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Application of Measure of
Noncompactness to Infinite Systems of
Differential Equations
M. Mursaleen

Abstract. In this paper we determine the Hausdorff measure of noncompactness on the sequence space
n(φ) of W. L. C. Sargent. Further we apply the technique of measures of noncompactness to the theory
of infinite systems of differential equations in the Banach sequence spaces n(φ) and m(φ). Our aim is
to present some existence results for infinite systems of differential equations formulated with the help
of measures of noncompactness.

1 Introduction and Preliminaries

We shall write w for the set of all complex sequences x = (xk)∞k=0. Let ϕ, l∞, c and c0

denote the sets of all finite, bounded, convergent and null sequences respectively; and
cs be the set of all convergent series. We write lp := {x ∈ w :

∑∞
k=0 |xk|p < ∞} for

1 ≤ p < ∞. By e and e(n) (n ∈ N), we denote the sequences such that ek = 1 for
k = 0, 1, . . . , and e(n)

n = 1 and e(n)
k = 0 (k 6= n). For any sequence x = (xk)∞k=0, let

x[n] =
∑n

k=0 xke(k) be its n-section.
A sequence (b(n))∞n=0 in a linear metric space X is called a Schauder basis if for

every x ∈ X, there is a unique sequence (λn)∞n=0 of scalars such that x =
∑∞

n=0 λnb(n).
A sequence space X with a linear topology is called a K-space if each of the maps
pi : X → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space is called an
FK-space if X is complete linear metric space; a BK-space is a normed FK-space. An
FK-space X ⊃ ϕ is said to have AK if every sequence x = (xk)∞k=0 ∈ X has a unique
representation x =

∑∞
k=0 xke(k), that is, x = lim

n→∞
x[n].

The β-duals of a subset X of w is defined by

Xβ =
{

a = (ak) ∈ w :
∞∑

k=0

akxk converges for all x = (xk) ∈ X
}
.

Let (X, ‖ · ‖) be a normed space. Then the unit sphere and closed unit ball in X
are denoted by SX := {x ∈ X : ‖x‖ = 1} and B̄X := {x ∈ X : ‖x‖ ≤ 1}. If X and Y
are Banach spaces, then B(X,Y ) is the set of all bounded linear operators L : X → Y ;
B(X,Y ) is a Banach space with the operator norm given by ‖L‖ = supx∈SX

‖L(x)‖. In
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particular, if Y = C then we write X∗ for the set of all continuous linear functionals
on X with the norm ‖ f ‖ = supx∈SX

| f (x)|.
Let C denote the space whose elements are finite sets of distinct positive integers.

Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} such that cn(σ) =
1 for n ∈ σ; and cn(σ) = 0 otherwise. Further

Cs =
{
σ ∈ C :

∞∑
n=1

cn(σ) ≤ s
}
,

that is, Cs is the set of those σ whose support has cardinality at most s, and define

Φ = {φ = (φk) ∈ w : 0 < φ1 ≤ φn ≤ φn+1 and (n + 1)φn ≥ nφn+1}.

For φ ∈ Φ, the following sequence spaces were introduced by Sargent [14] and
further studied in [8].

m(φ) =
{

x = (xk) ∈ w : ‖x‖m(φ) = sup
s≥1

sup
σ∈Cs

( 1

φs

∑
k∈σ

|xk|
)
<∞

}
,

n(φ) =
{

x = (xk) ∈ w : ‖x‖n(φ) = sup
u∈S(x)

( ∞∑
k=1

|uk|∆φk

)
<∞

}
,

where S(x) denotes the set of all sequences that are rearrangements of x.

Remark 1.1
(i) The spaces m(φ) and n(φ) are BK spaces with their respective norms.

(ii) If φn = 1 for all n ∈ N then m(φ) = l1, n(φ) = l∞; and if φn = n for all n ∈ N
then m(φ) = l∞, n(φ) = l1.

(iii) l1 ⊆ m(φ) ⊆ l∞ [l∞ ⊇ n(φ) ⊇ l1] for all φ of Φ.

(iv)
(

m(φ)
) β

= n(φ) and
(

n(φ)
) β

= m(φ).

Infinite systems of ordinary differential equations describe numerous real world
problems that can be encountered in the theory of branching processes, the theory
of neural nets, the theory of dissociation of polymers and so on (cf. [3], [4], [6],
[18]). Let us also mention that several problems investigated in mechanics lead to
infinite systems of differential equations [12], [13], [19]. Moreover, infinite systems
of differential equations can also be used in solving some problems for parabolic
differential equations investigated via semidiscretization [15], [16], [17].

Recently the theory of measures of noncompactness has been used in determining
the compact operators of matrices on various BK spaces, e.g., [7], [10], [11].

In this paper we apply the technique of measures of noncompactness to the theory
of infinite systems of differential equations in some Banach sequence spaces. Our
aim is to present some existence results for infinite systems of differential equations
formulated with the help of measures of noncompactness. The results of this paper
extend those of obtained by Banaś and Lecko [2] and we determine the sufficient
conditions for the solvability of infinite systems of differential equations in BK space
n(φ) analogous to those of Banaś and Lecko who considered the classical Banach
sequence spaces c0, c and l1.
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2 Measures of Noncompactness

We recall a few definitions and notations (cf. [1], [5]).
Let (X, d) be a metric space. We denote by MX the class of all bounded subsets

of X. If M and S are subsets of a metric space (X, d) and ε > 0, then the set S is
called an ε-net of M if for any x ∈ M there exists an s ∈ S such that d(x, s) < ε; an
ε-net S is said to be finite if S is a finite set. The set M is said to be totally bounded
if it has a finite ε-net. It is well known that a subset M of a metric space is compact
if every sequence (xn) in M has a convergent subsequence, and in this case the limit
of this subsequence is in M. A linear operator L from X into Y is said to be compact
or completely continuous if its domain is all of X and the sequence

(
L(xn)

)
of images

of any bounded sequence (xn) in X has a convergent subsequence. If X and Y are
Banach spaces, we denote by C(X,Y ) the subset of all compact operators in B(X,Y ).

Now we give the definition of the Hausdorff measure of noncompactness.

Definition 2.1 Let (X, d) be a metric space and

B(x, r) := {y ∈ X : d(x, y) < r}

denote the open ball of radius r > 0 with centre x. The Hausdorff measure of non-
compactness is the function χ : MX → R and χ(Q) is the Hausdorff measure of non-
compactness of the set Q ∈MX , where

χ(Q) := inf
{
ε > 0 : Q ⊂

n⋃
i=1

B(xi , ri), xi ∈ X, ri < ε (i = 1, 2, . . . ), n ∈ N0

}
.

Definition 2.2 Let X and Y be Banach spaces and χ1 and χ2 be the Hausdorff
measures of noncompactness on X and Y , respectively. An operator L : X → Y is
said to be (χ1, χ2)-bounded if L(Q) ∈ MY for all Q ∈ MX and there exist a constant
C ≥ 0 such that χ2

(
L(Q)

)
≤ Cχ1(Q) for all Q ∈ MX . If an operator L is (χ1, χ2)-

bounded then the number ‖L‖(χ1,χ2) := inf
{

C ≥ 0 : χ2

(
L(Q)

)
≤ Cχ1(Q) for all

Q ∈ MX

}
is called the (χ1, χ2)-measure of noncompactness of L. If χ1 = χ2 = χ,

then we write ‖L‖(χ1,χ2) = ‖L‖χ.

If X is a normed linear space and a = (ak) ∈ w, we write

‖a‖∗ = ‖a‖∗X = sup
x∈SX

∣∣∣ ∞∑
k=1

akxk

∣∣∣ .
We have the following result.

Lemma 2.3 Let Q be a bounded subset of the normed space X, where X is lp (1 ≤ p <
∞) or c0. If Pn : X → X is the operator defined by Pn(x) = (x0, x1, . . . , xn, 0, 0, . . . ),
then

χ(Q) = lim
n→∞

(sup
x∈Q
‖(I − Pn)x‖).
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In this section, we determine the Hausdorff measure of noncompactness on n(φ),
while for m(φ), it was given in [9].

Theorem 2.4 Let Q be a bounded subset of n(φ). Then

(2.1) χ(Q) = lim
k→∞

sup
x∈Q

(
sup

u∈S(x)

( ∞∑
n=k

|un|∆φn

))

Proof Define the operator Pk : n(φ)→ n(φ) by Pk(x) = (x1, x2, . . . , xk, 0, 0, . . . ) for
x = (x1, x2, . . . ) ∈ n(φ). Then clearly

(2.2) Q ⊂ PkQ + (I − Pk)Q.

It follows from (2.2) and the properties of χ that

χ(Q) ≤ χ(PkQ) + χ
(

(I − Pk)Q
)

= χ
(

(I − Pk)Q
)

≤ diam
(

(I − Pk)Q
)

= sup
x∈Q
‖(I − Pk)x‖,

(2.3)

where for a subset A of a metric space (X, d), diam(A) = sup{d(x, y) : x, y ∈ A},
and

‖(I − Pk)x‖ = sup
u∈S(x)

( ∞∑
n=k

‖un‖∆φn

)
.

So we have

(2.4) χ(Q) ≤ lim
k→∞

sup
x∈Q
‖(I − Pk)x‖.

Conversely, let ε > 0 and {z1, z2, . . . , z j} be a [χ(Q) + ε]-net of Q. Then

(2.5) Q ⊂ {z1, z2, . . . , z j} + [χ(Q) + ε]Bn(φ)(0, 1).

Hence

sup
x∈Q
‖(I − Pk)x‖ ≤ sup

1≤i≤ j
‖(I − Pk)zi‖ + [χ(Q) + ε],

which implies that

(2.6) lim
k→∞

sup
x∈Q
‖(I − Pk)x‖ ≤ χ(Q) + ε.

Since ε was arbitrary, (2.4) and (2.6) together imply (2.1).
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3 Infinite Systems of Differential Equations

Consider the ordinary differential equation

(3.1) x ′ = f (t, x)

with the initial condition

(3.2) x(0) = x0

Then the following result for the existence of the Cauchy problem (3.1)–(3.2) was
given in [2] and is a slight modification of the result proved in [1].

Assume that E is a real Banach space with the norm ‖ · ‖. Denote by B(x0, r) the
closed ball in E centered at x0 and with radius r.

Theorem A ([2]) Assume that f (t, x) is a function defined on I × E with values in E
such that

‖ f (t, x)‖ ≤ P + Q‖x‖,

for any x ∈ E, where P and Q are nonnegative constants. Further, let f be uniformly
continuous on the set I1 × B(x0, r), where I1 = [0,T1] ⊂ I, QT1 < 1 and r =
(PT1 +QT1‖x0‖)/(1−QT1). Moreover, assume that for any nonempty set X ⊂ B(x0, r)
and for almost all t ∈ I, the following inequality holds:

(3.3) µ
(

f (t,X)
)
≤ p(t)µ(X),

with a sublinear measure of noncompactness µ such that {x0} ∈ kerµ. Then problem
(3.1)–(3.2) has a solution x such that {x(t)} ∈ kerµ for t ∈ I1; where p(t) is an
integrable function on I.

In this section we study of the solvability of the infinite systems of differential
equations in the Banach sequence space n(φ). We will be interested in the existence
of solutions x(t) =

(
xi(t)

)
of the infinite systems of differential equations

(3.4) x ′i = fi(t, x1, x2, . . . ),

with the initial condition

(3.5) xi(0) = x0, (i = 1, 2, . . . ),

which are defined on the interval I = [0,T] and such that x(t) ∈ n(φ) for each t ∈ I.
An existence theorem for problem (3.4)–(3.5) in the space n(φ) can be formulated

by making the following assumptions:
(1) x0 = (x0

i ) ∈ n(φ);
(2) fi : I × R∞ → R (i = 1, 2, . . . ) maps continuously the set I × n(φ) into n(φ);
(3) there exist nonnegative functions pi(t) and qi(t) defined on I such that

‖ fi(t, u)‖ = ‖ fi(t, u1, u2, . . . )‖ ≤ pi(t) + qi(t)|ui |

for t ∈ I; x = (xi) ∈ n(φ) and i = 1, 2, . . . ; where u = (ui) is a sequence of
rearrangement of x = (xi);

https://doi.org/10.4153/CMB-2011-170-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-170-7


Infinite Systems of Differential Equations 393

(4) the functions pi(t) are continuous on I and the function series
∑∞

i=1 pi(t)∆φi

converges uniformly on I;
(5) the sequence

(
qi(t)

)
is equibounded on the interval I and the function q(t) =

lim supi→∞ qi(t) is integrable on I.
Now, we prove the following result.

Theorem 3.1 Under the assumptions (1)–(5), problem (3.4)–(3.5) has a solution
x(t) =

(
xi(t)

)
defined on the interval I = [0,T] whenever QT < 1, where Q is

defined as the number

Q = sup{qi(t) : t ∈ I, i = 1, 2, . . . }.

Moreover, x(t) ∈ n(φ) for any t ∈ I.

Proof For any x(t) ∈ n(φ) and t ∈ I, under the above assumptions, we have

‖ f (t, x)‖n(φ) = sup
u∈S(x)

∞∑
i=1

‖ fi(t, u)‖∆φi

≤ sup
u∈S(x)

∞∑
i=1

[pi(t) + qi(t)|ui |]∆φi

≤
∞∑
i=1

pi(t)∆φi +
(

sup
i

qi(t)
)(

sup
u∈S(x)

∞∑
i=1

|ui |∆φi

)
≤ P + Q‖x‖n(φ),

where P = supt∈I

∑∞
i=1 pi(t)∆φi .

Now choose the number r defined according to Theorem A, i.e.,

r =
PT + QT‖x0‖n(φ)

1− QT
.

Consider the operator f = ( fi) on the set I × B(x0; r). Let us take a set X ∈ Mn(φ).
Then by using (2.1), we get

χ
(

f (t,X)
)

= lim
k→∞

sup
x∈X

(
sup

u∈S(x)

( ∞∑
n=k

| fn(t, u1, u2, . . . )|∆φn

))

≤ lim
k→∞

( ∞∑
n=k

pn(t)∆φn +
(

sup
n≥k

qn(t)
)(

sup
u∈S(x)

∞∑
n=k

|un|∆φn

))
.

Hence by assumptions (4)–(5), we get

χ
(

f (t,X)
)
≤ q(t)χ(X),

i.e., the operator f satisfies condition (3.3) of Theorem A. Hence the problem (3.4)–
(3.5) has a solution x(t) =

(
xi(t)

)
.

Remark 3.2 Accordingly, we can reformulate assumptions (1)–(5) to prove the
result for the space m(φ) analogous to Theorem 3.1.
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