universal set for the Carathéodory extremal problem can be chosen in the following
way:

C ∶= {
√

1 − ∥a∥2(a1z2 − a2z1)
∥a∥(1 − (a1z1 + a2z2))

∶ a = (a1 , a2) ∈ B2} ∪

{a1z1 + a2z2 ∶ a1 ≥ 0, ∣a2∣2 = 1 − a2
1 }.

Let us make onemore remark on the properties of the above construction. It follows
directly from the construction of Ψl that it is a rational mapping that is holomorphic
on a neighborhood of Bn and Ψ−1

l (∂D)∩Bn = l ∩ ∂Bn . In other words, the universal
set for the Carathéodory extremal problem C just deûned is parametrized by complex
lines l intersecting Bn and it is minimal in the sense that no proper subset of C is a
universal set. Moreover, any extremal mapping is a le� inverse to the unique geodesic.

It is natural to seewhether one could deûne a class of Carathéodory extremals that
could be extremals for a wider variety of geodesics, which would then yield a univer-
sal set being “smaller” than the one produced above. Following the construction of
extremals from a recent paper [17], we will get the desired class of functions below.
We restrict ourselves for the dimension n = 2.

Let

F(z1 , z2) ∶=
2z1(1 − z1) − z2

2

2(1 − z1) − z2
2
, z ∈ B2 .

Recall that F ∈ O(B2 ,D) and F(z1 , 0) = z1, z1 ∈ D (see [17]).

Remark 5.3 Note that the mapping F just deûned assumes the value of absolute
value one on a bigger portion of ∂B2 than that of the most natural form of extremal
mappings (Ψl from the previous section). Actually, note that elementary calculations
give the property that for z ∈ ∂B2 the equality ∣F(z)∣ = 1 if and only if

Im(z2(1 − z1)) = 0.

he above property (fact that the absolute value equal to one is assumed at two-
dimensional subset of ∂B2 suggests that the function F can be a le� inverse to a one-
dimensional family of complex geodesics). And this is really the case, as the next
observation shows.

We claim that for any t ∈ R, the mapping F is the le� inverse to the mapping
(complex geodesic in B2)

ft(λ) ∶= ( t2 + λ

1 + t2
,
t(λ − 1)
1 + t2

), λ ∈ D.

Recall that (c∗D ∶= arctanh cD)

c
∗
B2
(w , z) =

¿
ÁÁÀ1 − (1 − ∥w∥2)(1 − ∥z∥2)

∣1 − ⟨w , z⟩∣2 , w , z ∈ B2 .

It is elementary then to check that ft(D) ⊂ B2. It is therefore suõcient to show that

cB2(F( ft(λ1), F( ft(λ2))) = p(λ1 , λ2), λ1 , λ2 ∈ D,
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which follows directly from the formula for the Carathéodory distance for the unit
ball and the Poincaré distance.
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