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Abstract. Let G be a connected semisimple real algebraic group. For a Zariski dense
Anosov subgroup � < G with respect to a parabolic subgroup Pθ , we prove that any
�-Patterson–Sullivan measure charges no mass on any proper subvariety of G/Pθ .
More generally, we prove that for a Zariski dense θ -transverse subgroup � < G, any
(�, ψ)-Patterson–Sullivan measure charges no mass on any proper subvariety of G/Pθ ,
provided the ψ-Poincaré series of � diverges at its abscissa of convergence. In particular,
our result also applies to relatively Anosov subgroups.
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1. Introduction
Let G be a connected semisimple real algebraic group and g = Lie G. Let A be a maximal
real split torus of G and set a = Lie A. Fix a positive Weyl chamber a+ < a and a maximal
compact subgroup K < G such that the Cartan decomposition G = K(exp a+)K holds.
We denote by μ(g) ∈ a the Cartan projection of g ∈ G, that is, the unique element of a+
such that g ∈ K exp(μ(g))K . Let � be the set of all simple roots for (g, a+) and fix a
non-empty subset θ ⊂ �. Let Pθ be the standard parabolic subgroup of G corresponding
to θ and set

Fθ = G/Pθ .

Let � < G be a Zariski dense discrete subgroup. Denote by �θ ⊂ Fθ the limit set of �,
which is the unique �-minimal subset of Fθ [1]. Let aθ = ⋂

α∈�−θ ker α. For a linear
form ψ ∈ a∗

θ , a Borel probability measure ν on Fθ is called a (�, ψ)-conformal measure if
dγ∗ν
dν

(ξ) = e
ψ(βθ

ξ (e,γ )) for all γ ∈ � and ξ ∈ Fθ ,
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where γ∗ν(B) = ν(γ −1B) for any Borel subset B ⊂ Fθ and βθ
ξ denotes the aθ -valued

Busemann map defined in equation (2.2). By a �-Patterson–Sullivan measure on Fθ , we
mean a (�, ψ)-conformal measure supported on �θ for some ψ ∈ a∗

θ .
Patterson–Sullivan measures play a fundamental role in the study of geometry and

dynamics for �-actions. For G of rank one, they were constructed by Patterson and Sullivan
for any non-elementary discrete subgroup � of G [17, 22], and hence the name. Their
construction was generalized by Quint for any Zariski dense subgroup of a semisimple
real algebraic group [19].

A finitely generated subgroup � < G is called a θ -Anosov subgroup if there exist
C1, C2 > 0 such that for all γ ∈ � and α ∈ θ ,

α(μ(γ )) ≥ C1|γ | − C2,

where |γ | denotes the word length of γ with respect to a fixed finite generating set
of �. A θ -Anosov subgroup is necessarily a word hyperbolic group [11, Theorem 1.5,
Corollary 1.6]. The notion of Anosov subgroups was first introduced by Labourie for
surface groups [15], and was extended to general word hyperbolic groups by Guichard
and Wienhard [8]. Several equivalent characterizations have been established, one of
which is the above definition (see [7, 9–11]). Anosov subgroups are regarded as natural
generalizations of convex cocompact subgroups of rank one groups, and include the images
of Hitchin representations and of maximal representations as well as higher rank Schottky
subgroups; see [12, 23].

A special case of our main theorem is the following non-concentration property of
Patterson–Sullivan measures for θ -Anosov subgroups.

THEOREM 1.1. Let � < G be a Zariski dense θ -Anosov subgroup. For any
�-Patterson–Sullivan measure ν on Fθ , we have

ν(S) = 0

for any proper subvariety S of Fθ .

Remark 1.2. This was proved by Flaminio and Spatzier [6] for G = SO(n, 1), n ≥ 2, and
by Edwards, Lee, and Oh [5] when θ = � and the opposition involution of G is trivial in
equation (2.1).

Indeed, we work with a more general class of discrete subgroups, called θ -transverse
subgroups. Denote by i the opposition involution of G (see equation (2.1)).

Definition 1.3. A discrete subgroup � < G is called θ -transverse if:
• it is θ -regular, that is, lim infγ∈� α(μ(γ )) = ∞ for all α ∈ θ ; and
• it is θ -antipodal, that is, any two distinct ξ , η ∈ �θ∪i(θ) are in general position.

Since i(μ(g)) = μ(g−1) for all g ∈ G, it follows that � is θ -transverse if and only if �

is i(θ)-transverse. The class of θ -transverse subgroups includes all discrete subgroups of
rank one Lie groups, θ -Anosov subgroups, and relatively θ -Anosov subgroups.

Let pθ : a → aθ be the projection which is invariant under all Weyl elements fixing aθ

pointwise, and set μθ = pθ ◦ μ. A linear form ψ ∈ a∗
θ is said to be (�, θ)-proper if the
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composition ψ ◦ μθ : � → [−ε, ∞) is a proper map for some ε > 0. The following is our
main theorem from which Theorem 1.1 is deduced by applying Selberg’s lemma [21].

THEOREM 1.4. Let � < G be a Zariski dense virtually torsion-free θ -transverse sub-
group. Let ψ ∈ a∗

θ be a (�, θ)-proper linear form such that
∑

γ∈� e−ψ(μθ (γ )) = ∞. For
any (�, ψ)-Patterson–Sullivan measure ν on Fθ , we have

ν(S) = 0

for any proper subvariety S of Fθ .

For a θ -Anosov �, the existence of a (�, ψ)-Patterson–Sullivan measure implies that ψ

is (�, θ)-proper and
∑

γ∈� e−ψ(μθ (γ )) = ∞ [16, 20]. Therefore, Theorem 1.1 is a special
case of Theorem 1.4.

The following is added to the proof. The growth indicator ψθ
� is a higher rank version

of the classical critical exponent of � [13, 18]. For a Zariski dense θ -transverse subgroup
and a (�, θ)-proper ψ ∈ a∗

θ , the existence of a (�, ψ)-conformal measure implies that ψ

is bounded from below by ψθ
� ([19, Theorem 8.1] for θ = �, [13, Theorem 1.4] for a gen-

eral θ ). When � is relatively θ -Anosov and ψ is tangent to ψθ
� , the abscissa of convergence

of the series s 
→ ∑
γ∈� e−sψ(μθ (γ )) is equal to 1, and a recent work [3, Theorem 1.1]

shows that
∑

γ∈� e−ψ(μθ (γ )) = ∞. Therefore, Theorem 1.4 also applies in this setting.

2. Ergodic properties of Patterson–Sullivan measures
Let G be a connected semisimple real algebraic group. Let P < G be a minimal parabolic
subgroup with a fixed Langlands decomposition P = MAN , where A is a maximal real
split torus of G, M is a maximal compact subgroup commuting with A, and N is the
unipotent radical of P. We fix a positive Weyl chamber a+ ⊂ a = Lie A so that log N

consists of positive root subspaces. Recall that K < G denotes a maximal compact
subgroup such that the Cartan decomposition G = K(exp a+)K holds and denote by
μ : G → a+ the Cartan projection, that is, μ(g) ∈ a+ is the unique element such that
g ∈ K exp(μ(g))K for g ∈ G. Let w0 ∈ K be an element of the normalizer of A such that
Adw0 a

+ = −a+. The opposition involution i : a → a is defined by

i(u) = − Adw0(u) for u ∈ a. (2.1)

Note that μ(g−1) = i(μ(g)) for all g ∈ G.
Let � denote the set of all simple roots for (g, a+). Fix a non-empty subset θ ⊂ �. Let

P −
θ and P +

θ be a pair of opposite standard parabolic subgroups of G corresponding to θ ;
here, Pθ := P −

θ is chosen to contain P. We set

F−
θ = G/P −

θ and F+
θ = G/P +

θ .

We also write Fθ = F−
θ for simplicity. We set P = P� and F = F�. Since P +

θ is
conjugate to Pi(θ), we have Fi(θ) = F+

θ . We say ξ ∈ Fθ and η ∈ Fi(θ) are in general
position if (ξ , η) ∈ G(P −

θ , P +
θ ) under the diagonal G-action on Fθ × Fi(θ). We write

F (2)
θ = G(P −

θ , P +
θ ),

which is the unique open G-orbit in Fθ × Fi(θ).
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Let aθ = ⋂
α∈�−θ ker α and denote by a∗

θ the space of all linear forms on aθ . We set
pθ : a → aθ as the unique projection invariant under the subgroup of the Weyl group fixing
aθ pointwise. Set μθ := pθ ◦ μ.

The a-valued Busemann map β : F × G × G → a is defined as follows: for ξ ∈ F and
g, h ∈ G,

βξ (g, h) := σ(g−1, ξ) − σ(h−1, ξ),

where σ(g−1, ξ) ∈ a is the unique element such that g−1k ∈ K exp(σ (g−1, ξ))N for any
k ∈ K with ξ = kP . For ξ = kPθ ∈ Fθ for k ∈ K , we define the aθ -valued Busemann
map βθ : Fθ × G × G → aθ as

βθ
ξ (g, h) := pθ(βkP (g, h)) ∈ aθ ; (2.2)

this is well defined [19, §6].
In the rest of this section, let � < G be a Zariski dense θ -transverse subgroup as in

Definition 1.3. For a (�, θ)-proper linear form ψ ∈ a∗
θ , we denote by δψ ∈ (0, ∞] the

abscissa of convergence of the series Pψ(s) := ∑
γ∈� e−sψ(μθ (γ )); this is well defined

[13, Lemma 4.2]. We set

Dθ
� := {ψ ∈ a∗

θ : (�, θ)-proper, δψ = 1, and Pψ(1) = ∞}.
Note that ψ ◦ i can be regarded as a linear form on ai(θ). Using the property that
i(μ(g)) = μ(g−1) for all g ∈ G, we deduce that Pψ = Pψ◦i and hence ψ ∈ Dθ

� if and
only if ψ ◦ i ∈ Di(θ)

� .
The θ -limit set �θ of � is the unique �-minimal subset of Fθ [1]. We also write

�
(2)
θ := {(ξ , η) ∈ F (2)

θ : ξ ∈ �θ , η ∈ �i(θ)}. (2.3)

The following ergodic property of Patterson–Sullivan measures was obtained by Canary,
Zhang, and Zimmer [4] (see also [13, 14]).

THEOREM 2.1. [4, Proposition 9.1, Corollary 11.1] Suppose that θ = i(θ). Let � < G

be a Zariski dense θ -transverse subgroup. For any ψ ∈ Dθ
� , there exists a unique

(�, ψ)-Patterson–Sullivan measure νψ on �θ and νψ is non-atomic. Moreover, the
diagonal �-action on (�

(2)
θ , (νψ × νψ◦i)|�(2)

θ

) is ergodic.

3. A property of convergence group actions
In this section, we prove a certain property of convergence group actions which we
will need in the proof of our main theorem in the next section. We refer to [2] for
basic properties of convergence group actions. Let � be a countable group acting on a
compact metrizable space X (with #X ≥ 3) by homeomorphisms. This action is called
a convergence group action if for any sequence of distinct elements γn ∈ �, there exist
a subsequence γnk

and a, b ∈ X such that as k → ∞, γnk
(x) converges to a for all

x ∈ X − {b}, uniformly on compact subsets. In this case, we say � acts on X as a
convergence group, which we suppose in the following. Any element γ ∈ � of infinite
order fixes precisely one or two points of X, and γ is called parabolic or loxodromic
accordingly. In that case, there exist aγ , bγ ∈ X, fixed by γ , such that γ n|X−{bγ } → aγ

https://doi.org/10.1017/etds.2024.55 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.55


888 D. M. Kim and H. Oh

uniformly on compact subsets as n → ∞. We have γ loxodromic if and only if aγ �= bγ , in
which case aγ and bγ are called the attracting and repelling fixed points of γ , respectively.

We will use the following lemma in the next section.

LEMMA 3.1. Let � be a torsion-free countable group acting on a compact metric space
X as a convergence group. For any compact subset W of X with at least two points, the
subgroup �W = {γ ∈ � : γW = W } acts on X − W properly discontinuously, that is, for
any η ∈ X − W , there exists an open neighborhood U of η such that γU ∩ U �= ∅ for
γ ∈ �W implies γ = e.

Proof. Suppose not. Then there exist η ∈ X − W , a decreasing sequence of open neigh-
borhoods Un of η in X with

⋂
n Un = {η}, and a sequence e �= γn ∈ � such that γnW = W

and γnUn ∩ Un �= ∅ for each n ∈ N. Hence, there exists a sequence ηn ∈ Un ∩ γ −1
n Un; so

ηn → η and γnηn → η as n → ∞.
We claim that the elements γn are all pairwise distinct, possibly after passing to a

subsequence. Otherwise, it would mean that, after passing to a subsequence, γn terms
are a constant sequence, say γn = γ �= e. Since γ η = limn γnηn = η, η must be a fixed
point of γ . Since � is torsion-free, γ is either parabolic or loxodromic, and in particular it
has at most two fixed points in X, including η. Since η �∈ W and W has at least two points,
we can take w ∈ W which is not fixed by γ . Then, as n → +∞, γ nw → η or γ −nw → η.
Since W is a compact subset such that γW = W and η /∈ W , this yields a contradiction.

Therefore, we may assume that {γn} is an infinite sequence of distinct elements. Since
the action of � on X is a convergence group action, there exist a subsequence γnk

and
a, b ∈ X such that as k → ∞, γnk

(x) converges to a for all x ∈ X − {b}, uniformly on
compact subsets. There are two cases to consider. Suppose that b = η. Then W ⊂ X − {b},
and hence γnk

W → a uniformly as k → ∞. Since γnk
W = W and W is a compact subset,

it follows that W = {a}, which contradicts the hypothesis that W consists of at least two
elements. Now suppose that b �= η. Since ηnk

converges to η, we may assume that ηnk
�= b

for all k. Noting that #W ≥ 2, we can take w0 ∈ W − {b}. If we now consider the following
compact subset:

W0 := {ηnk
: k ∈ N} ∪ {η, w0} ⊂ X − {b},

we then have γnk
W0 → a uniformly as k → ∞. Since ηnk

∈ W0 for each k and
γnk

ηnk
→ η as k → ∞, we must have

a = η.

However, since w0 ∈ W0 ∩ W , γnk
w0 → η as k → ∞. This implies η ∈ W since W is

compact and γnk
w0 ∈ W , yielding a contradiction to the hypothesis η /∈ W . This completes

the proof.

We denote by �X the set of all accumulation points of a �-orbit in X. If #�X ≥ 3, the
�-action is called non-elementary and �X is the unique �-minimal subset [2].

A well-known example of a convergence group action is given by a word hyperbolic
group �. Fix a finite symmetric generating subset S� of �. A geodesic ray in � is an
infinite sequence (γi)

∞
i=0 of elements of � such that γ −1

i γi+1 ∈ S� for all i ≥ 0. The
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Gromov boundary ∂� is the set of equivalence classes of geodesic rays, where two rays are
equivalent to each other if and only if their Hausdorff distance is finite. The group � acts
on ∂� by γ · [(γi)] = [(γ γi)]. This action is known to be a convergence group action [2,
Lemma 1.11].

Another important example of a convergence group action is the action of a θ -transverse
subgroup � on �θ∪i(θ).

PROPOSITION 3.2. [10, Theorem 4.21] For a θ -transverse subgroup �, the action of � on
�θ∪i(θ) is a convergence group action.

4. Non-concentration property
We fix a non-empty subset θ ⊂ �. We first prove the following proposition from which we
will deduce Theorem 1.4.

PROPOSITION 4.1. Let � < G be a torsion-free Zariski dense discrete subgroup admitting
a convergence group action on a compact metrizable space X. We assume that this action
is θ -antipodal in the sense that there exist �-equivariant homeomorphisms fθ : �X → �θ

and fi(θ) : �X → �i(θ) such that for any ξ �= η in �X,

(fθ (ξ), fi(θ)(η)) ∈ �
(2)
θ .

Let ν be a �-quasi-invariant measure on �θ such that:
(1) ν is non-atomic;
(2) � acts ergodically on (�

(2)
θ , (ν × νi)|�(2)

θ

) for some �-quasi-invariant measure νi

on �i(θ).
Then, for any proper algebraic subset S of Fθ , we have

ν(S) = 0.

Proof. We first claim that the �-action on (�θ × �i(θ), ν × νi) is ergodic. Set R :=
(�θ × �i(θ)) − �

(2)
θ . Since the �-action on (�

(2)
θ , (ν × νi)|�(2)

θ

) is ergodic, it suffices to
show that

(ν × νi)(R) = 0.

For y ∈ �i(θ), let R(y) := {x ∈ �θ : (x, y) ∈ R}. By the antipodal property of the pair
(fθ , fi(θ)), we have that for each y ∈ �i(θ), we have R(y) = ∅ or R(y) = {(fθ ◦ f −1

i(θ))(y)}
and hence ν(R(y)) = 0 by the non-atomicity of ν.

Therefore,

(ν × νi)(R) =
∫

y∈�i(θ)

ν(R(y)) dνi(y) = 0, (4.1)

proving the claim.
Now suppose that ν(S) > 0 for some proper algebraic subset S ⊂ Fθ . We may assume

that S is irreducible and of minimal dimension among all such algebraic subsets of Fθ . Let
W = f −1

θ (S ∩ �θ) ⊂ �X. Since ν is non-atomic and ν(S) > 0, we have #W = ∞ > 2.
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This implies #�X ≥ 3. By the property of a non-elementary convergence group action, �X

is the unique �-minimal subset of X and there always exists a loxodromic element of � [2].
Since � < G is Zariski dense, �θ is Zariski dense in Fθ as well, and hence �θ �⊂ S.

Therefore, X − W is a non-empty open subset intersecting �X. Since � acts minimally
on �X and the set of attracting fixed points of loxodromic elements of � is a non-empty
�-invariant subset, there exists a loxodromic element γ0 ∈ � whose attracting fixed point
aγ0 is contained in �X − W . Hence, applying Lemma 3.1 to η = aγ0 , we have an open
neighborhood U of aγ0 in �X such that

γU ∩ U = ∅ (4.2)

for all non-trivial γ ∈ � with γW = W .
Since γ m

0 |�X−{bγ0 } → aγ0 uniformly on compact subsets as m → +∞ and #�X ≥ 3,
U contains a point ξ ∈ �X − {aγ0 , bγ0}. By replacing γ0 by a large power γ m

0 if necessary,
we can find an open neighborhood V of ξ contained in U − {aγ0} such that γ0V ⊂ U and
γ0V ∩ V = ∅.

We now consider the subset

S × fi(θ)(V )

of Fθ × Fi(θ). Since ν(S) > 0 and νi(fi(θ)(V )) > 0, we have that �(S × fi(θ)(V )) has
full ν × νi-measure by the ergodicity of the �-action on (�θ × �i(θ), ν × νi). Since
(ν × νi)(S × γ0fi(θ)(V )) > 0, there exists γ ∈ � such that

(ν × νi)((S × γ0fi(θ)(V )) ∩ (γ S × γfi(θ)(V ))) > 0.

In particular, we have

ν(S ∩ γ S) > 0 and νi(γ0fi(θ)(V ) ∩ γfi(θ)(V )) > 0.

Since S was chosen to be of minimal dimension and irreducible among proper algebraic
sets with positive ν-measure, we must have S = γ S. It follows from the �-invariance of
�θ that W = γW .

The �-equivariance of fi(θ) implies that

νi(fi(θ)(γ0V ∩ γV )) > 0. (4.3)

Since γ0V ∩ V = ∅, we have γ �= e. Hence, it follows from V ⊂ U , γ0V ⊂ U , and the
choice in equation (4.2) of U that

γ0V ∩ γV ⊂ U ∩ γU = ∅,

which gives a contradiction to equation (4.3). This finishes the proof.

4.1. Proof of Theorem 1.4. Let � < G be a Zariski dense θ -transverse subgroup and
ν a (�, ψ)-Patterson–Sullivan measure for a (�, θ)-proper linear form ψ ∈ a∗

θ such that∑
γ∈� e−ψ(μθ (γ )) = ∞. We may assume without loss of generality that � is torsion-free.

Indeed, let �0 < � be a torsion-free subgroup of finite index. Then �0 is also a
Zariski dense θ -transverse subgroup of G. Moreover, ν is a (�0, ψ)-Patterson–Sullivan
measure since the limit sets for � and �0 are the same. Write � = ⋃n

i=1 γi�0 for some
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γ1, . . . , γn ∈ �. By [1, Lemma 4.6], there exists C > 0 such that ‖μ(γiγ ) − μ(γ )‖ ≤ C

for all γ ∈ �0 and i = 1, . . . , n. Hence, we have that ψ is (�0, θ)-proper as well and

∞ =
∑
γ∈�

e−ψ(μθ (γ )) =
n∑

i=1

∑
γ∈�0

e−ψ(μθ (γiγ )) ≤ ne‖ψ‖C ∑
γ∈�0

e−ψ(μθ (γ )),

where ‖ψ‖ denotes the operator norm of ψ . In particular,
∑

γ∈�0
e−ψ(μθ (γ )) = ∞.

Therefore, replacing � by �0, we assume that � is torsion-free. By Proposition 3.2, the
action of � on �θ∪i(θ) is a convergence group action.

Since there exists a (�, ψ)-conformal measure, we have δψ ≤ 1 by [13, Lemma 7.3].
Therefore, the hypothesis

∑
γ∈� e−ψ(μθ (γ )) = ∞ implies that ψ ∈ Dθ

� . Moreover, the
θ -antipodality of � implies that the canonical projections

fθ : �θ∪i(θ) → �θ and fi(θ) : �θ∪i(θ) → �i(θ)

are �-equivariant θ -antipodal homeomorphisms [13, Lemma 9.5]. This implies that
Theorem 2.1 indeed holds for a general θ without the hypothesis θ = i(θ). Hence, ν = νψ ,
νψ is non-atomic, and the diagonal �-action on (�

(2)
θ , (νψ × νψ◦i)|�(2)

θ

) is ergodic.
Since νψ◦i is �-conformal, it is �-quasi-invariant. Therefore, Theorem 1.4 follows from
Proposition 4.1.

We emphasize again that Lemma 3.1 and Proposition 4.1 were introduced to deal with
the case when i is non-trivial. Indeed, when i is trivial, Theorem 1.4 follows from the
following θ -version of [5, Theorem 9.3].

THEOREM 4.2. Let � < G be a Zariski dense discrete subgroup. Let ν be a
�-quasi-invariant measure on �θ . Suppose that the diagonal �-action on (�θ × �θ ,
ν × ν) is ergodic. Then, for any proper algebraic subset S of Fθ , we have

ν(S) = 0.

Proof. The proof is identical to the proof of [5, Theorem 9.3] except that we work
with a general θ . We reproduce it here for the convenience of the readers. Let S
be a proper irreducible subvariety of Fθ with ν(S) > 0 and of minimal dimension.
Since (ν × ν)(S × S) > 0, the �-ergodicity of ν × ν implies that (ν × ν)(�(S × S)) = 1.
It follows that for any γ0 ∈ �, there exists γ ∈ � such that (S × γ0S) ∩ (γ S × γ S)

has positive ν × ν-measure; hence, ν(S ∩ γ S) > 0 and ν(γ0S ∩ γ S) > 0. Since S is
irreducible and of minimal dimension, it follows that S = γ S = γ0S. Since γ0 ∈ � was
arbitrary, we have �S = S, which contradicts the Zariski density hypothesis on �.

We finally mention that the proof of Proposition 4.1 implies the following when the
second measure cannot be taken to be the same as the first measure.

THEOREM 4.3. Let � < G be a Zariski dense torsion-free discrete subgroup acting on �θ

as a convergence group. Let ν be a non-atomic �-quasi-invariant measure on �θ . Suppose
that the diagonal �-action on (�θ × �θ , ν × ν′) is ergodic for some �-quasi-invariant
measure ν′ on �θ . Then, for any proper algebraic subset S of Fθ , we have

ν(S) = 0.
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Proof. Since � acts ergodically on the entire product space (�θ × �θ , ν × ν′), the first
part of the proof of Proposition 4.1 is not relevant. Suppose that S is an irreducible
proper subvariety of Fθ and of minimal dimension among all subvarieties with
positive ν-measure. Then, setting W = S ∩ �θ , as in the proof of Proposition 4.1, we
can find non-empty open subsets V ⊂ U ⊂ �θ − W such that γU ∩ U = ∅ for all
non-trivial γ ∈ � with γW = W , and γ0V ⊂ U and γ0V ∩ V = ∅ for some γ0 ∈ �.
Using (ν × ν′)(S × V ) > 0, we then get a contradiction by the same argument as in
Proposition 4.1.
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