A multi-scale environmental niche model for the
Endangered dhole Cuon alpinus
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Abstract The dhole Cuon alpinus is a large canid that is
categorized as Endangered on the IUCN Red List and
at risk of global extinction. Information on the spatial
distribution of suitable habitat is important for conserva-
tion planning but is largely unavailable. We quantified the
spatial distribution of potential range as well as the relative
probability of dhole occurrence across large parts of the
species’ global range. We used the MaxEnt algorithm to
produce a multi-scale environmental niche model based on
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24 environmental variables and dhole occurrence data from
12 countries. We identified three regions where dhole
conservation should be focused: western India, central
India, and across the Himalayan foothills through
Southeast Asia. Connectivity between suitable areas was
poor, so coordinated action among these regions should be
a priority. For instance, transboundary dhole conservation
initiatives across the Himalayas from southern China,
Myanmar, north-east India, Nepal and Bhutan need to be

“Natural History Museum of Denmark, University of Copenhagen,
Copenhagen, Denmark

»Natural History Museum and Botanical Garden, University of Agder,
Gimleveien, Kristiansand, Norway

ZCenter for Species Survival, Smithsonian National Zoo & Conservation
Biology Institute, Front Royal, Virginia, USA

2National Trust for Nature Conservation, Lalitpur, Nepal

2School of Life Sciences, Institute of Ecology, Peking University, Beijing, China

2Ministry of Environment and Forestry, Jakarta, Indonesia

®Jigme Dorji National Park, Department of Forests and Park Services, Damji,
Bhutan

%Conservation Ecology Program, King Mongkut’s University of Technology,
Bangkok, Thailand

wildlife Ecology and Management Laboratory, Faculty of Forestry,
Universitas Gadjah Mada, Indonesia, Yogyakarta, Indonesia

2Department of Entomology and Wildlife Ecology, University of Delaware,
Newark, Delaware, USA

P Creative Conservation Alliance, Dhaka, Bangladesh

WWF-Laos, Vientiane, Lao People’s Democratic Republic

3IRéserve Zoologique de la Haute-Touche, Azay-le-Ferron, France

3WWF Thailand, Bangkok, Thailand

$Fauna & Flora, Cambridge, UK

3#The Zoological Park Organization of Thailand, Bureau of Conservation and
Research, Bangkok, Thailand

3TUCN Species Survival Commission Conservation Planning Specialist Group

3%Biodiversity Society, Banyumas, Indonesia

3"Department of Zoology, Stockholm University, Stockholm, Sweden

3Department of Zoology and Entomology, Mammal Research Institute,
University of Pretoria, Pretoria, South Africa

Received 10 July 2024. Accepted 7 October 2024.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https:/creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use,

distribution and reproduction, provided the original article is properly cited.
age 1 of 13 © The Author(s

Oryx, F ? 2025. Published by Cambridge University Press on behalf of Fauna & Flora International
https://doi.org/10.1017750030605324001510 Published online by Cambridge University Press

doi:10.1017/50030605324001510


https://orcid.org/0000-0002-3870-5263
https://orcid.org/0009-0005-6954-4385
https://orcid.org/0000-0003-3388-1273
https://orcid.org/0000-0001-8649-036X
https://orcid.org/0009-0009-5027-613X
https://orcid.org/0000-0002-7870-8696
https://orcid.org/0000-0001-5518-0852
https://orcid.org/0000-0002-9930-4383
https://orcid.org/0000-0003-3229-5352
https://orcid.org/0000-0003-0040-6214
https://orcid.org/0000-0003-2994-2942
https://orcid.org/0000-0002-9334-2303
https://orcid.org/0000-0002-7457-7326
https://orcid.org/0000-0003-4800-2278
https://orcid.org/0000-0003-4148-2088
https://orcid.org/0000-0002-4000-8301
https://orcid.org/0000-0001-7200-9539
https://orcid.org/0000-0003-0607-9373
https://orcid.org/0000-0003-0594-1128
https://orcid.org/0000-0002-2008-4809
https://orcid.org/0000-0001-9684-3982
https://orcid.org/0009-0002-7630-5671
https://orcid.org/0000-0001-6261-8189
https://orcid.org/0000-0003-2800-1163
https://orcid.org/0000-0001-6860-8715
https://orcid.org/0000-0003-4787-8526
https://orcid.org/0000-0002-5062-8010
https://orcid.org/0000-0002-3816-6706
https://orcid.org/0000-0001-9737-8242
mailto:monsoon.khatiwada@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0030605324001510
https://doi.org/10.1017/S0030605324001510

M. P. Khatiwada et al.

initiated. We also highlight the value of improving dhole
population viability on unprotected land and increasing
monitoring in the northern parts of its historic distribution,
in particular in areas within mainland China.

Keywords Canidae, Cuon alpinus, dhole, environmental
niche model, human-wildlife conflict, large carnivores,
maximum entropy, spatial conservation planning
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Introduction

he dhole or Asiatic wild dog Cuon alpinus is a large

(10-20 kg), wide-ranging carnivore facing global
extinction. In the past, dholes occurred in large areas of
alpine, temperate, tropical and subtropical forests across
most of Asia (Kamler et al.,, 2015) but they are now confined
to just 25% of their historical range, mostly within protected
areas (Wolf & Ripple, 2017). Existing populations are small,
isolated, and often exhibit severe local population fluctua-
tions (Kamler et al., 2015; Li et al., 2020). The current global
population is estimated to be 1,000-2,200 adults, with
further population declines projected as a result of
continuing habitat loss and fragmentation, persecution,
prey depletion, interspecific competition and disease
(Davidar & Fox, 1975; Gopi et al., 2012; Kamler et al,
2015; Srivathsa et al., 2019). These threats are expected to
increase in severity with human population growth, and
concrete conservation action is needed to protect the
species from global extinction (Tananantayot et al., 2022).

Large carnivores such as dholes are ecologically
important and often act as umbrella and flagship species
for conservation (Gittleman et al., 2001; Dalerum et al,,
2008; Thinley et al., 2021). However, their carnivorous diet
and need for large areas of suitable habitat frequently bring
them into conflict with people (Woodroffe, 2000; Madden,
2004; Chapron et al, 2014). Although coexistence is
possible, legal and illegal persecution sometimes happens,
with associated cultural and socio-economic repercussions
(Woodroffe, 2000; Treves & Karanth, 2003; van Eeden
et al., 2018; Dalerum, 2021).

Carnivore conservation is a complex and resource-
intensive issue where competing factors have to be
prioritized (Macdonald & Sillero-Zubiri, 2004; Madden,
2004; Leader-Williams et al., 2010). Spatial prioritization
should be based on a comprehensive knowledge of the
current and potential distribution of the species of
conservation concern (e.g. Eriksson & Dalerum, 2018).
Environmental niche models are particularly useful tools
that use ecological information to link occurrence and
environmental data to understand and predict species

distributions (Elith & Franklin, 2013; Zhu et al., 2013).
They are used widely in ecology, evolutionary biology
and environmental management to investigate a broad
range of issues including biological invasions, the effects
of climate change and spatial disease transmission (Zhu
et al., 2013).

The MaxEnt algorithm is a robust method of predicting
the potential geographic distribution of a species (Phillips
et al., 2006, 2017). It relies on maximum entropy to relate
species occurrence data to a set of environmental predictors
(Elith et al., 2006), and belongs to a class of environmental
niche models that require occurrence data only (Elith et al.,
2011). Therefore, inherent issues with logistic models based
on uncertain pseudo-absences are largely removed (Ward
et al, 2009). Despite the rapid development of new
algorithms for occurrence-only models, the MaxEnt
algorithm is still among the best performing in terms of
predictive accuracy, and its output is closely correlated with
empirical data (Valavi et al, 2021). Furthermore, it
maintains high accuracy even with a relatively low number
of occurrence records (Wisz et al., 2008). However, as with
other machine learning algorithms (Scowen et al., 2021), it
tends to favour a level of complexity that renders it less
useful for a mechanistic understanding of how specific
environmental characteristics influence the potential for
certain areas to be suitable habitat for the target species
(many published MaxEnt models have well over 100
parameters).

We applied the MaxEnt algorithm to dhole occur-
rence data to create a map of potential range and to
estimate the relative suitability of these areas (Kao et al,,
2020). We used a coarse-scale model to delineate the
potential range and a finer-scale model to evaluate the
relative probability of dhole occurrence within these
areas. Previous distribution models on dholes are limited
to regional or local scales (Nurvianto et al., 2015; Thinley
et al., 2021; Havmeller et al., 2022; Tananantayot et al,,
2022). Our objective was to aid spatial planning and
prioritization for dhole conservation across large parts of
the global range, including areas not currently occupied
(Guillera-Arroita et al., 2015). Specifically, we aimed to
(1) identify the spatial distribution of potential dhole
range in 12 countries within the species’ known range and
(2) quantify spatial variation in its relative probability of
occurrence. This information is a prerequisite for
effective dhole conservation management planning.

Study area

We included 12 countries in our study, which we grouped
into three subcontinents based on McColl (2005): China
(including the mainland of the People’s Republic of China,
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hereafter referred to as ‘mainland China’), the Indian
subcontinent (including Nepal, Bhutan, Bangladesh and
India), and Southeast Asia (including Myanmar,
Lao People’s Democratic Republic (Lao PDR), Viet Nam,
Thailand, Cambodia, Malaysia and Indonesia). Detailed
descriptions of the environmental and socio-economic
characteristics of these regions are available in Supple-
mentary Material 1.

Methods

Environmental variables and spatial scale

We selected 24 environmental variables known to influence
the distribution of large, wide-ranging carnivores (e.g.
Swanepoel et al., 2013; Eriksson & Dalerum, 2018), many of
which have previously been used to model dhole distribution
over local and regional scales (Nurvianto et al., 2015; Thinley
et al,, 2021; Havmeoller et al., 2022; Tananantayot et al., 2022).
They are associated with climate, ecology, geophysical factors
and human impact. Of these, we retained 20 uncorrelated
variables (R < 0.8) for the coarse-scale model and 19 for the
fine-scale model (Table 1).

Species distribution models, including ones fitted
using the MaxEnt algorithm, are sensitive to grain sizes,
i.e. the spatial scale at which environmental character-
istics are linked to species observations (Gottschalk et al.,
2011; Song et al., 2013). We defined both coarse- and fine-
scale grain sizes based on biologically meaningful
information (Zarzo-Arias et al., 2019). We set the
coarse-scale grain size to 8 x 8 km (64 km?), which
approximates to the mean home range size reported for
dholes (53.4 km?* Acharya et al., 2010; Jenks et al., 2012;
Srivathsa et al., 2017). We set the fine-scale grain size to
2 x 2 km (4 km?), which corresponds to the estimated
daily movement of dholes (2.2 km; Grassman et al., 2005)
and similar species such as the Eurasian wolf Canis lupus
lupus (2.5 km; Kusak et al., 2005). We specified the
coarse-scale model area as the entire study region, but
excluded grid cells that were largely aquatic (i.e. where
land comprised less than 50% of the area). We also
excluded all islands smaller than 25,000 km? because we
regarded these areas as too small to hold viable dhole
populations. Such small islands could act as demographic
sinks and would thus not be relevant from a conservation
perspective. The final coarse-scale model contained
240,970 cells of 8 x 8 km. We specified the fine-scale
model area as those cells identified as potential dhole
range in the coarse-scale model, resulting in 390,976 cells
of 2 x 2 km. We rescaled all environmental variables to
the two grain sizes using QGIS 3.26 (QGIS Development
Team, 2023) and functions provided by raster 3.5-15

An environmental niche model for the dhole

(Hijmans, 2022) for the statistical environment R 4.2.1 (R
Core Team, 2023).

Dhole occurrence data and spatial filtering

We compiled a dataset of 1,604 geographical locations of
dholes observed during 1996-2018 (Supplementary Material 2;
Supplementary Table 2; Supplementary Fig. 1a). Data were
provided by participants in a workshop co-organized by the
dhole working group of the IUCN Species Survival
Commission (SSC) Canid Specialist Group, the IUCN SSC
Conservation Planning Specialist Group, Smithsonian
Conservation Biology Institute, Kasetsart University and the
Khao Yai National Park in Thailand in 2019 (Kao et al., 2020).

Spatial filtering is a powerful method of reducing
sampling bias to improve the performance of environmen-
tal niche models (Boria et al., 2014). We filtered our raw
occurrence data in two stages for each spatial scale, using an
algorithm based on finding the maximum number of
observations while respecting a minimum nearest-
neighbour distance, implemented in R spThin o.2.0
(Aiello-Lammens et al., 2015). Firstly, we restricted the
dataset to one observation per cell, which reduced the
number of dhole observations from 1,604 to 567 cells for the
coarse-scale model and to 1,011 cells for the fine-scale
model. Secondly, we only included one record per 3 x 3 cell
neighbourhood at the coarse scale and one record per 6 x 6
cell neighbourhood at the fine scale (i.e. if there were
multiple records in such a neighbourhood, they were re-
presented as a single data point in the centre of that neigh-
bourhood). Therefore, the minimum nearest-neighbour
distance was 12 km. The final dataset comprised 299 cells at
the coarse scale (Supplementary Fig. 1b) and 291 cells at the
fine scale (Supplementary Fig. 1c).

Environmental niche modelling

We ran the Java version of MaxEnt 3.4.4 (Phillips et al.,
2017), implemented in R using the packages dismo 1.3-3
(Hijmans et al., 2021) and ENMeval v2.0.3 (Kass et al., 2021).
MaxEnt implements a maximum entropy approach to the
presence-only class of environmental niche models by
associating species occurrence with environmental charac-
teristics using linear, quadratic, product, threshold and
hinge features (Phillips et al., 2006). This parameterization
allows for the modelling of potentially complex relation-
ships among environmental characteristics (Elith et al.,
2o11). Although machine learning algorithms such as
MaxEnt generally favour more complex model solutions
than likelihood-based algorithms, over-fitting can still be
problematic (Warren & Seifert, 2011). The MaxEnt software
controls for over-fitting by using a regularization parameter
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TasLE 1. Environmental layers used to model range suitability for the dhole Cuon alpinus, as well as whether or not each variable was included in a coarse- (8 x 8 km) and a fine-scale (2 x 2 km)

MaxEnt model. Only variables with a correlation of 0.8 or less with any other variable were included in each model.

Coarse  Fine
Variables Description Units Resolution Source scale scale
Climate
Annual mean temperature (B01) Annual daily mean air temperatures averaged over 1 °C 30 arc sec Karger et al. (2021) Yes Yes
year
Temperature seasonality (B04) Standard deviation of the monthly mean temperatures °C 30 arc sec Karger et al. (2021) Yes Yes
Maximum temperature of warmest month (B05) Highest daily mean temperature of any month °C 30 arc sec Karger et al. (2021) No No
Minimum temperature of coldest month (B06) Lowest daily mean temperature of any month °C 30 arc sec Karger et al. (2021) Yes No
Annual Precipitation (B12) Accumulated precipitation amount over 1 year mm 30 arc sec Karger et al. (2021) Yes Yes
Precipitation seasonality (B15) Monthly precipitation expressed as % of the annual % 30 arc sec Karger et al. (2021) Yes Yes
mean
Precipitation of wettest month (B13) Precipitation of the wettest month mm 30 arc sec Karger et al. (2021) Yes Yes
Precipitation of driest month (B14) Precipitation of the driest month mm 30 arc sec Karger et al. (2021) Yes Yes
Isothermality (B03) Ratio of diurnal to annual variation in temperatures NA 30 arc sec Karger et al. (2021) No No
Ecology
Biome Areas with similar habitat conditions Categorical Vector Olson et al. (2001) Yes Yes
Land cover Discrete land cover classed using both supervised & Categorical® 300 m Arino et al. (2012) Yes Yes
unsupervised algorithms
Tree cover Canopy closure for all vegetation taller than 5 m % 1 arc sec  Hansen et al. (2013) Yes Yes
Normalized difference vegetation index (NDVT) An index of primary productivity Continuous, 250 m Jenkerson et al. (2010) Yes Yes
no unit
Geophysical characteristics
Elevation Obtained from global multiscale terrain elevation data ~ m 30 arc sec Danielson & Gesch Yes No
(2011)
Aspect Aspect calculated from 225 m resolution digital elevation Northness 7.5 arc sec Danielson & Gesch Yes Yes
model (DEM) (-1to 1) (2011)
Slope Slope calculated from 225 m resolution DEM ° (degrees) 7.5 arc sec Danielson & Gesch No No
(2011)
Terrain ruggedness Terrain ruggedness calculated from 225 m resolution Continuous, 7.5 arc sec Danielson & Gesch Yes Yes
DEM no unit (2011)
Soil Global soil categorization Categorical® Vector FAO (2015) Yes Yes
Human impact
Large livestock Density of horses, cattle, buffaloes Animals/km? 5 arc sec  Gilbert et al. (2018) Yes Yes
Medium-sized livestock Density of goats, pigs, sheep Animals/km? 5 arc sec  Gilbert et al. (2018) Yes Yes
Domestic fowl Density of ducks, geese, chickens Animals/km? 5 arc sec  Gilbert et al. (2018) Yes Yes
Human footprint Index of the human pressure on the environment Continuous, 30 arc sec  Gilbert et al. (2018) Yes Yes
no unit
Human population density Density of the human population resident in the area Persons/km®* 30 arc sec CIESIN (2016) Yes Yes
Land protection status Land protection status Categorical* Vector UNEP-WCMC & Yes Yes

TUCN (2022)

'Biomes: tropical & subtropical moist broadleaf forests; tropical & subtropical dry broadleaf forests; temperate broadleaf & mixed forests; tropical & subtropical coniferous forests; temperate conifer forests; boreal
forests/taiga; tropical & subtropical grasslands, savannahs and shrublands; temperate grasslands, savannahs and shrublands; flooded grasslands & savannahs; montane grasslands & shrublands; deserts & xeric shrublands;

mangroves & snow.

*Land-cover classes: cultivated terrestrial areas and managed lands; woody trees; herbs; shrubs; natural and semi-natural aquatic vegetation; artificial surfaces; bare areas.

3Soil categories: soils with clay-enriched subsoils; soils with little or no profile differentiation, pronounced accumulation of organic matter in the mineral top soil; soils distinguished by Fe/Al chemistry; soils with thick

organic layers; soils with limitations to root growth; soils formed from the arid climate; shallow soils rich in humus formed from carbonates; soils with depth surface.

“Protected area classes: protected; not protected.
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that penalizes variables with low contribution to the model.
As a MaxEnt model with any given data can have a large
number of alternative parameterizations and regularization
values, identification of the most parsimonious model and
appropriate model tuning is important (Merow et al., 2013).
We created a set of 310 models including combinations of
all five types of feature (ie. linear, quadratic, product,
threshold and hinge features), each sequentially run over a set
of regularization multipliers ranging from o.1 to 10 for each
spatial scale. We then identified the most parsimonious
combination of feature types and regularization values using
the Akaike information criterion corrected for small sample
sizes (AICc; Akaike, 1974). We calculated the AICc values
from raw model output where the sums of the log transformed
raw values were treated as equivalent to model likelihood
(Warren & Seifert, 2011). Following Burnham & Anderson
(2002), we regarded models within two AICc units of each
other as having equivalent empirical support. We evaluated
model performance using the value of the area under the
receiver operating characteristic curve (AUC; Fielding & Bell,
1997) as well as three model performance metrics based on
cross-validation using a checkerboard method to separate our
occurrence data into training and testing sets (Kass et al,
2021): AUC, which describes the ability of testing locations
to distinguish between background and presence locations,
AUC4 which describes the difference in the ability to
distinguish between presence and background locations
between training and test data (Warren & Seifert, 2011),
and ORyp, which is the proportion of test locations with a
value below the lowest value of training locations (minimum
training presence omission rate; Kass et al,, 2021). AUC values
from 0.7 to 1.0 generally suggest that the model has adequate
predictive ability (Aradjo et al.,, 2005), whereas AUCg;s and
ORyrp values substantially above zero indicate over-fitting,

Binary classification of potential range

We used the complementary log-log (cloglog) transformation
of the raw MaxEnt values, which is bounded between o and 1,
as the basis for summarizing the results (Phillips et al., 2017).
To outline the potential dhole range, we converted the cloglog
output from the coarse-scale model into a binary layer using
the minimum cloglog score of any cell with dhole presence,
after the presence cells with the lowest 10% of cloglog scores
had been omitted. This corresponded to a cloglog score of 0.24
and we classified cells at or above this threshold as potential
dhole range. The outline of these areas was used as the model
region for the fine-scale modelling. We evaluated the relative
probability of dhole occurrence as equivalent to the cloglog
values derived from the fine-scale model (Phillips et al., 2017).

An environmental niche model for the dhole

Estimation of variable contributions

We used three methods to evaluate the relative contribution
of each environmental variable to the model at each spatial
scale. Firstly, we used a heuristic method that estimates the
percentage contribution of each variable to the MaxEnt
solution as the proportional contribution to the model
training gain for every iteration of the model-fitting
process (Phillips et al., 2006). Secondly, we calculated the
regularized training gain for each variable when used by
itself, indicating how useful each variable was for the
model solution. Thirdly, we used a jackknife procedure to
evaluate how much regularized training gain was lost
when each variable was omitted compared to when all
variables were included in the model, indicating how
much unique information was contributed by each
variable.

Results

Model selection and model performance

The optimal coarse-scale model included linear, product
and threshold features introduced through 97 parameters,
and the optimal fine-scale model included linear and
threshold features introduced through 87 parameters. Both
models had a regularization multiplier of 1.5. The models
were 13.49 (coarse-scale) and 5.16 (fine-scale) AICc units
above the model with the second lowest AICc scores
(Supplementary Table 2). Models at both scales showed
high predictive accuracy, with AUC scores of 0.96 for the
coarse-scale model (Supplementary Fig. 2a) and 0.82 for the
fine-scale model (Supplementary Fig. 2b), and high mean
AUC values based on the withheld testing data (coarse-scale
model: AUC, = 0.93; fine-scale model: AUC; = 0.75).
There were no indications of over-fitting for either model
(low differences between the training and testing data sets in
respective AUC scores; coarse-scale model: AUCgy;¢ = 0.03;
fine-scale model: AUCgg = 0.07), as well as minimum
training presence omission rates close to zero for both
models (ORyrp = 0.03 for both the coarse- and the
fine-scale model; Supplementary Table 2).

Distribution of potential dhole range and relative
probability of dhole occurrence

We identified potential dhole range in three regions: along the
west coast of India, in central east India, and across the
foothills of the Himalaya and continuing south through
Southeast Asia (Fig. 1). The largest area was in Southeast Asia
(56% of the total potential dhole range identified) with a
further 33% in India (Fig. 2a). We identified 80% of Bhutan as
potential dhole range, the highest proportion of any country,
and > 30% of land as potential dhole range in all countries in
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range across the study area from a binary
classification of the output from a
MaxEnt model with 8 x 8 km resolution,
and the relative probability of occurrence
as the complementary log-log
transformation of the output from a

Southeast Asia (Fig. 2b). The highest mean relative probability
of dhole occurrence was in Bhutan, Thailand, Cambodia and
Malaysia (Fig. 2c), and the relative probability of dhole occur-
rence was on average higher in Southeast Asia
(038+SDo.24) than on the Indian subcontinent
(0.36 = SD 0.23) or in mainland China (0.36 + SD 0.17).

Contributions made by environmental variables

Land protection status (coarse-scale 37%; fine-scale 59%) and
temperature seasonality (coarse-scale 26%; fine-scale 13%)
contributed most to the models at both spatial scales, with land
protection status contributing substantially more to the fine-
scale model (Fig. 3). Land protection was positively associated
with dhole range suitability for both models (Supplementary
Figs 3 & 4), whereas temperature seasonality showed a non-
monotonic relationship with dhole range suitability in the
coarse-scale model (Supplementary Fig. 3) and a bimodal
relationship in the fine-scale model (Supplementary Fig. 4).
Other important variables were tree cover (12%), elevation
(6%), density of medium-sized livestock (4%) and annual mean
temperature (3%) for the coarse-scale model (Fig. 3a), and
human population density (5%), annual precipitation (5%),
precipitation of the wettest month (3%) and tree cover (3%) for
the fine-scale model (Fig. 4). Overall, land protection status
was the most informative variable individually and carried
the most unique information when combined with all other

MaxEnt model with 2 x 2 km resolution.

variables (Fig. 4a,b). Temperature seasonality and tree
cover were important individually and contributed high
levels of unique information to the coarse-scale model and,
likewise, temperature seasonality, annual precipitation and
livestock density contributed to the fine-scale model.
Marginal response curves showing how the predicted
probability of dhole presence changes as each environ-
mental parameter is varied while keeping all other
predictors constant are provided in Supplementary Figs 3
and 4.

Discussion

Most areas identified as potential dhole range were located
in three major regions; one along the west coast of India, a
second in central India, and a third across the foothills of
the Himalayas and continuing through Southeast Asia.
These regions largely coincide with those identified in earlier
studies (Thinley et al,, 2021; Tananantayot et al, 2022).
However, these three regions are not directly connected, and
dhole habitat is heavily fragmented particularly in the central
Indian and the eastern regions. Hence, it is important to
identify and secure dispersal corridors between areas of
potential dhole habitat (Rodrigues et al, 2022). As
environmental problems increase and financial resources
to address them are limited, robust and evidence-based
approaches are required to determine priorities for
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FIG. 2 Results of our analysis of the dhole’s potential range and relative probability of occurrence for 12 countries across three regions: (a)
proportion of potential dhole range per region and country, (b) proportion of land area within each region and country identified as
potential dhole range, (c) mean * SD relative probability of occurrence across the regions and counties. We estimated the potential dhole
range across the study area from a binary classification of the output from a MaxEnt model with 8 x 8 km resolution, and the relative
probability of occurrence as the complementary log-log transformation of the output from a MaxEnt model with 2 x 2 km resolution.
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conservation investment (Wilson et al. 2006). In contrast to
previous studies using environmental niche models for the
dhole at local to regional scales (Nurvianto et al., 2015;
Thinley et al, 2021; Havmeller et al., 2022; Tananantayot
et al., 2022), our model encompassed the majority of the
species’ range. Although this approach may result in lower
predictive accuracy at local scales compared to models
trained on more localized data, it enabled us to make large-
scale comparisons among regions and countries that could
potentially harbour dholes, thus providing important
information for guiding future conservation actions for this
Endangered carnivore.

We identified most of the potential dhole range in
Southeast Asia, which also had a slightly higher average
probability of occurrence than mainland China and the Indian
subcontinent. However, India contained the largest propor-
tion of potential dhole range amongst the individual countries.
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vegetation index.

India has previously been identified as important for dhole
conservation. Kamler et al. (2015) and Srivathsa et al. (2020)
suggested that the country harbours the largest dhole popu-
lation. On a smaller spatial scale, large parts of Cambodia,
Malaysia and Bhutan are potentially suitable for dholes. These
countries, together with Thailand, also have a high relative
probability of dhole occurrence. Hence, our study partly
agrees with the findings of Tananantayot et al. (2022), who
identified Cambodia, Malaysia and Laos as strongholds of
dhole habitat within Southeast Asia, and with Thinley et al.
(2021), who found that dholes were distributed across all 20
districts of Bhutan. In Indonesia, dholes were historically
distributed throughout Sumatra and Java (Kamler et al,, 2015),
but their distribution on these islands is now much reduced
(Havmeoller et al., 2022). We found larger areas of potential
range in Sumatra compared to Java, where the greater distance
to the mainland populations raises further concerns for dhole
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conservation. Our model identified a limited potential range
in mainland China. Dholes have been observed in the north-
west of China and occasionally in isolated sites in the Kunlun
Mountains, the Karakoram Mountains, the Qilian Mountains
and the Altun Mountains during the past 2 decades (e.g.
Riordan et al,, 2015; Xue et al., 2015). These observations may
represent relict populations that are adapted to arid, semi-arid
and alpine habitats from Central Asia to north-west China.
Environmental conditions in these habitat types differ greatly
from those on the Indian subcontinent and in Southeast Asia,
and the demographic responses of dholes to environmental
variation, including human persecution, may have differed in
these northern regions compared to more tropical areas.
Many forests in Southeast Asia are largely depleted of
large mammals because of human persecution (Steinmetz
et al, 2014; Phumanee et al., 2020). Our model may
therefore have identified potential dhole range in forests
where the species has been extirpated. For example, a
snaring crisis in eastern Indochina (Laos, Cambodia and
Viet Nam) has resulted in the recent extirpation of tigers
and leopards from these countries despite suitable forests
and prey still occurring there (Rasphone et al., 2019; Rostro-
Garcia et al.,, 2023). Dhole numbers and distribution in
eastern Indochina are also greatly reduced and fragmented
because of indiscriminate snaring, and dholes are absent
from many parts of this region. Because our model did not

2000 01 02 03
Regularized gain

in regularized gain when it is removed
from the full model (grey bars). NDVI,
normalized difference vegetation index.

04 05

consider the impacts of widespread snaring, the potential
for dholes to inhabit the potential dhole range identified in
eastern Indochina may be limited, at least until the snaring
crisis has been resolved. Similarly, because no reliable data
are available on prey densities across appropriate spatial
scales, we did not include prey abundance in our analyses.
We recognize that both human persecution and prey
abundance are key variables determining the distribution of
carnivores (Dalerum et al., 2008), including dholes (Thinley
et al., 2021; Tananantayot et al., 2022). However, by not
including these variables, environmental niche models can
effectively be used to explicitly identify areas where
carnivore distribution is limited not by habitat suitability,
but by direct persecution or lack of prey (Eriksson &
Dalerum, 2018). Such range limitations require further
quantification (Everatt et al., 2019), and we suggest that
combining environmental niche models with prey abun-
dance data may vyield valuable insights (Thinley et
al., 2021; Tananantayot et al., 2022).

The three regions identified as potential dhole range
are geographically separated, and our models suggest
that habitat in two of the three regions is fragmented.
Tananantayot et al. (2022) also noted a heavy fragmentation
of suitable dhole range within Southeast Asia, and
Rodrigues et al. (2022) made similar observations for
India. For species persisting only in small, isolated
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subpopulations, lack of population connectivity can be
detrimental in the long term (Finnegan et al., 2021). In South
Africa, for instance, it has been recognized that the poor
connectivity of subpopulations of the African wild dog
Lycaon pictus, which shares many characteristics with the
dhole, needs to be addressed to safeguard the species’ future.
Consequently, a decision was made to translocate individ-
uals between carefully selected sites to maintain viable
subpopulations and create an artificial meta-population
(Mills et al., 1998). This conservation intervention has been
at least partially successful (Nicholson et al, 2020),
highlighting the importance of maintaining demographic
connectivity for species in fragmented landscapes. Although
we do not believe that an artificial meta-population
approach would be realistic for the dhole across Asia, we
suggest that connectivity both between and within regions
containing suitable dhole habitat may be critical for the
species’ long-term survival. Such connectivity must, by
definition, focus largely on matrix habitats outside protected
areas, which reiterates earlier suggestions that improving
connectivity among population strongholds may yield
significant conservation benefits (Prugh et al., 2008).

Of the evaluated environmental variables, land protec-
tion and temperature seasonality were important at both
spatial scales. Although the level of complexity in our
selected models (i.e. 97 parameters for the coarse-scale and
87 for the fine-scale model) prevents us from drawing any
detailed conclusions regarding how these two variables
influence dhole distribution, we still regard their impor-
tance as informative. Protected land was positively
associated with dhole range suitability, and although this
relationship may partly have been caused by sampling bias,
it does agree with previous suggestions that persisting dhole
populations are largely restricted to protected areas
(Kamler et al., 2015; Thinley et al., 2021). As livestock
density was also an important variable, human-dhole
conflict may be a limiting factor for dhole distribution,
similar to the situation for other large carnivores (Srivastha
et al., 2020; Thinley et al.,, 2021; Ghimirey et al,, 2024).
Preserving viable populations of wide-ranging carnivores
within protected areas is usually not feasible (Finnegan
et al, 2021), which further highlights the necessity of
focusing dhole conservation on unprotected land.
Temperature seasonality also had a strong influence at
both scales, but with either non-monotonic or bimodal
relationships with dhole range suitability. Temperature
seasonality may influence almost all aspects of terrestrial
ecosystems (Lisovski et al., 2017), and the observed
relationships with range suitability highlight the complex
effects climate may have on species distributions. The
importance of temperature seasonality suggests that dholes
are sensitive to climatic conditions, but the non-monotonic
relationship between temperature seasonality and range
suitability suggests that local factors such as prey
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availability and interspecific competition also play a role.
The relative importance of the other environmental
variables differed between the two spatial scales. The
importance of different environmental characteristics as
well as the scale dependencies observed in the relative
importance of different variables highlight the complexities
involved in defining a species’ environmental niche,
especially for species with broad niche tolerances.

We recognize that our observation data were biased
towards tropical areas, with only a limited number of dhole
observations from mainland China. Despite our spatial
filtering, our model may thus have under-represented
potential range areas in the northern parts of the species’
historical distribution. The bias of observations towards
tropical regions could have been caused by field efforts
being prioritized in areas where the species is most likely to
be observed (Guillera-Arroita et al., 2015). The observations
we used to train the models may thus reflect at least a large
portion of the current dhole distribution, albeit not its full
historical range. For instance, Kamler et al. (2015) reported
widespread and long-running persecution campaigns
against carnivores in the northern regions of dhole’s
historical range, and suggested that dholes probably
disappeared from large areas of central and southern
China during the 1980s and early 1990s. Hence, although
our model probably represents a fair quantification of the
spatial distribution of areas suitable for the dhole, we
propose using regional models for smaller-scale applica-
tions. We also suggest that dynamic scale optimization, as
used for the brown bear Ursus arctos and snow leopard
Panthera uncia (Mateo-Sanchez et al., 2013; Atzeni et al.
2020; but see McGarigal et al.,, 2016), may be useful to
further improve the spatial accuracy of range predictions
for species with broad and plastic habitat tolerances, such as
the dhole. We also encourage further studies to quantify the
distribution status of dholes in the northern parts of their
historical distribution, including China, as well as identify-
ing their ecological requirements in these northern regions.

Apart from the potential sampling bias, some additional
caveats apply to our study. Firstly, after appropriate spatial
filtering we had a relatively limited sample size, with only c.
1 out of 1,000 cells containing a dhole occurrence. However,
MaxEnt has been regarded as robust to limited sample sizes
(Wisz et al., 2008), and sampling biases associated with
spatially unfiltered observations may depress the perfor-
mance of environmental niche models more than training
the models on a more limited number of filtered
observations (Boria et al., 2014). Secondly, our observations
included data collected over a period of > 20 years, and
there may have been a spatio-temporal mismatch between
the observational data and some of the environmental
characteristics. However, grouping the observational data
into shorter periods would lead to further reductions in
sample sizes, which means that models on temporally
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pooled data are probably the most informative. Ad-
ditionally, snaring in eastern Indochina has resulted in
local extinctions of apex carnivores, including dholes.
Therefore, dholes may not occur in seemingly suitable areas
because of poaching. Finally, we highlight that the MaxEnt
algorithm, just as many other machine learning algorithms,
is subject to both conceptual and data-related issues that
may cause problems both in model predictions and model
interpretations (Aratjo & Gusian, 2006; Varela et al., 2014).
We tried to minimize these issues by making biologically
justified choices regarding the environmental variables and
the model grain. We also used objective criteria in our
rigorous model selection approach (Warren and Siefert,
2011) and in the definition of the cut-off point in the
MaxEnt cloglog output that delineated potential range.
We therefore believe that our modelling process was
based on biologically relevant information and objective
analytical criteria, as far as this was possible with the
information available.

To conclude, we identified potential dhole range in three
disparate regions, and connectivity appeared limited both
between and within these regions. Hence, we suggest that
conservation actions should be focused on activities within
each of these three regions, and on improving connectivity
amongst dhole populations. As the majority of the potential
dhole range was identified in Southeast Asia, and countries
within this region also had a higher proportion of their total
land area identified as potential dhole range, this region
should be a priority for dhole conservation. However,
amongst individual countries, India harbours the highest
proportion of potential dhole range, which agrees with
previous suggestions that the country probably also harbours
the largest proportion of the global dhole population.
Coordinating conservation efforts between regions in India
and Southeast Asia could thus be a key aspect of future dhole
conservation planning. We encourage transboundary con-
servation initiatives integrating areas in southern China,
Myanmar, north-east India, Nepal and Bhutan. Our study
also highlights the need for more monitoring and assess-
ments of dhole population status and restoration potential in
the northern parts of its historic distribution, including in
mainland China. Finally, we suggest that focusing dhole
conservation on population persistence in unprotected areas
may be key to ensure the long-term viability of this species,
both by improving connectivity amongst highly suitable
habitat patches but also by avoiding problems associated
with efforts to maintain viable populations of wide-ranging
species within restricted protected areas.
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