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AND THEIR APPLICATIONS
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Abstract

The intrinsic random functions (IRF) are a particular case of the Guel­
fand generalized processes with stationary increments. They constitute a
much wider class than the stationary RF, and are used in practical applica­
tions for representing non-stationary phenomena. The most important
topics are: existence of a generalized covariance (Ge) for which statistical
inference is possible from a unique realization; theory of the best linear
intrinsic estimator (BLIE) used for contouring and estimating problems;
the turning bands method for simulating IRF; and the models with poly­
nomial G'C, for which statistical inference may be performed by automatic
procedures.
GUELFAND GENERALIZED STOCHASTIC PROCESS; INTRINSIC RANDOM FUNCTION;
GENERALIZED COVARIANCES; POLYNOMIAL COVARIANCE; TURNING BANDS
METHOD
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o. INTRODUCTION

G. MATHERON

The aim of the present study is essentially to act as a theoretical support
to the optimum automatic contouring procedures being developed under
the name of universal kriging, and which have been presented elsewhere in
a more practical context ([7J, [8], [9]). The problem we are dealing with
is the following. We know the values z(x,) taken by the physical variable of
interest at several experimental locations Xi (in general anywhere in two­
or three-dimensional space) and we want to estimate at each point X the
value of the function z (or of any other function deduced from it by a linear
operation). We then assume that the function z can be considered as a realiza­
tion of an order-two random function Z, and we compute at each point x
the best linear predictor z*(x) of z (in the sense of Wiener [12J). But for this
the covariance function of Z must be known. Statistical inference from a
unique realization is in general reasonably possible in the stationary case (al­
though some difficulties still arise when the experimental points are not located
on a regular grid). Unfortunately, in numerous cases, this assumption of
stationarity is physically inadmissible. Hence, it was necessary to find a wider
class than that of order-two random functions, but one that would present
the same advantages concerning statistical inference.

This class is that of intrinsic random functions (IRF) which constitutes,
in fact, a particular case of the generalized stochastic processes with stationary
increments of order k defined by Guelfand and Vilenkin ([3], [4]), namely
the case where the generalized processes are random functions (and not only
distributions). This circumstance leads to special properties which deserve to
be studied, especially because of their interest regarding applications. For
instance, here the generalized covariances will be conditionally positive definite
functions (and not only distributions). The aim is, moreover, to present
IRF's as a generalization of stationary random functions (stationary" in this
paper, is always taken in the sense of weak stationarity), and hence without
referring to the theory of distributions.-The simplest example of an IRF is that of a RF of the form Y(x) = Yo(x)
+ P(x) , when Yo(x) is a SRF and P(x) a polynomial of degree k with random
coefficients. Besides, we will see that any IRF is, in a way, a limit of RF's
of this type. The established concept of introducing this form of RF's comes
naturally to mind when one tries to represent non-stationary phenomena.
Indeed, it corresponds to the simplest hypothesis that can be made with a
view to making statistical inference possible from a single realization, but
IRF's present the same advantages concerning statistical inference, while
offering a wider scope of possible models.

Realizations of an IRF of order 0, like Brownian motion, show characteris­
tics that do not evoke the intuitive idea of stationarity (see, for example,
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The intrinsic random functions and their applications 441

[2], p. 87). This circumstance is amplified when the order k of the IRF in­
creases (see Figures 1, 2, 3) so that the theory becomes applicable to larger
and larger ranges of non-stationary phenomena, while keep.ng, for the greatest
part, the advantages linked to stationarity.

Figure 1
Realization of a" O-IRF with the GC K(h) = - r h I. The representation

chosen vanishes at the center of the figure (from Orfeuil [l0]).

Figure 2
Realization of a l-IRF with the GC K(h) = - r h IJ. The representation chosen,

as well as its first derivatives, vanishes at the center of the figure (from Orfeuil [lODe

After giving the definitions and general properties of IRF'Is (Sections 1
and 2), we examine in Section 3 their generalized covariances, and the condi­
tions that an IRF must fulfil to be differentiable, or identical to an IRF of
lower order. The theory of the best linear intrinsic estimator (BLIE), given
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442 G. MATHERON

Figure 3
Realization of a 2-IRF with the GC K(h) = - Ihis. The representation chosen,

as well as its first and second derivatives, vanishes at the center of the figure
(from Orfeuil [10D.

in Section 4, is a straightforward generalizatic n of Wiener's best linear pre­
dictor [12], and is fundamental for the applications, as is the turning bands
method for simulating IRF s (Section 5). From a practical point of view,
statistical inference is particularly easy to carry out by automatic procedures
for a generalized covariance whose expression depends linearly on some
unknown parameters. This is the justification for models with polynomial
covariances (Section 6). These models are isotropic, but this is not so limiting
as might be thought at first sight. The structure of an IRF is indeed determined
by its generalized covariance only up to a random polynomial and, in practical
cases, this implicit polynomial is often adequate to take into account the
anisotropies of the real phenomenon. On the other hand, the IRF s with poly­
nomial covariances are locally stationary, i.e., may be locally identified with a
stationary RF up to a random polynomial. These circumstance enables us
to define a precise and locally significant notion of trend, or drift, and this is
also important in the applications (Section 7).

1. DEFINITION AND GENERAL PROPERTIES

1.1 The spaces A and Me

I shall denote by A the vector space of real measures in Rn with finite sup­
ports. For any function f on Rn and AE A, the integral f f(x) A(dx) is thus a
finite linear expression of the form LiAif(xi). If Z: B" -+ L2(Q, .91, P) is a
real order-two random function, it admits a linear extension Z: A -+ L2(Q, .91, P)
defined by putting Z(A) = f A(dx)Z(x), AEA. The function A-+ II AII = II Z(A) II
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is a norm on A if f A(dx)Z(x) implies A = 0, this condition being equivalent
to the strict positivity of the covariance matrix <Z(xa) , Z(xp) for any finite
set of distinct points x, in B", Under this condition, A is prehilbertian for the
norm II A II ' and the completed space A may be identified with the real Hilbert
space He L2(Q,d,P) generated by the Y(X) , XE R", If the condition of
strict positivity is not fulfilled, it is always posssible to take a convenient
quotient-space instead of A itself, and nothing is changed substantially.

It will often be useful in the sequel to consider another topology for A.
Let Me:::> A be the space of measures with compact supports. Me is the exact
dual of the space CC of the continuous functions on Ril (for the compact con­
vergence topology). We shall consider only the weak topology on Me' and the
corresponding relative topology on A. For this weak topology, the convergence
/In ~ J-t in Me is equivalent to the following two conditions:

(1) the sequence {J-tn} is weakly convergent towards u;
(2) the supports of the measures J-tn are contained in a fixed compact set.
The random function Z: R" --+ I3(Q,d,P) is then strongly continuous if

and only if the mapping A~ Z(A) is continuous on A for the relative Me
topology. The if part is obvious. Conversely, if Z is strongly continuous on
Rn, the covariance function <Z(x),Z(y) is continuous on B" x R", But the
weak convergence An --+ 0 in A c Me implies An ® An --+ 0 in Me (Rn x Rn), and

Thus, the mapping A~ Z(A) is continuous.
If Z is continuous on A, it admits a unique continuous extension on Me'

defined by putting Z(/l) = f /l(dx) Z(x) (J-t E Me) . If II Z(x) II = 0 implies Jl = 0,
Me may be identified with a subspace (generally not closed) of A, but the
weak topology on AIc is generally strictly stronger than the prehilbertian
relative topology induced by A.

For any h ERn and Jl E Me' we define the translated measure "hJl by

f Th(dx)f(x) = JJl(dx)f(x + h) (JEre).

If Z is a stationary random function (SRF), there exists a group of unitary
operators Uh, hE R" on H = Z(A) satisfying UhZ(A) = Z(ThA) (A E A). More­
over, if Z is a continuous SRF, the group Uh is continuous and we also have
UhZ(/l) = Z(Th/l) for JlEMe. This property may be used as definition of the
SRF and, with a slight modification, will lead us to the notion of IRF.

1.2 Definition of the IRF
Now let A' be a subspace of A closed in A for the relative Me topology.

In other words, there exists a family I', I E L of continuous functions on
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444 G. MATHERON

Rn such that A' = {A: AEA, f Afl = 0, IEL}, or A' = M ' () A if M ' is
the subspace of Me orthogonal to the family r , I E L. Then, we shall say that
a linear mapping

is a generalized (order-two) random function on A'. We denote H(Z), or
simply H , the closure of the range ZeA') in L2(0, .91, P). If II Z(A) II = 0 implies
A = 0 for AE A' , the completed space A' of A' for the norm \I AII = II Z(A) II
may be identified with H itself. If this condition is not fulfilled, A' will denote
the completion of the convenient quotient space. If Z is continuous on A'
for the relative Me topology (continuous generalized random function), it
admits a unique continuous extension Z: M ' --+ L2(o., .91, P), and M ' (or a
convenient quotient space) may be identified with a dense (but not closed)
subspace of A'. In order to generalize the notion of stationarity, we now
suppose A' closed for translations (Le., 't'hA E A' for h e R" and AE A'), and
we say that the generalized random function Z: A' --+ L2(o.,d, P) is an intrinsic
random function (IRF) on A' if the mapping h --+ Z(!hA) is a SRF for any
AE A' , Le., if there exists a group of unitary operators Uh s h e B" on H = ZeA')
satisfying UhZ(A) = Z(!hA) for any AE A I • Obviously, an IRF Z is continuous
on A' if and only if the mapping (h, A) --+ Z( 't'hA) is continuous on R" x A' .
In this case, the group Uh is continuous on Rn, and we also have UhZ(P) = Z(!hJl)
for any JlEM'.

The subspace M' c Me being closed for translations, so also is its orthogonal
complement, i.e., the closed subspace of rc generated by the functions fl, 1E L.
In particular, if L is finite, this implies that the r are exponential-polynomial
functions. In what follows, we shall examine only the case where the r func­
tions are polynomials. More precisely: for k, an integer ~ 0, we denote
M k the subspace of Me defined by the condition u E M k if p E Me and

for iI' ... , in' integers ~ 0, such that i1 + ... + in ~ k. For brevity, we shall
write 1 instead of (iI' ... , in)' I ~ k instead of i1 + ... + in ~ k and flex) for
X~1 X~2 ... x~n. The subspace A () M k (closed in A) will be denoted Ak , and we
shall say that an IRF Z on Ak is an IRF of order k, or a k-IRF. If a k-IRF Z
is continuous, its unique continuous extension on M k will also be denoted
by Z. In the sequel, we consider only continuous k-IRF's.

1.3 Representations of a k-IRF
If Z is an IRF on a subspace A' c A, we say that an order-two random

function Y: Rn --+ 13(0.,.91, P) is a representation of Z if Z(A) = f Y(x)A(dx)
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for any AE A' . In the sequel, we examine only the case ofa continuous k-IRF Z.
It is easy to find measures AIEA (1 = i1 + iz + ... + in ~ k) such that

(1.1)

(s = (jb·· ·,in), i 1 + ... + l« ~ k, ~: = 0 for 1 i: s and ~: = 1 if s = 1).
If ~x is the Dirac measure at x ERn, clearly (~x - f~AI) E Ak • Then, the random
function Y(x), x ERn, defined by

(1.2)

is a representation of Z. For, if AE Ak , i.e., f A(dx)f'(X) = 0, we also have
A = f A(dx)[l5x - f~AI]. Z being a linear mapping of Ak into H = Z(Ak ) ,

we may write

Z(A) = f A(dx)Z((;x - f~A,) = f A(dx)Y(x)

and Y(x) is a representation of the k-IRF Z.
Let X(x) be another representation of Z. By the very definition, we may

write

Z(A) = f A(dx)Y(x) = f A(dx)X(x) for any AEAk •

In particular, for A = ~x - f ;Az, we find

Y(x) = Y(x) - i: f A,(dy)Y(y) = X(x) - f~f A,(dy)X(y).

From this relationship, we conclude:
(a) The representation defined by the relationship (1.2) is characterized

by

(1.3) f A,(dx) Y(x) = o.

For, if another representation X(x) satisfies (1.3), we find

Y(x) = X(x) - f; f A,(dy)X(y) = X(x).

(b) Any other representation X(x) of Z is of the form

(1.4) X(x) =Y(x) + Azf'(X)

for random variables AzE L2(Q,d,P) satisfying Az = f Az(dx)X(x). Converse-
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(1.5)

(1.6)

ly, for any random variables A, E L2(Q, d, P), the random function X(x)
defined by the relationship (2.4) is obviously a representation of Z, because

f ),(dx)X(x) = f A(dx) Y(x) for any), E Ak •

This representation satisfies

Al = f AMx)X(x)

by (1.1) and (1.3). Thus, the relationships (1.2) and (1.4) give us the general
form of all the representations of the k-IRF Z .

The k-IRF Z being continuous on Ak (for the relative Me topology), all its
representations are continuous, and, conversely, if Z admits a continuous
representation, it is a continuous k-IRF.

1.4 The translations formula

Let Z be a continuous k-IRF. Let us choose measures A, satisfying (1.1),
and consider the representation Y(x) = Z(l5x - f;A,). From the very defini­
tion of an IRF, we have

for h, x E B", This may be written as follows

UhY(x) = Z(l5x+ h - f;+hA,) + Z(f;+hA, - f;rhA,).

But Z(l5x +h - f;+hAL) = Y(x + h), and the relationship (1.3) implies

Z(f~+hAI - f~r:hAI) = f~+h f ALCdy)Y(y) - f; fAMy)Y(y + h)

= - f~ f AI(dy)Y(y + h).

Thus we obtain the following translations formula

UhY(x) = Y(x + h) - Az(h)f'(X) ,

ALCh) = f AMy) Y(y + h).

From the relationship (1.6) we can obtain an important inequality. Because
II Y(x) II is continuous on Rn, and the measures Al E A have their supports
included in the same compact, there exists a real B > 0 such that

Ih Is 1 => ~ f A,(dy)Y(x + h)11 ~ B.
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By writing (1.6) in the form

Y(x + h) = UhY(x) +l~x) f Aj(dy) Y(y + h),

and taking into account the inequality If'(x) I ~ r' (with r = , x I and
I = i1 + ... + in = degree of the monomial f') we thus obtain for IhI ~ 1
an inequality of the form

k

II Y(x + h) II ~ II Y(x) " + L b.r! (bi ~ 0).
i=O

If now u is a unit vector in Rn and s a real number with 0 ~ e ~ 1, we find
by iteration

II Y(u) II ~ II YeO) II + bo ,

k

II Y(2u) II ~ II Y(u) II + L b.,
o

k

II Y(mu) II ~ \I Y[(m -1)u] II + L blm -1)i ,
o

k

II Y[(m + e)u] II ~ II Y(mu) II + L bim
i

•
o

By adding these inequalities, we obtain an inequality of the form

k+l
II Y[(m + e)u] II s L Bimi ~ a + b(m + e)k+l

o

for convenient a, b, real ~ 0 independent of u and 8. Thus, for any x ERn.,
the representation Y(x) of Z satisfies the following inequality

(1.7) II Y(X) II ~ a + br k+ 1 (r = Ix!).

By (1.4), it is clear that any other representation of Z satisfies inequalities
of the same type.

From the relationship (1.7), we conclude that the integral f Y(x)f1(dx)
exists not only for any measure f1 E Me with compact support, but also for
any measure f1 with a sufficiently rapid decrease at infinity. For instance,
if cP E Y is an infinitely differentiable function rapidly decreasing at infinity,
as also do each of its derivatives, the regularized random function 4(x)
defined by

Ytj>(x) = f ¢(y) Y(x + y)dy
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always exists, and is an infinitely differentiable random function, as can easily
be verified.

Besides, we note that for any AE Ak , the integral f A(dx)Yq,(x) does not
depend on the choice of the particular representation Y(x) of the k-IRF we
have used, as shown by

I A(dx)Y4>(x) = I cjJ(y)dyI A(dx)Y(x + y)

= I cjJ(y)UyZ(A)dy.

In other words, the regularized RF Yq,(x) is a representation of the k-IRF Zq,
defined on Ak by putting Zq,(A) = f 4J(y)UyZ(A)dy.

We shall say that the k-IRF Zq, is the regularized function of Z by 4J.
Clearly, Zq, is infinitely differentiable if 4J E!7 (i.e., any representation of Zq,
is infinitely differentiable, or Zq,(D) exists for any derivative D). If D is a deriv­
ative of order p, the corresponding derivative D Zq" defined by

DZiA) = (-ItI DcjJ(y)UyZ(A) dy

is a (k- p)-IRF for p ~ k, and a SRF for p > k.

1.5 A decomposition theorem

If Y(x), x ERn is a SRF, the mapping A -+ f A(dx)Y(x) obviously defines
a k-IRF on Ak , which may be denoted A -+ Y(A). It is thus possible to add
a k-IRF Z; and the SRF Y considered as a k-IRF. The sum Z; + Y is the
k-IRF Z defined by Z(A) = Zc(A) + f A(dx) Y(x), AE Ak • Then we may state
the following theorem.

Theorem 1.5. Any continuous k-IRF Z is the sum of a SRF and of an
infinitely differentiable k-IRF.

Proof. Let PaE!/ be the function defined by its Fourier transform

Pa(u) = (1 + ta 1u 1
2 + ... + tk,-la k' 1uI 2 k ' ) exp( -a 1u (2) for a > 0

and an integer k' > tk. All the derivatives of 1 - Pa up to order 2k' > k
vanish in u =0. Thus, the measure b-Pa(x)dx is in M k • Put J:(x) = Z(bx-'CxPa)'
i.e., Ya(x) = UxZ(b-Pa). In other words, J:(x) is a SRF. From the definition
of the regularized Zpa' we then have Z = Ya+ Zpa' where Ya is the mapping
A -+ JJ:(x) A(dx) , AE Ak , and the regularized Zpa is an infinitely differentiable
k-IRF.
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For any representation Y(x) of Z, we have

449

y"(x) = Z(bx - TxPa) = Y(x) - I piy)Y(x + y)dy,

because (bx - 'txPa) E Ak , and the decomposition theorem gives simply
Y(x) = y;'(x) + Ypa(x) , where y:'(x) = Y(x) - Ypa(x) is a SRF and Ypa(x) a
representation of the infinitely differentiable k-IRF Zp_.

Also note the following corollary.

Corollary. For any k-IRF, there exists a sequence {~} of SRF such
that f A(dx) Yn(x) strongly converges toward Z(A) for any AE Ak •

With the preceding notation, we have to show that, for AE Ak , lim y;'(A) = Z(A)
for a --+ 00, i.e., limf Pa(y)UyZ(A)dy = o. Let X(du) be the spectral measure
associated with the SRF UyZ(A). Then, by IPa1

2 ~ 1 and 1Pa(U) 1
2 --+ 0 for any

u E B", we obtain

Le., Ya(A) --+ Z(A).

1.6 Drift of an IRF

Let Z be a continuous k-IRF, H o -the subspace of H = H(Ak) containing
the invariant elements of H (i.e., X E H 0 if X E Hand UhX = X for any
h ERn) and ITo the projector on H 0 (in the ergodic case, ITo may be identi­
fied with the expected value). By putting mo(A) = IToZ(A) for AE Ak , we define
a continuous k-IRF m o obviously invariant for the group Uh. Let us choose
AEA satisfying (1.1), and write mo(x) = mo(~x - f;Az) . Then, the represen­
tation mo(x) of the k-IRF mo is a polynomial of degree ~ k + 1 with coeffi­
cients in H 0 (constant in the ergodic case).

Proof. If Z is infinitely differentiable, so also are mo and its representation
mo(x). By mo(x) E H 0 and the translations formula (1.6), we obtain
mo(x) = mo(x + h) - AtCh)fl(x). Differentiation of order k + 1 with respect
to x eliminates the terms Az(h)f'(X), and then differentiation of order 1 with
respect to h eliminates mo(x). Hence, all derivatives of order k + 2 of mo(x)
vanish identically, and mo(x) is a polynomial of degree ~ k + 1. The decom­
position theorem shows that the result remains true when Z is not differentiable.

The polynomial mo(x) with invariant coefficients depends on the choice
of the representation we have used. But it is easy to verify that the terms of
degree k + 1 do not depend on it, and thus-constitute a property of the k-IRF Z
itself. The corresponding homogeneous polynomial of degree k + 1 with
invariant coefficients will be called the drift (or intrinsic drift) of the k-IRF.
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If m., = 0, the k-IRF Z is said to be without drift. Obviously, Z is without
drift if and only if noY(x) is a polynomial of degree ~ k with invariant co­
efficients for a representation of Z (and then, the same is true for any represen­
tation).

2. THE GENERALIZED COVARIANCES (GC)

2.1 The class of the GC of a k-IRF

Let Z be a continuous k-IRF. We say that a continuous and symmetric
function K on Rn is a generalized covariance (GC) of Z if

(Z(A), Z(Jl) = f A(dx) K(x - y) Jl(dy) for A, u E Ak °

This is equivalent to the condition:

(2.1)

(2.2)

The family of the continuous and symmetric functions K satisfying the con­
dition (2.1) will be called the class of the GC of Z. We will show that such
GC always exist, and, if one of them is known, we obtain all the others by
adding arbitrary even polynomials of degree ~ 2k. In other words, there is
an existence theorem, and a uniqueness theorem, the latter up to an equiv­
alence defined by the relationship K 1 == K 2 if K 1 - K 2 is an even polynomial
of degree ~ 2k.

We shall also say that a continuous, symmetric function K on R" is con­
ditionally positive definite of order k if

f A(dx)K(x-Y)A(dy) ~ 0 for any AEAko

From the definition, the GC of a k-IRF (if any) are k-conditionally positive
definite. Conversely, if K is a continuous k-conditionally positive definite
function, there exists a continuous k-IRF Z such that the Z(A), AE Ak are
Gaussian random variables satisfying (2.1), and these two classes of functions
may be identified. The following theorem gives their characterization.

Theorem 2.1. Let K be a continuous and symmetrical function on R",
Then, K is k-conditionally positive definite if and only if it admits the re­
presentation:

-f cos(2n(uh)) - 1B(u)Pk(2n(uh))
K(h) - 21 12 k 1 Xo(du) + Ko(h) ,

(4n I u ) +

where K o is an even k-conditionally positive definite polynomial of degree
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~ 2k + 2, 1B the indicator of a neighbourhood of the origin, and Xo a positive
measure, necessarily unique, without atom at the origin, and such that

(2.3) f [1 + 4n21 u 1
2r k - ·Xo(du) < co

(Pk is the polynomial Pk(x) = L~ (- I)Px2 P/(2p) !) .

Proof. It follows from Section 1.4 that any representation of a k-IRF
is a generalized stochastic process with stationary increments, so that the
existence and uniqueness theorem as well as Theorem 2.1 are simple con­
sequences of the Guelfand-Vilenkin theory ([3], Chapter 2, Section 4 and
Chapter 3, Section 3). Note that it is also possible to derive them by spectral
analysis, i.e., without using the distribution theory.

2.2 k-IRF without drift

Let Z be a k-IRF, K a GC of Z which admits the representation (2.2),
AE Ak and X its Fourier transform. Then, it follows from (2.2) that the
spectral measure X;. associated with the SRF x --+ UxZ(A) is

X;. = (I ~ 12
/ 4n21 u 1

2k
+

2)XO+ ab,

and the atom a is given by

a = f 2(dx)Ko(x- y)2(dy).

In other words, Z is without drift if and only if the degree of the polynomial
K o is ~ 2k. More precisely, we may state the following theorem.

Theorem 2.2. Let Z be a continuous k-IRF, K a GC and Y(x), x E Rn
a representation of Z. Then, the following three conditions are equivalent:

(a) Z is without drift (i.e., IloZ = 0),

(b) K(h)/I h 1
2k

+ 2 --+ 0 for I h I --+ 00,

(c) Y(x)/I X Ik + 1 --+ 0 strongly for Ix I --+ 00.

Proof. By the inequality 1cos x - Pk(X) J ~ X2k + 2,(2k + 2)!, we have

I
cos(2n(uh)) - Pk(2n(uh)) I ~ Ih 1

2 k
+2

(4n 2u 2)k+l (2k + 2)!

and, by the dominated convergence theorem

lim Jcos(2n(uh)) - Pk(2n(uh)) (du) = 0

Ih 12k+2(4n2u2)k+ 1 Xo •Ihl-+oo B
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Thus, the condition (b) is fulfilled if and only if the polynomial K o of Theorem
2.3 is of degree ~ 2k, i.e., if (a) is satisfied, and thus (a) and (b) are equivalent.

By the relationship (1.4), we may assume that the representation Y(x) of Z
is of the form (1.2). Then, the covariance of Y(x) is the function

(Y(x), Y(y) = K(x- y) -r« f K(z- y)JeMz) -ley)f K(z-x)Je,(dz)

+l(x)!"(y) f Je,(dz)K(z- z') Je,(dz').

It follows from this relationship that (b) implies (c).
Finally, the representation TIoY(x) of the drift rno = TIoZ is a polynomial

of degree ~ k + 1 with invariant coefficients. If the condition (c) is fulfilled,
this polynomial is of degree ~ k, and thus Z is without drift.

2.3 Examples

By Theorem 2.1, a positive measure Xo without atom at the origin and satis­
fying the condition (2.3) characterizes a k-conditionally positive definite
function, and thus a possible model of a k-IRF.

For instance, the function ra. on B" (r = Ix I, a. real, > 0 and different
from an even integer) admits as a Fourier transform (in the sense of the distri­
bution theory) the (pseudo) function n-a.- t " r[!(a. + n)]/r( -te<)p rr a rr n (with
p = Iu I). If a.< 2k + 2, the absolutely continuous measure p2k+2-a.- ndu

satisfies the conditions of Theorem 2.1. Thus r( -te<)ra. is k-conditionally
positive definite. If a. = 2p + 1 (p ~ k) is an odd integer, the function
(_I)P+l r 2

p+l may be used as GC of a k-IRF. More generally, the function
K defined on Rn by

(2.4)
k

K(r) = L (_I)P+l apr 2P+l
p=o

is a k-GC if and only if the coefficients ap satisfy the condition

i ap r[t(2p + 1 + n)] -n-2p+ 1 > 0
p=o 1t2p+ 2 + t n r[1 + !(2p + 1)]P -

for any p > o. These "polynomial isotropic" GC are interesting from the
applications point of view, because their expression depends linearly on the
coefficients ap » an advantageous property for statistical inference. (See suc­
ceeding paragraph).

Now let us examine the case n = 1. Let X(x) be a SRF on R 1
, u(h) its

stationary covariance and Xits spectral measure, and consider the successive
integrals
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or explicitly,

Then, Yi is a representation of a k-IRF Zk with the GCKk defined by

453

If lloX(x) = 0, Zk is without drift, and the spectral measure Xo of X(x) is
identical with the measure Xo occurring in Theorem 2.3.

Now if Wo(x) is a O-IRF with the GC -I h I (for instance, Wo may be a
Brownian motion), the expression

rx(x - ir:
Wlx) = Jo (k _ 1)! Wo(~)d~

constitutes a representation of a k-IRF with the GC (_l)k+ 11 h 1
2k + 1/(2k + 1)!.

More generally, if we put

(2.5)
k

Y(x) = L bpWp(x)
p=o

with arbitrary real coefficients bp , we obtain a realization of a k-IRF which
admits a polynomial GC of type (2.4). Conversely, it is possible to show
that any k-IRF with a polynomial GC of type (2.4) admits a representation
of the form (2.5).

2.4 Applications of Theorem 2.1

It follows from Theorem 2.1 that the classical results of the harmonic
analysis may be applied to the k-IRF. Let Z be a k-IRF without drift, and Xo
the spectral measure associated by Theorem 2.1 with its GC. Then, as we have
seen, for any AE Ak , the SRF x -+- UxZ(A) admits the spectral measure
XA = (I 11

2/(4n21 u 1
2)k+l)XO (1 is the Fourier transform of A). Moreover, if

we denote by CA the orthogonal random measure whose Fourier transform
is UxZ(A), the following relationship holds

(2.6)

Furthermore, the mapping A -+- Xj(4n21 u 12} i (k+1) may be extended by an
isomorphism from the completion Ak onto L2(Rn/

Xo) , so that (2.6) remains
valid for any A,A' E Ak •
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(2.7)

As a direct consequence, we see that the k-IRF Z is differentiable up to
order p if and only if

f [1 + 4n21 u 1
2JP-k - 1XO(du) < 00.

Thus, the integral

(2.8) K (h) f cos(2n(uh» - Pk(2n(uh») (d)
1 = (4n2IuI2)k+l Xo u

exists, and represents a GC of Z , if'jand only if Z is differentiable up to order k .
If so, K 1 is the unique qc of Z which vanishes at h = 0 as also do its deriv­
atives up to order 2k. In particular, any O-IRF without drift admits a GC
of the form

K (h) = Jcos(2n(uh)) - 1 (d)
1 4n2 /u/2 Xo u.

Any k-GC K satisfies the inequality

(2.9) IK(O) - K(h) I ~ a + bIh 1
2k+2

for convenient constants a, b ~ 0, as can be shown from (2.2) or (1.7). Then,
the following criterion is easy to prove by harmonic analysis: a k-IRF is dif­
ferentiable if and only if its GC satisfies inequalities of the form

(2.10)

Let us now examine under which condition a k-IRF Z actually is of order
< k, i.e., is the restriction to Ak of a (k-l)-IRF Z.

Theorem 2.4. Let Z be a continuous k-IRF without drift, k ~ 1 (respec­
tively, a O-IRF such that no z = 0). Then, the following three conditions
are equivalent.

(a) Z is the restriction to Ak of a continuous (k-l)-IRF Z (resp. the re­
striction to Ao of a continuous SRF Z), and Z is unique up to a drift (resp.
to an invariant).

(b) There exists a measure X~ ~ 0 without atom at the origin such that
f [1 + 4n2

/ u 1
2

] -kX~(du) < 00, and the spectral measure associated with Z by
Theorem 2.1 is Xo = (4n21u 12)X~. If so, X~ is the spectral measure associated
with the (k -1)-IRF Z (with the SRF Z).

(c) The GC~s of Z satisfy inequalities of the form IK(h)/ ~ a + hi h/ 2 k

(resp. are bounded on Rn).

Proof. Let Z be a k-IRF andZ, Z' (k-l)-IRF such that Z(A) = Z'(A)=Z(A)
for any AE Ak • Then, for any A' E Ak - 1 , we find
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(Uh - 1)Z'(;1.) = Z(rh;1. - A) = (Uh - 1)Z(;1.).

Thus, Z'(A) = Z(A) up to an invariant, and Z is unique up to a drift.
The implications (a) => (b) and (b) => (c) are trivial. Let K be a k-GC such

that (c) holds, and Xo its spectral measure. If B is the neighbourhood of 0
such that (2.1) holds, and C = BC the complementary set, the measure lcXo
trivially satisfies (b), so that we may suppose Xo = 1BXO' i.e., Z is infinitely
differentiable. Then, the function K 1 defined by (2.8) exists and is a GC of Z .
Moreover, by (2.4) and (c), there exists a real B < 00 such that

(2.11)

It remains to prove that (2.11) implies (b). We start from the obvious re­
lationship

k + 1 rx (x - ~)2k - 1
cosx-Pk(x) = (-1) Jo (2k-l)! [1-cose]de

which implies, for r = IhI and a = hlr ,

cos 2n(uh) - Pk(2n(uh))

rr (r )2k-l
= (_1)k+ 1(21t(UIX)ik Jo (~~ I)! [1 - cos(21t(ulX)p)] dp .

By substituting in (2.8) we obtain

(2 12) ( l)k+'« () fr (r - p)2k-l d J(Ue<)2k 1 - cos(21r(u~)p) (du)
• - 1 ar = 0 (2k - I)! P (U2)k 4n2u2 Xo •

Let <1>(1 be the Laplace transform of ( _l)k+ 1Ko(e<r), i.e.,

<1>..(A) = ( _1)k+ 1 LIZ) K l(:xr)e-.I.r dr (A > 0).

By (2.12), the function (_l)k+ 1K l(ar) is the convolutive product in R+ of
two functions, the Laplace transforms of which are respectively A-2k and

J
(Ue<)2k Xo(du)
( u2)k A(A2 + 4n2(ue<)2) •

Thus, we obtain

(2.13)
1 J (Ue<)2k Xo(du)

<1>..(A) = A,2k+ 1 (U2)k ..P + (21t(u:x»2 ·

On the other hand, the function (-l)k+ JKo(ctr) is ~ 0 by (2.8), and thus
(2.11) implies the inequality «I>(iA) ~ B(2k) !/A2 k + 1 • By (2.13) and
(Ue<)2 ~ u2a2 = u2 , we obtain
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J(ueX)2k Xo(du) :::; B(2k) 1.
(U 2)k A2 +4n2u2 -

If lJ. is the unit vector of the u, axis, this implies

J
Ui2k Xo(du)

---k 2 2 2 ~ B(2k)!.
(L uj

2
) (A + 4n U )

G. MATHERON

(2.15)

By the convexity relationship L~X~ ~ n 1
- P( L Xi ) P, Xi and p ~ 0, we have

(I:U/)k ~ n k
-

1 LU/ k
• Thus, by substituting in (2.14) and summing from

i = 1 to i = k, we find

The decreasing family X;. = Xo/(A2 + 4n2u2) being dominated, it follows that
there exists a positive bounded measure X~ = lim x;., for A i O. By the rela­
tionship 4n2u2x;. = Xo - A2X;., we get Xo = lim 4n2u2x;. = 4n2u2x~. Thus,
(b) is true.

It remains to prove (b) implies (a). Let us at first examine the case k = O.
Let Z be a O-IRF without drift, satisfying (b), i.e., admitting a GC of the form

K(h) = f [cos2rr(uh) - IJx~(du)

for a bounded positive measure X~ without atom at the origin. Let X;. = /1/ 2 X~

and ,;. be the spectral measure and the orthogonal random measure associated
with a AE Ak • The function 1/1 belongs to L2(Rn, X).), and thus the integral

Y(x) = f [(exp {- 2irr(ux)})/X(u)] Udu)

exists and defines an SRF Y(x) , X E R", For any J1 E Ak , we may write

JY(x)/l(dx) =J([i(u)/A(u)Kidu) =J'idu) = Z(/l)

by il(;. = 1(u. Then (a) is true.
Now let Z be a k-IRF without drift, k > 0, suppose (b) is true and prove (a).

For AE Ak - 1 , put Y;.(x) = Z( !xA - A)(x ERn). l).(x) is a representation of
a O-IRF and satisfies the relationship

II Y).(x) 11 2 = J lexp{ -2i1t(U:)~ ~ 11
21

AI2 X~(du).
(4n u )

The function 1112/(4n2u2)k being bounded on R">; {O}, and X~ without atom
at the origin, it follows that II Y).(x) II is bounded on Rn. By the result which
we have already proved for the O-IRF, there exists a unique element Y). E H
such that Y).(x) = (U x - I) Y;. and no Y;. = O. The spectral measure associated
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with Y;. is IX12x~/(4n2u2)k. The continuity of the linear mapping A~ YA

from Ak - t into H is then easy to prove, so that this mapping is a continuous
(k -l)-IRF. For AE Ak C Ak - h obviously

and thus Y;. = Z(A) up to an invariant. But this invariant is null, for
no YA = noZ(A) = 0, and the equality Y;. = Z(A) holds. This achieves the
proof of Theorem 2.3. As an immediate consequence, we may state the follow­
ing coro llary.

Corollary. A (k + p)-IRF (respectively a (p-l)-IRF) with k ~ 0, p ~ 1
is the restriction to Ak + p(Ap- 1) of a k-IRF (a SRF) if and only if one of its GC
satisfies an inequality of the form 1K(h) 1~ a + b 1h 12k+ 2 (resp. is bounded
on Rn).

3. THE BEST LINEAR INTRINSIC ESTIMATORS (BLIE)

In practical applications, we generally have to interpret the concerned
phenomenon as a realization of a certain representation Y(x) of a k-IRF Z.
Statistical inference is then reasonably possible as far as the GC of Z are con­
cerned. On the contrary, if only one realization of Y(x) is available, it is
entirely impossible to specify which particular representation of Z is involved
in the experimental data. Thus, only "authorized.' integrals, i.e., integrals
of the form f A(dx) Y(x), AE Ak or AE M k , may be assigned a computable
variance (because they depend only on Z, and not on the choice of the parti­
cular representation Y(x»).

Then, if Yo is an element of the Hilbert space H(Y) generated by the Y(x) ,
x E Rn, we shall say that another element Y* E H( Y) is an intrinsic estimator
of Yo if the difference (y* - Yo) is itself an authorized integral, or a strong
limit of authorized integrals. For, in this case only, the variance of the "error"
(y* - Yo) uniquely depends on Z and not on the representation - and may
be computed at least approximately. In this context, it is natural to develop
a theory of the best linear intrinsic estimators (BLIE).

The element Yo E H( Y) we have to estimate will be, for instance, the "value"
Y(x o) of Y(x) at a given point X o ERn, or the integral Jp(dx) Y(x) , where
the measure p is known, or a derivative of Y(x) at a given point, and so on.
Generally speaking, we consider the case Yo = .PCY), where .P is an element

of the completed x, of A for the norm II AII = II JA(dx) Y(x) II (or of the
convenient quotient space, if II A II is not a norm). But the space Ay depends
on the choice of the particular representation Y(x), and not only on the
k-IRF Z itself, and in practice we do not know which particular representation
is involved. For this reason, the operator .P must be taken so that ~(Y) is
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defined for any representation Yof Z . In other words, by (1.4), the monomialsr of degree ~ k necessarily belong to the domain of 2. Or, which is the
same, there exists in A a sequence {An} such that f An(dx)Y(x) strongly con­
verges in H(Y) towards the limit 2Y for any representation Y(x) of Z.
In particular, this implies the numerical convergence of the sequences
{J An(dx)f'(X)} towards limits denoted 2 f' . Instead of2(Y) = lim JAn(dx)Y(x) ,
we shall use the symbolic notation 2(Y) = f 2(dx)Y(x) for brevity.

In order to estimate 2(Y) , we know, say, the elements Y(x) , XES belonging
to a compact set S (the set of the "experimental data"). In other words, the
only possible estimators Y* are in the form f A(dx)Y(x) , for measures AEA(S)
(i.e., with finite supports included into S) and, more generally, strong limits
of such elements, Le., elements of the form f2*(dx) Y(x) for operators !R*
with "support" in S. For AEA(S), the element f A(dx)Y(dx) is an intrinsic
estimator of 2(Y) if and only if A satisfies the "universality conditions"

fA(dx)f'(x) = .!1'r ,
Le., AE 2 + Ak • Now, if a sequence {An} in A(S) n (2 + Ak ) is such that
{f An(dx)Y(x)} strongly converges in H(Y) for a given representation Y(x) ,
it follows from the universality condition that the sequence {f An(dx)X(x)}
is also convergent for any other representation X(x). In other words, the set
of the operators 2* with support in S and such that Y* = 2*(Y) is an in­
trinsic estimator of 2(Y) (i.e., the closure A(S) n(2 + Ak ) ) does not depend
on the choice of the representation Y(x) we have used to define the norm

\\ AII = II f A(dx)Y(x) II·
This result may be stated in another equivalent manner: if

AnEA(S) n(2 + Ak ) ,

i.e., 2 - An E Ak , the element

f.!1'(dx)Y(x) - f An(dx)Y(x) = Z(.!1' - An)

does not depend on the choice of the representation Y(x). In other words,
the strong convergence f An(dx) Y(x) --+ 2*(Y) for a particular representation
Y(x) is equivalent to the convergence Z(2 - An) --+ Z(2 - 2*) and thus
implies f An(dx)X(x) --+ 2*(X) for any other representation X(x).

The variety A(S) n(2 + Ak ) is empty if it is not possible to find AE A(S)
with f A(dx)f'(X) = 2 f'" i.e., if there exist coefficientsC, such that C,f'(x) = 0
for any XES and C,2f' =F o. For this reason, we shall always suppose the
monomials r linearly independent on S, i.e., C,f'(x) = 0 for any XES
implies C, = 0, so that the variety containing the intrinsic estimators on S
will never be empty.
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In order to determine the BLIE, it remains to write that Z(2 - 2*) is the

projection of 0 into the linear variety Z(2 - A(S) n(2 + x,» , which is
closed and non-empty, by the above considerations. We obtain the condition:
<Z(2 -: 2*),Z(A) = 0 for any AE Ak(S). This condition expresses that the
continuous function y -+ f (2(dx) - 2*(dx))K(x- y) is orthogonal to Ak(S),

and thus coincides on S with a linear combination p,f' (i.e., a polynomial of
degree ~ k). Finally, the operator .P* with support in S associated with the
BLIE y* = 2*(Y) is characterized by the following conditions:

.P*f' .fl?f' ,
(3.1)

t-J 2*(dx)K(x - y) f 2(dx)K(x-Y)+/ldl(y) for all yES;

(3.2)

and the corresponding "estimation variance" is

f (2(dx) - 2*(dx»K(x- y)(2(dy) - 2*(dy»

= f 2(dx)K(x- y)2(dy) - f 2(dx)K(x- y)2*(dy) + /l12f'.

Example 3.1 (The finite case)

If the set S of "experimental data" is finite, the preceding discussion is
greatly simplified, because we only have to consider estimators of the form
f A(dx) Y(x) with AE 1\(S) . Let xa, ex = 1,2,···, N be the points of S , and write
~,f~ ,Kap , etc., instead of Y(xa),f'(xa) , Ktx; - xp) , etc. Then, the BLIE on
S for Yo = 2(Y) is y* = Aaya , with coefficients Aa satisfying the following
system:

Aaf: = .Pf',

;.,aKap= f 2(dx)K(x - xp) + /ldp'.

The BLIE y* = AaYa always exists, the functions r being independent on S,
so that the system (3.2) admits solutions. The unicity of y* does not imply
the regularity of the system (3.2), but only the relationship A~ Ya = A~Ya a.s.
if At and A2 are two distinct solutions. As a matter of fact, the difference
v = At - A2 between two solutions will satisfy the system:

a.,1 0 aK ,.,1
V ) a = , V afJ = Ill) fJ ,

from which it follows \I vaYa 11
2 = vaKapvP = p;fJ vfJ = o. It is not difficult to

show that the system (3.2) is regular if and only if the following two conditions
are fulfilled:
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(a) the matrix K aD is strictly conditionally positive definite,
(b) the functionsf' are linearly independent on S (i.e., e,i; = 0 ~ C, = 0).

Example 3.2 (Estimation of a drift)

We suppose now that the k-IRF Z admits as representation a SRF Z(x)
= UxZo with 110Zo = o. By the corollary of Theorem 2.4, it is the case if
and only if Z is without drift and admits a bounded GC, say (l.We may suppose
that a is the stationary covariance of the SRF Z(x) = UxZo. Any other re­
presentation of Z is of the form

Y(x) = Z(x) + A,f'(x)

where the A, are order-two random variables. In the present context, we shall
say that the (random) polynomial A,f' is the drift of the R.F Y(x). We may
ask if it is possible to get a BLIE for the drift value A,f'(x) at a given point x,
and for the coefficients A, themselves. This new formulation of an old problem
(see, for instance, [5]) will remain valid if Z is only locally stationary (see
Section 7), but not stationary, so that it will be possible to define a locally
significant notion of a drift and to get a BLIE for it.

The first question that arises is whether A, E H( Y) and A, = fiJ,Y for opera­
tors fiJ, including the monomials fS in their domains. For this purpose, take
A, E A satisfying the "universality condition" f A,(dx)fS(x) = c5: (= 0 if I "# s,
= 1 if I = s), and denote 4J, the density of the Gaussian centered law with
variance t . The regularized functions

4J,(x, t) = JA,(dY)4J,(x + y)

still satisfy the universality conditions

J4J,(x,Oj"(x)dx = b:,

and we get

J4J,(x, t)Y(x)dx = J4J,(x, t)Z(x)dx + A,.

For t --+ 00, the ergodic theorem asserts that f 4J'(x,t) Z(x)dx strongly con­
verges towards o. Thus, the operators fiJ, defined by

.P,(Y) = lim J4J,(x, t) Y(x) dx
t-+ 00

satisfy fiJ,(Y) = A, for any representation Y, as required, and in particular
.P,fs = c5: .
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Thus, there exists a BLIE for A, = .P,Y, say Ai = .Pi(Y). The opera­
tor .Pi (with support in the compact set S of experimental data) is charac­
terized by the system (3.1) written with a instead of K. But, in the second
relationship (3.1), the term f .PI(dx)u(x - y) vanishes, by the ergodic theorem.
Finally, we get the following system:

J.P'iCdx)F(x) = (j:,

(3.3)

J.Pj(dx)a{x - y) = JllsF(y) for all yES.

The matrix (/lIs) of the "Lagrange parameters" admits a very simple inter­
pretation: it is identical with the covariance matrix <A, - A,*, As - A:), as
is easy to verify by direct calculation. It is also easy to show that, for a given
x ERn, Ai flex) is the BLIE for the drift value in x, A,f'(x).

Let H yeS) be the Hilbert space generated by the Y(x) , XES, and
Hk(S) c H y(S) the Hilbert space generated by the f A(dx)Y(x) = Z(A), AE Ak(S).
By the system (3.3), the AT belong to the orthogonal H~(S) of Hk(S) in H y(S).
Conversely, if Yo E Ht(S) , this element is of the form Yo = C'A ,*. For, if
XES, the relationship Y(x) = Z(b x - f;.Pi) + Ai f'ex) implies <Yo, Y(x) =
<Yo,AT>fl(x) , and the projection of Yo into the orthogonal of the A, vanishes.
Thus, Ht(S) is spanned by the AT. We shall say that Ht(S) is the space of
the drift and Hk(S) the space of the residuals.

Then, by relationship Y(x) = Z(b x - f'(x).Pi) + Aif'(x) , we conclude that
for XES the BLIE Ai f'ex) of the drift value at XES is the projection of Y(x)
itself into the drift space Ht(S). But this result does not remain true for x ¢ S.

4. THE TURNING BANDS METHOD

In practical applications, one must sometimes simulate realizations of a
given random function in R2 or R 3 , and we will now describe a procedure
which may be used in the isotropic case for SRF as well as for k-IRF.

First, let t ~ yet) be a SRF on R 1
, C 1 its covariance, and s a unit vector

in B", Then, x~Zs(x) = Y«x,s») is a SRF on Rn and its covariance is
defined by <Zs(x),Zs(y) = C1«(x-y),s»). If now s is substituted by the
unit random vector, Zs(x) is changed into a SRF Z(x), the covariance C of
which is defined by

where UJn is the probability concentrated on the unit sphere and invariant
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under rotations. Clearly, the covariance C is isotropic, i.e., there exists a
function C; on R+ such that C(h) = Cn(l h j), say explicitly

(4.1) Cn(r) = 2r(!n)n-t(r[t(n-l)])-1 LI

C I(vr)(1-v
2)t<n-3)dv.

Let G be the positive measure on R+ such that

C1(r) = Loo

cos2nprG(dp).

An easy calculation gives

(4.2) Cn(r) = 2t n- 1r<tn) Loo

(2npr)1-t"Jt n_1(2npr)G(dp)

where Jtn-l is the classical Bessel function. But we know from the Bochner
theorem that (4.2) is the general form of an isotropic covariance on B"; so
that the mapping C1 ~ C; is one-to-one from the covariances on R1 onto
the isotropic covariances on B", In other words, for any isotropic covariance
Cn, there exists a unique covariance Cion R1 such that (4.1) holds. For
instance, if n=3, we find C3(r ) = f~Cl(vr)dv, and, conversely,
Cl(r) = drC3(r)fdr.

If an isotropic covariance C; on Rn is given, the procedure described above
(i.e., the "turning bands" method) will yield a realization of a SRF with
covariance en, if it is applied to a realization of a SRF Ywith the correspond­
ing covariance Cion R1

•

The turning bands method may also be used in order to construct represen­
tations of a k-IRF with a given isotropic GC on Rn, for it is easy to see from
Theorem 2.1 that the relationship (4.1) defines a one-to-one mapping from
the k-GC on R 1 onto the isotropic k-GC on B", Moreover, the monomials
r", (X ~ 0 are eigen-functions for the turning bands operator (4.1), so that the
polynomial isotropic GC on Rn (see Section 5 below) are generated by the
polynomial GC on R", This procedure was used by Orfeuil [10], who con­
structed the originals of the Figures 1, 2 and 3 above. These figures give rea­
lizations of IRF order k = 0, 1,2 with GC proportional to - Ihi, Ih 1

3

and - Jh Is respectively. The representations chosen by Orfeuil vanish at
the center of the figures, as well as their derivatives up to order k, and this
explains the feature of Figure 3 in which nothing resembles an isotropic and
stationary phenomenon any longer.

5. THE POLYNOMIAL GC

Let us denote by T; the turning bands operator defined in (4.1), so that
for any (X > 0 the function r ~ ra. is an eigen-function for Tn. If (X = 2p + 1
is an odd integer, we find explicitly
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As noted above, the function K t defined by

463

(5.1)
k

Kt(r) = L (-1)P+t apr2P+l/(2p + 1)!
p=o

is a k-GC on R t if and only if the function

(5.2)
k

Kn(r) = L (-l)P+ lapBnpr2P+ 1/(2p+ 1)!
p=o

is itself an isotropic K-GC on R": With the notations (5.1) and (5.2), the
conditions the coefficients ap have to satisfy do not depend on the dimension n,

From the relationship

(_l)p+l r
2 p

+
1

= 4f'X> cos(2npr)-Pp(2npr) d
(2p + I)! Jo (4n2p2)P+l p ,

it follows that the function K, defined in (5.1) admits (up to an even poly­
nomial of degree ~ 2k) the representation

k

g(p) = 4 L ap(4n
2p2 ) k - P •

p=o

In other words, K, (and K n) are k-GC if and only if the polynomial
TI(x) = Lapx 2

(k - P ) is ~ 0 for x real.

Lemma 5. An even polynomial II with real coefficients and degree 2k
satisfies TI(x) ~ 0 for x real if and only if there exists a polynomial <I> with
real coefficients and degree k such that II(x) = I cI>(ix) 1

2
•

Proof. The if part is obvious. Conversely, let II be an even polynomial
with real coefficients and degree 2k such that IT(x) ~ 0 for x real. Then (up
to a positive multiplicative constant) II(z) is the product of terms of the type

(z + ib)(z - ib) = (b + iz)(b - iz),

with b real, or

(z - a)(z + a)(z - a)(z + a) = (« + iz)(Ci+ iz)(rx - iz)(Ci- iz),

with ex = ia and a = at + ia2' at, a2 real and at -:f:. o. Each of these terms
is of the form 4>(iz) 4>( - iz) for a polynomial 4> with real coefficients. The
lemma follows.
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K(h)

Let us now give the general form of the k-IRF with polynomial GC on RI.

Theorem 5. A k-IRF Z on R 1 admits a polynomial GC if and only if
it admits a representation Y such that

rx rx (x _ ~)k-I
(5.3) Y(x) = boW(x) + b, Jo W(~)d~ + ... + b, Jo (k _ I)! W(~)d~

where the bp are real coefficients and W(x) a representation of a O-IRF with
the GC K(h) = - Ih I.

Proof. If Z admits the representation (5.3),

X(x) = LX (x - ~l-lWW/(k-1)!d~

is a representation of a k-IRF with the GC ( -1)k+ 1 Ih 1
2k+1 j(2k + 1)!. If

DP denotes the derivation order p, we have

Y(x) = ('LbpDk-P)X(x)

and the k-IRF Z admits the GC

K(h) = (LbpD k- P) (L( _l)k- PDk- P) Ih 1
2k+Ij(2k + 1)!

i.e., a polynomial GC.
Conversely, let Z be a k-IRF on HI admitting a GC K(h) of the form (5.1).

From Lemma 5 and the preceding considerations we may write (up to an
even polynomial of degree ~ 2k)

2J
oo cos2nuh - lB(u)Pk(2nuh)Im(2· ) 12d

(4 2 2 k +1 'P ttiu u ,
-00 n u )

k

<!leu) = L bpuk
- P ,

p=O

with convenient real coefficients bp • Now let tt E Ak be the function defined
by its Fourier transform a(u) = (2inu)k exp( ---u2), and (IX the random ortho­
gonal measure such that Z(rhtt) = Jexp(-2inuh)(IX(du). The corresponding
spectral measure XIX is

XIX(du) = 2[l a I2I<1>(2inu)12j(4n2u2)k+1Jdu,

and, for any AE Ak the Fourier transform of which is X,Xja E L2(R1, XIX) implies

(5.4) Z(Je) = f (l(u)/fi(u»'a(du).

The function (exp( - 2inux) - 1) ( - 2inu)kj[a(u) <1>( - 2inu)J is also in L2(Rt, XIX)'
and thus there exists a random function W(x) defined by
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(5.5) W(x) = 'J+oo (exp{ -_2inux}-~)( -2inu)k, (du).
_ 00 octU ) <1>( - 21nu ) (X

II J),(dx)W(x) 1/

2

If AE 1\0' we have

JA(dx)W(x) = f-+oooo l(u)( -2inu)kj(Ci(u)(P( -2inu)Kidu)

and thus

J
1112(4n 2u 2) k

IIX 121 (P(- 2inu) 12 Xidu)

= 2f C/1/2 j4n2u 2)du .

From this relationship, it follows that A~ f A(dx)W(x) is a O-IRF with the GC

2 f + 00 cos 2nuh - 1 = - J hi.
-00 4n 2u 2

Now let Y(x) be defined by (5.3) and (5.5), and J1 E Ak • By (5.5), we may write

JJ1(
dx)Y(x) = J P(u) ( -2inu)k Lbp/ ( -2inu)P

Ci(u)(P( -2inu) 'idu)

= J(fi(u)jCi(u)Ka(du).

Thus, by (4.4), we have JJ1(dx) Y(x) = Z(J1), and Y(x) is a representation
of Z. This completes the proof.

It is very easy to construct realizations of a O-FAI with GC -I h 1on R 1
•

For instance, we may choose a Wiener-Levy process (Brownian motion).
By Theorem 5, we are thus able to construct realizations of a k-IRF with a
given polynomial GC, and by the turning bands method we may also obtain
realizations of a k-IRF with a given polynomial covariance isotropic on B",

6. k-IRF LOCALLY STATIONARY

Any stationary covariance is also a k-GC, and thus there exist k-IRF's

which admit stationary representations and may be called stationary k-IRF's.

Any representation ofa stationary k-IRF is then of the form Y(x) = Yo(x) +P(x),

where Yo(x) is a SRF and P(x) a polynomial of degree ~ k with random
coefficients AI. From Theorem 2.4, we know that a k-IR.F is stationary if and
only if it admits a GC bounded on R", This condition is never fulfilled by a
polynomial GC. But, on the other hand, we shall see that the k-IRF with poly­
nomial GC are always locally stationary in the following sense.
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Definition. A k-IRF Z is locally stationary if there exist a bounded open
set VeRn and a representation Y(x) of Z such that Y(x) coincides on V
with a SRF Yy(x).

Clearly, if Z is locally stationary on an open set V, it is still so on any trans­
lation V' of V, but the SRF Yy ' cannot be identical to Yy if Z itself is not
stationary. This property is important for practical applications, because it
leads to a locally significant notion of the drift, i.e., the polynomial 4J(x)
= Y(x) - Yy(x), XE V. In particular, the estimation of P(x) in a point x E V,
or of its coefficients A, is then possible by the technique of the best linear
intrinsic estimator (BLIE, see Section 3). There exist k-IRF's which cannot
be locally stationary. For instance, if an analytic k-IRF were locally stationary,
it would be stationary on the whole space R",

Theorem 6. Any k-IRF with polynomial GC is locally stationary on any
bounded open set v.

Proof. If the theorem is true in R I
, it will be true in Rn for any n > 0 by

the turning bands method. Then, suppose n = 1, and examine at first the
casek=O.

Let Z be a O-IRF with the GC -I h Ion R I
, and choose the representation

W(x) = Z(c5x - t(c5L + <50) ) , for an arbitrary real L > O. The covariance of
W(x) satisfies

(W(x), W(y) = tL -I x - y I
for x, y E [0, LJ, and, in particular, W(O) + W(L) = O. Thus, it is possible
to define a periodic random function Yo(x) continuous on R I by putting

Yo(x) = W(x) if x E [0, L]
and

Yo(x) = (-1)kyO(X + kL) for kL ~ x ~ (k + 1)L, k integer.

The period of Yo(x) is 2L. Let C denote the function with period 2L defined
by C(h) = tL -I h I for Ih I ~ L. For x = Xo + kL, y = Yo + k'L, Xo,
Yo E [O,L], we have

k-r k' I I( -1) [tL - Xo - Yo ]

k+k' I I(-1) [tL- x-y-(k-k')L]

C(I x - y I)
by the relationship C(h + kL) = (-l)kC(h).

Thus Yo(x) is a SRF and its covariance is C(h). By W(x) = Yo(x) for
o ~ x ~ L, Z is then locally stationary on [0, L] .
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Now let Z be a k-IRF with polynomial covariance on R1 , and W(x) the
Q-IRF occurring in its representation (5.3) (Theorem 5) which may be chosen
in such a way that W(O) + W(L) = O. By the preceding part of the proof,
we have W(x) = Yo(x) if 0 ~ x ~ Lfor a periodic SRF Yo(x), the covariance
of which is C(h). By the Fourier expansion,

00

C(h) = ~ 4Ln- 2(2q + 1)-2cos(2q + 1)n(h/L) ,
q=O

there exists a sequence {C,} , 1 = ± 1, ± 3, ... of complex orthogonal variables,
with C-I = C, and II C, 11

2 = 4L/(nl)2 such that

Yo(x) = ~lC,exp( - inlxjl.),

For p integer > 0, the SRF Yp(x) defined by

Yp(x) = 'L(iLJnl)P C,exp( - inlxJL)

admits the covariance

00

Cp(h) = 4 L J!P+ 1((2q + 1)n)-2Pcos(2q + l)n(h/L) ,
q=O

and is equal to f~(X-~)P-IYO(~)/(p-l)!d~ up to a random polynomial of
degree ;£ p. By the formula (5.3), Theorem 5, the SRF L bpYp(x) is thus
equal to Y(x) , up to a random polynomial of degree ~ k for any x E [0, L].
Thus, Z is locally stationary on [0, L] .

Corollary. Let Z be a k-IRF with the de

k

K(h) = L (-1)Pa p ) hj2 p +l /(2p + 1)1
o

on R1
, and C(h) the covariance of the SRF with period 2L which coincides

on [0, LJ with a representation of Z. Then,

ex>

C(h) = 4 ~ Bqcos(2q + 1)n(h/L),
q=O

ks, = L apL2P+ 1n-2p-2(2q + 1)-2p-2.
p=o

The corollary follows easily from Lemma 5 and

Lapx2 (k - P) = I Lbp(ix)k- p12 •

Note that C(h) = K(h) for 1h 1 ~ L, up to an even polynomial of degree ~ 2k.
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