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Heegner Points and the Rank of Elliptic
Curves over Large Extensions of
Global Fields

Florian Breuer and Bo-Hae Im

Abstract. Let k be a global field, k a separable closure of k, and Gk the absolute Galois group Gal(k/k)

of k over k. For every σ ∈ Gk, let k
σ

be the fixed subfield of k under σ. Let E/k be an elliptic curve

over k. It is known that the Mordell–Weil group E(k
σ

) has infinite rank. We present a new proof of

this fact in the following two cases. First, when k is a global function field of odd characteristic and E is

parametrized by a Drinfeld modular curve, and secondly when k is a totally real number field and E/k

is parametrized by a Shimura curve. In both cases our approach uses the non-triviality of a sequence

of Heegner points on E defined over ring class fields.

1 Introduction

This paper is motivated by the following result, conjectured by Michael Larsen and

recently proved by him and the second-named author [12].

Theorem 1.1 Let A/k be an abelian variety over a finitely generated infinite field

k with characteristic not equal to 2. Then for every σ ∈ Gk := Gal(k/k) where k̄ is a

separable closure of k, the Mordell–Weil group A(k
σ

) of A over k
σ

= {x ∈ k | σ(x) = x}
has infinite rank.

Prior to this result, substantial progress had been made on the case of elliptic
curves of Theorem 1.1 which has covered many cases with hypothesis on rational

points of A [9, 10].
In this paper, we present a different proof of this result in the case of elliptic curves

with modular parametrization (MP), that is, elliptic curves parametrized by Shimura
curves (when k is a totally real number field) or by Drinfeld modular curves (when k

is a global function field). The result is stated in Theorem 6.2 below, which extends
the result in [11].

Our approach is the following. Let E/k be an MP elliptic curve. Then for a
given automorphism σ ∈ Gk, we produce an infinite sequence of distinct imaginary

quadratic extensions K1, K2, . . . , Km, . . . , of k in such a way that (E, Km) satisfies the
Heegner hypothesis (definitions are given below) and the rank of E over the com-
positum of these fields Km’s is infinite. If σ|Km

= idKm
for all m, then we are done.

Otherwise, we fix a K in this list for which σ|K 6= idK . Then the Heegner hypoth-

esis allows us to construct a suitable sequence of Heegner points on E defined over
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a tower of ring class fields of K over which the rank of E is unbounded. Then we

use the dihedral structure of these ring class fields to show that the rank of E(k
σ

) is
infinite.

Note that for number fields we simplify and generalize the results of [11], using
an argument from [2], and we also show that the rank of elliptic curves grows over
ring class fields of global fields.

2 Elliptic Curves With Modular Parametrization

2.1 Notation

Let k denote either a totally real number field, or a global function field. In this paper,
we will label the two cases with the symbols NF and FF, respectively. We first define

the notion of an elliptic curve E/k with modular parametrization (MP), which is the
object of interest in this paper. At the same time, we will fix our notation for the rest
of the paper.

NF: When k is a totally real number field, we denote by Ok its ring of integers, with

profinite completion Ôk = Ok ⊗
∏

p Zp. We denote by Ak the ring of adèles of k. Let
n ⊂ Ok be a non-zero ideal. If [k : Q] is even, we further assume that ordp(n) is odd
for some prime p.

Let f be a newform on GL2(Ak) of parallel weight 2, level

K0(n) =

{

(

a b
c d

)

∈ GL2(Ôk) | c ∈ n̂

}

,

trivial central character, and rational Hecke eigenvalues. Then by [18, Theorem B],
there exists an elliptic curve E ′/k of conductor n such that

• the L-functions of E ′ and f coincide up to factors at primes dividing n,
• there exists a Shimura curve X/k and a surjective k-morphism π ′ : X → E ′.

If E/k is an elliptic curve which is k-isogenous to an elliptic curve E ′/k arising
from the above Eichler–Shimura construction, then we say that E/k has a modular

parametrization. Composing with the isogeny, we get the parametrization π : X → E.
For example, all elliptic curves over F = Q have MP [3,16,17]. Notice, however, that

not all elliptic curves over number fields have MP (even though they are conjectured
to be “modular” in the sense of Langlands).

FF: When k is a global function field, suppose E/k is any elliptic curve with split
multiplicative reduction at a place ∞ of k. We denote by Ok the ring of elements of k

regular away from ∞. Then the conductor of E can be written n · ∞, where n ⊂ Ok

is an ideal.

Let X0(n) be the Drinfeld modular curve parametrizing pairs of rank-2 Drinfeld
Ok-modules linked by cyclic n-isogenies. Then there is a morphism π : X0(n) → E

defined over k (see [7]). In this case, too, we say that E/k has MP.

If E/k is any elliptic curve with non-constant j-invariant, then there exists a finite
extension L/k such that E/L is parametrized by a Drinfeld modular curve, and hence
our results will apply to E/L, but this case is already covered by [14, Theorem 5].
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2.2 Heegner Hypothesis

Let K/k be a quadratic imaginary extension (when k is a function field, this means
that the place ∞ does not split in K/k). We denote by

ε =
⊗

ν
εν : k×\k̂× −→ {±1, 0}

the character associated with K/k, where ν ranges over the finite places of k.
Let E/k be an MP elliptic curve. We say that the pair (E, K) satisfies the Heegner

hypothesis if the following conditions hold:

NF: The relative discriminant of K/k is prime to n and ε(n) = (−1)[k:Q]−1.
FF: All primes p|n split in K/k (i.e., ε(p) = 1 for all p|n).

2.3 Ring Class Fields

Let K/k be a quadratic imaginary extension, and denote by OK the integral closure of
Ok in K. Let p ⊂ Ok be a non-zero prime. For any integer n ≥ 0, we denote by K[pn]

the ring class field of K of conductor pn (i.e., the class field associated with the order
On := Ok + pnOK ). We also denote K[p∞] := ∪n≥0K[pn].

3 Torsion and Rank

In this section, we gather some useful results on the Mordell–Weil groups of elliptic
curves.

Lemma 3.1 Let E/k be an elliptic curve, K/k a quadratic imaginary extension, and

p ⊂ Ok a prime. Then E(K[p∞])tors is a finite group.

Proof When k is a function field, this is shown in [1, Lemma 2.2], and when k is a
number field, it is even easier to show. One just considers the reduction of E at two
distinct primes which are inert in K/k and at which E has good reduction.

Lemma 3.2 Let E/k be an elliptic curve. Then for any integer d > 1, the set

⋃

[L : k]≤d

E(L)tors is finite.

Proof See [8, Proposition 1.1].

Let G be an abelian group. We say that G has infinite rank if dimQ (G ⊗ Q) = ∞.

Lemma 3.3 Let E/k be an elliptic curve and L/k a Galois extension over k. Let

{Pm}∞m=1 be a sequence of points in E(L). Denote by S the subgroup of E(L) generated

by the Pm. Suppose that

(i) E(L)tors is finite,

(ii) S is not finitely generated.

Then S, and thus also E(L), has infinite rank.

Proof [11, Lemma 2.5] can be generalized to the Mordell–Weil groups over global

fields.
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4 Heegner Points

In this section, we construct a sequence of Heegner points on MP elliptic curves
which generate a group of infinite rank. Let E/k be an MP elliptic curve with con-
ductor n (or rather n · ∞ if k is a function field). Let K/k be a quadratic imaginary

extension, and suppose that (E, K) satisfies the Heegner hypothesis.
Let p ⊂ Ok be a non-zero prime satisfying the following.

NF: p ∤ 2n and ε(p) = 1.
FF: p ∤ n.

Since the constructions of Heegner points in the number field case and the func-

tion field case are somewhat different, we treat them in separate subsections.

4.1 Number Fields

We first construct a suitable Shimura curve parametrizing E: π : X → E. Our stan-
dard reference is Zhang [18].

Fix a real place τ of k. Then there exists a unique quaternion algebra B over k which
is non-split precisely at all archimedean places other than τ and at all the finite places

ν with εν(n) = −1 (the number of such places is even, because we are assuming the
Heegner hypothesis). We fix an embedding ρ : K →֒ B.

Let R ⊂ B be an order of type (n, K), in other words R contains ρ(OK ) and has
conductor n. Then the Shimura curve X/k corresponds to the Riemann surface

X(C) ∼= B+\H × B̂×/k̂×R̂× ∪ {cusps},

where B+ denotes the elements of B of totally positive reduced norm, H denotes the

complex upper half-plane, and {cusps} is a finite set, which is non-empty only in the
case where k = Q and X = X0(n).

For the construction of Heegner points it is more convenient to work with the
Shimura curve Y corresponding to the Riemann surface

Y (C) ∼= B×\H
± × B̂×/R̂× ∪ {cusps},

of which X is a quotient by the action of k̂×.
A point z ∈ Y (C) is called a CM point if it is represented by an element of H± × B̂

of the form (
√
−1, g). We associate the morphism φz = g−1ρg : K → B̂ with a CM

point z. The order End(z) := φ−1
z (R̂) in K is called the endomorphism ring of z, and

does not depend on the choice of g. It is of the form End(z) = Ok + c OK , for an ideal
c ⊂ Ok called the conductor of z.

Denote by kp the completion of k at p with uniformizer ̟. Then B splits at p, and
we choose an isomorphism B ⊗ kp

∼= M2(kp) such that ρ(
√
−d) ⊗ 1 in ρ(K) ⊗ kp

corresponds to the matrix
(

0 −1
d 0

)

∈ M2(kp), where K = k(
√
−d), d ∈ Ok.

Now let P ∈ B̂× be the element with p-component
(

̟ 0
0 1

)

and all other compo-
nents equal to 1. Let zn be the CM point in Y (C) corresponding to

(
√
−1, Pn) ∈ H

± × B̂×.
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As p ∤ 2n we see that zn has conductor pn, i.e., End(zn) = On = Ok + pnOK .
Denote by xn ∈ X(C) and yn ∈ E(C) the respective images of zn ∈ Y (C) under

the maps Y → X
π−→ E. We call the points yn Heegner points (in contrast, Zhang

only uses the term Heegner points for CM points with trivial conductor). Moreover,

the points xn, and thus also yn, are defined over K[pn]. In fact, by [18, §2.1.1] the
set Xn of (positively oriented) CM points on X with conductor pn is in bijection with
K×\K̂×/Ô×

n
∼= Pic(On), with the action by Gal(K[pn]/K) given by class field theory.

Notice that the Shimura curves X and Y depend on the choice of K, but the elliptic

curve E parametrized by them remains the same up to k-isogeny, by Faltings’ isogeny
theorem [5, §5, Korollar 2], since their L-functions coincide up to finitely many local
factors with the L-function of the newform f .

4.2 Function Fields

We now consider the case where k is a global function field and π : X0(n) → E is
a modular parametrization. Since we are assuming the Heegner hypothesis, there

exists an ideal N ⊂ OK such that OK/N ∼= Ok/n. For every integer n ≥ 0, we let
Nn = N ∩ On, where we recall On = Ok + pnOK . Then we have OK/Nn

∼= Ok/n for
all n.

Denote by C∞ =
ˆ̄k∞ the completion of an algebraic closure of the completion of

k at ∞, a field both algebraically closed and complete. Then OK and N−1
n are rank-2

Ok-lattices in C∞, hence define a pair of Drinfeld modules (ΦOK , ΦN
−1
n ) linked by

a cyclic n-isogeny. The pair thus defines a point xn on X0(n), which is defined over
the ring class field K[pn] by the theory of complex multiplication. Its image yn =

φ(xn) ∈ E(K[pn]) is called a Heegner point on E.

4.3 Infinite Rank over a Tower of Ring Class Fields

We have constructed our Heegner points over ring class fields. Now we show that

they generate a subgroup of infinite rank.

Proposition 4.1 Let I ⊂ N be an infinite set. Then the subgroup of E(K[p∞]) gen-

erated by {yn | n ∈ I} has finite torsion and infinite rank, i.e., the rank of E(K[pn]) is

unbounded as n goes to infinity.

Proof By Lemmas 3.1 and 3.3, we need only to establish that the subgroup S ⊂
E(K[p∞]) generated by the yn’s is not finitely generated. For this we adopt the argu-
ment of [2].

Suppose that S is finitely generated. Then S ⊂ E(L) for some finite separable

extension L/k, which we may extend to include K. Denote by GL = Gal(L̄/L) the
absolute Galois group of L. Then GL acts on the fibers π−1(yn), and the GL-orbit of
xn is bounded: #(GL · xn) ≤ deg(π).

On the other hand, #(GL · xn) ≥ # Pic(On)/[L : K]. But # Pic(On) is unbounded,

as can be seen from the exact sequence [15, §I.12]

1 → O
×
K /O

×
n −→ (OK/pn

OK )×/(On/pn
On)× −→ Pic(On) −→ Pic(OK ) → 1.
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5 Some Algebraic Lemmas

In this section, we collect some lemmas that we will need in the proof of the main
result. We start off with two group-theoretic results.

Proposition 5.1 Let k be global field and K/k a quadratic imaginary extension. Let

p ⊂ Ok be a non-zero prime. Then for every positive integer n, Gal(K[pn]/k) is a dihe-

dral group and Gal(K[pn]/K[p]) is an abelian p-group, where p|p (resp. p = char k)

when k is a number field (resp. global function field).

Proof See [4, (2.3.12); Proposition 2.5.7] for the function field case, and we gen-
eralize the result in [11, Lemma 2.3], which is elementary class field theory, in the
number field case.

Lemma 5.2 Let G be a generalized dihedral group acting on a vector space M, and

suppose that the reflection σ ∈ G acts by ± id on M. Let H < G be an abelian subgroup

of odd order. Then H acts trivially on M.

Proof We have στσ = τ−1, for all τ ∈ G. Denote by ρ : G → GL(M) the represen-
tation, so ρ(σ) = ± id, and let τ ∈ H. Then

ρ(τ 2) = ρ(τ )ρ(τ ) = (± id)ρ(τ )(± id)ρ(τ ) = ρ(στστ ) = id .

Since H has odd order, we have 〈τ 〉 = 〈τ 2〉, hence τ also acts trivially on M.

Lemma 5.3 Let k be a number field with ring of integers Ok. Let d ∈ Ok, and suppose

d is not a square modulo 4. Let K = k(
√

d). Then we have the following.

(i) The ring of integers of K is OK = Ok[
√

d].

(ii) Let p ⊂ Ok be a non-zero prime not lying above 2. Then p is inert (resp. split,

resp. ramified) in K/k if and only if d is non-square (resp. a non-zero square, resp.

zero) modulo p.

Proof To prove (i), note that we have OK = Ok[ω] for some ω ∈ OK satisfying an
equation of the form ω2 − bω − c = 0, b, c ∈ Ok. Thus ω =

1
2
(b±

√
b2 + 4c). Now if

Ok[
√

d] ( Ok[ω], then we must have 1
2

√
b2 + 4c =

1
2

√
d, in which case d = b2 + 4c

is a square modulo 4.

Now part (ii) follows since the splitting behavior of p in K/k is given by the split-
ting behavior of the polynomial x2 − d modulo p.

Lemma 5.4 Let k be a totally real number field with real embeddings τ j for j =

1, . . . , n. Then if a ∈ k such that τ j(a) < 0 for all j, the field k(
√

a) is a totally

imaginary quadratic extension over k.

Proof Elementary.

Suppose k is a field, and g(x, y) ∈ k[x, y]. Then we denote by

Hk(g) := {α ∈ k | g(α, y) ∈ k[y] is irreducible over k}

the Hilbert set of g over k. Notice that by [13, Ch. 9, Theorem 4.2] every global field
is Hilbertian.
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Lemma 5.5 Let L be a field extension of a global field k and Ok the ring of integers in

k. Let g ∈ k[x, y] be irreducible over L. Then we have the following.

(i) If L is a finite separable extension of k, then HL(g) ∩ Ok is infinite. Moreover, if

k = Q , then HL( f ) ∩ Q is dense in Q .

(ii) If L is any non-abelian extension of k, and if g is quadratic in y, then HL(g) ∩Ok

is infinite.

Proof For (i), the first assertion follows from [13, Ch. 9, Proposition 3.3] and [6,
Proposition 13.4.1], and the second from [13, Ch. 9, Corollary 2.5].

For (ii), let M be the maximal abelian extension of a global field k in L. Then

M $ L, and since k is Hilbertian, M is also a Hilbertian field by [6, Theorem 16.11.3].
So HM(g) is infinite. By applying [6, Proposition 16.11.1], HM(g) contains a Hilbert
set H over a subfield N which is a finite abelian extension of k. So by (i), H ∩ Ok is
infinite, so HM(g)∩Ok is infinite. So we get an infinite sequence of elements {mi}i≥1

in HM(g) ∩ Ok. For each i ≥ 1, let αi be an element in an algebraic closure of k such
that g(mi , αi) = 0. Then by the Hilbertian property, k(αi) and M(αi) are quadratic
extensions of k and M respectively since g is quadratic in y, and k(αi) and M are
linearly disjoint over k. Then by [6, Lemma 2.5.6],

Gal(M(αi)/k) ∼= Gal(M/k) × Gal(k(αi)/k) ∼= Gal(M/k) × Z/2Z,

which is abelian. So M(αi) is an abelian extension of k. By the maximality of M in L,
M(αi) * L. Therefore, mi ∈ HL(g) ∩ Ok for all i.

6 Proof of the Main Results

Proposition 6.1 Let k be a totally real number field or a global function field of odd

characteristic p. Let K/k be a quadratic imaginary extension, and let E/k be an MP

elliptic curve such that (E, K) satisfies the Heegner hypothesis (§2.2). Let p ⊂ Ok be a

prime satisfying the conditions in Section 4. Let σ ∈ Gk be uch that σ|K 6= idK .

Then the rank of E(K[p]σ) is unbounded as n → ∞. In particular, E(Kσ
ab) has

infinite rank, where Kab denotes the maximal abelian extension of K.

Proof For the given σ ∈ Gk, let σn = σ|K[pn] denote the restriction to K[pn]. Since

σ|K 6= idK , σn is a reflection of the dihedral group Gal(K[pn]/k).

Suppose that the rank of E(K[pn]σ) is bounded. Then there exists an integer n0

such that σn acts by − id on Mn := E(K[pn]) ⊗ Q/E(K[pn0 ]) ⊗ Q for every n > n0.
Now Gal(K[pn]/k) acts on Mn, and H = Gal(K[pn]/K[pn0 ]) is an abelian subgroup
of odd order (since p is assumed to be odd), hence acts trivially by Lemma 5.2.

It follows that

E(K[pn]) ⊗ Q =
(

E(K[pn]) ⊗ Q
)H

= E(K[pn0 ]) ⊗ Q,

which contradicts the unboundedness of the rank of E(K[pn]) (Proposition 4.1).

We are now ready to prove our main result.
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Theorem 6.2 Let k be a totally real number field or a global function field of odd

characteristic. Let E/k be an MP elliptic curve of conductor n (resp. n · ∞). If k is a

number field of even degree over Q , we further assume that ordq(n) is odd for some

prime q ∤ 2 of k. Then, for all σ ∈ Gk, the rank of E(k̄σ) is infinite.

Proof Since the characteristic of k is not 2, we may choose a Weierstrass equation
for E/k of the form y2

= x3 + ax2 + bx + c. By a change of variables, we may assume
that a, b and c are in Ok.

Our aim is to construct a sequence of quadratic imaginary extensions Ki/k which

are linearly disjoint over k, and such that (E, Ki) satisfies the Heegner hypothesis for
each i.

Consider the polynomial

f (x) := (α + Nx)3 + aN2(α + Nx)2 + bN4(α + Nx) + cN6 ∈ Ok[x],

with α ∈ Ok and 0 6= N ∈ n chosen as follows:
NF: α is non-square modulo 4. If [k : Q] is even, we choose a prime q ∤ 2 with

ordq(n) odd, and require that α be non-square modulo this q. For all other p|n,
p 6= q, we require that α be square modulo p. Such α ∈ Ok exists by the Chinese

Remainder Theorem. We choose N ∈ 4n totally negative.
FF: α = 1, N ∈ n is any non-zero element.

Let K0 = k and Ki = k(
√

f (mi)), for i ≥ 1, where the mi ’s are constructed
recursively as follows.

NF: Since N is totally negative, we see that there exists r > 0 such that f (x) is
totally negative for all x ∈ Q , x > r. Now for i ≥ 0, we choose

mi+1 ∈ HK0···Ki
(y2 − f (x)) ∩ Z, mi > r.

This is possible by Lemma 5.5(i). Since f (mi) is totally negative, it follows that Ki is
a quadratic imaginary extension of k. Furthermore, since f (mi) ≡ α3 mod 4n, we
find that (E, Ki) satisfies the Heegner hypothesis by Lemma 5.3.

FF: Denote by k∞ the completion of k at ∞. By Lemma 5.5(ii), we may find
m1 ∈ Hk∞(y2 − f (x)) ∩ Ok, so f (m1) is neither a square in k∞ nor in k. We
let K1 = k(

√

f (m1)), and recursively construct Ki = k(
√

f (mi)) with mi+1 ∈
Hk∞K1K2···Ki

(y2 − f (x)) by applying Lemma 5.5(ii).

For every i, we see that Ki/k is quadratic imaginary. Furthermore f (mi) ≡ 1 mod
n, so that every p|n splits in Ki/k, so (E, Ki) satisfies the Heegner hypothesis.

Let σ ∈ Gk. Then either σ|Ki
= idKi

for all i, or σ|Ki
6= idKi

for some i.
First, suppose that for all i, σ|Ki

= idKi
. Then, for each i, consider the element

α+Nmi

N2 ∈ k. By plugging this into the given Weierstrass equation of E/k, we get

y2
=

( α + Nmi

N2

) 3

+ a
( 1 + Nmi

N2

) 2

+ b
( 1 + Nmi

N2

)

+ c =
f (mi)

N6
.

Hence, if we let

Pi =

( α + Nmi

N2
,

√

f (mi)

N3

)

,
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then Pi is a point in E(Ki) but it is not in E(k). And moreover, since Ki = Kσ
i , Pi is

fixed under σ.

So we get an infinite sequence {Pi}∞i=1 of points in E(k
σ

) such that each Pi is de-

fined over the imaginary quadratic extension Ki over k. We may assume that these
points Pi are not torsion points by Lemma 3.2. Now we show the points Pi are linearly
independent. Suppose that they are dependent. Then for some integers a j ,

(∗) a1P1 + a2P2 + · · · + arPr = O.

Since the fields Ki are pairwise linearly disjoint over k, for each i, there is an automor-
phism of k which fixes all but one Ki of K1, . . . , Kr . Note that such an automorphism

takes Pi to its inverse, −Pi . Applying this automorphism to (∗), we get

a1P1 + · · · + ai−1Pi−1 − aiPi + · · · + arPr = O.

By subtracting this from (∗), we get 2aiPi = O, which implies ai = 0 since the

characteristic p of k is not 2 and Pi is not a torsion point. We conclude that the
Pi ∈ E(k) are linearly independent. Moreover, Pi are defined over the composite field
of all quadratic field extensions of k, which is an abelian extension of k. Hence, the
rank of E over the maximal abelian extension of k in k

σ
is infinite, so the rank of

E(k
σ

) is infinite.

Next, suppose that there is an integer i such that σ|Ki
6= idKi

. Then fix such
a quadratic imaginary extension Ki . Our construction shows that Ki satisfies the
hypothesis of Proposition 6.1, so we complete the proof of this case as a consequence

of Proposition 6.1.
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