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ABSTRACT. We use a self-gravitating viscoelastic model of the Earth and a dynam-
ically consistent marine ice-sheet model to study the relationships between marine ice-
sheet dynamics, relative sea level, basal topography and bedrock dynamics. Our main con-
clusion is that sea-level change and lithospheric coupling are likely to have played limited
roles in the postglacial retreat of marine ice sheets. The postglacial rise in sea level would
only have caused at the most around 100 km of grounding-line retreat for an ice sheet of
similar dimensions to the West Antarctic ice sheet, compared with the several hundred
km of retreat which has occurred in the Ross Sea. There is no evidence that reverse slopes
lead to wnstability. Incorporating coupling with lithospheric dynamics does not produce
markedly different effects. The implication of these studies is that marine ice-sheet retreat
1s the result of physical mechanisms other than lithospheric coupling and sea-level rise.

1. INTRODUCTION

Many ice sheets past and present have or had a marine com-
ponent where the ice sheet was grounded on a bed below sea
level; for example, the West Antarctic ice sheet (WAIS;
Drewry, 1983), parts of the Laurentide and Fennoscandian
ice sheets (Denton and Hughes, 1981) and the Barents Sea ice
sheet (Siegert and Dowdeswell, 1996). In all these cases, the ice
sheets were or are large enough to induce significant displace-
ment of the lithosphere, so changing the relative sea level.
Since grounding-line position is directly affected by relative
sea level, there is a potentially significant coupling between
ice sheet and lithosphere. The significance of this coupling
has been recognized for many years and there have been sug-
gestions that the dynamics is sufficiently complicated that, for
example, oscillations could be established, partly by analogy
with the land-margin case (see, e.g., Hyde and Peltier, 1987).
Curiously, there have been relatively few studies of this
coupling, and most of them have been carried out in the
context of specific studies of the WAIS (Lingle and Clark,
1985; Van der Veen, 1985; Huybrechts, 1992; Le Meur and
Huybrechts, 1996), of which only the latter used a self-gravi-
tating viscoelastic (SGVE) Earth model. This paper seeks to
study marine-ice-sheet/lithosphere dynamics using a SGVE
model with a particular type of marine ice-sheet model,
which respects the fact that in cases where there is limited
coupling between shelf and sheet, marine ice sheets have
anomalous dynamics (Hindmarsh, 1993, 1996). This limited
coupling implies that shelves do not exert back pressure on sheets,
and in consequence marine ice sheets have dynamics charac-
terized by neutral equilibrium (Hindmarsh,1993,1996). The
practical significance of this is that in one horizontal dimen-
sion, any span has a corresponding equilibrium configur-
ation, unlike land-based ice sheets, where only a few spans
have a corresponding equilibrium configuration. Ground-
ing-line motion is computed using a kinematic condition.
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This paper continues the investigations of Hindmarsh
(1993, 1996) into marine ice-sheet dynamics by coupling to
the ice-sheet model an Earth response model due to Le Meur
(1996a) which is based on unit SGVE models (Longman, 1962;
Farrell, 1972; Wu and Peltier, 1982; Spada and others, 1992). The
aim of this paper is to carry out basic investigations of the
dynamics of marine ice sheets coupled with lithosphere, and
look at such questions as how the isostatic depression caused
by marine ice sheets affects the migration of the grounding
line. There have been relatively few attempts to focus on this
aspect of marine ice-sheet dynamics, and none with a kine-
matically based grounding-line migration model and an
Earth model which models lithosphere and mantle mechanics
by solving the full Stokes equations in a spherical domain.

In Le Meur and Huybrechts (1996), a review of the different
bedrock parameterizations usually used in ice-sheet models
was presented and compared to the same SGVE bedrock
model used in the present study. The different results produced
by each of these bedrock models, coupled to a three-dimen-
sional thermomechanical ice-sheet model due to Huybrechts
(1992), were compared by simulating the Antarctic ice sheet
during the last glacial cycle. In particular, this study showed
the inadequacy of the diffusive approach (Oerlemans and
Van der Veen, 1984) and the necessity for incorporating a
proper representation of lithospheric rigidity. In fact, the
bedrock elevation not only affects the ice-sheet elevation,
which, as a consequence of the atmospheric vertical tem-
perature gradient can change the surface mass balance, but
also controls the overall ice-sheet geometry.

The ice-sheet model used here extends the plane-flow
approach of Hindmarsh (1996) to a zonally symmetric
marine ice sheet situated on a sphere and centred on the
pole (Fig. 1). Modelling an ice sheet on a sphere does not
seem to affect its dynamics significantly, but is a more
natural way of incorporating circular symmetry.


https://doi.org/10.3189/172756501781832322

Polar ice sheet

MI:6,0)

X

Fig. 1. Spherical coordinate system (1, 0, ). The corresponding
Cartesian system (x,y, z) is also shown, and M is a scalar
Jfunction of the coordinate system.

The paper plan is as follows. The marine ice-sheet
evolution equations using the shallow-ice approximation
are presented in spherical coordinates, and the numerical
methods used to compute steady and transient profiles are
given. A parameter study of steady profiles is carried out,
and the response to sea-level rise with a flat, immobile bed
and immobile beds of increasingly complicated geometry is
considered. These studies are used to understand the results
from a coupled ice-sheet/Earth model where the bedrock is
now mobile.

The novel feature of the studies in this paper is the atten-
tion paid to accurate modelling, which is used to demonstrate
the main results. These are that relative sea-level change and
lithosphere dynamics predict very small grounding-line
retreats and are unlikely to explain large retreats (>100 km)
of marine ice sheets. This is in accordance with recent
observations (Conway and others, 1999; Anderson and Shipp,
2001) which suggest that the Siple Coast retreated well after
the postglacial sea-level rise. In other words, theory and
observation suggest that the retreat of the WAIS is due to
other processes. Some of these, related primarily to thermo-
mechanical coupling, are considered in the companion paper
(Hindmarsh and Le Meur, 2001).

2. THE ICE-SHEET MODEL
2.1. Mechanical model: no back pressure

Recent years have seen a reappraisal of the “back-pressure”
concept of marine ice-sheet dynamics (Paterson, 1994;
Bentley, 1997, 1998) . A number of observations (Vaughan,
1993; Whillans and Van der Veen, 1993; MacAyeal and others,
1998) indicate very limited coupling between grounded ice
and shelves in a number of cases. These observations are
consistent with theoretical considerations discussed by
Hindmarsh (1993, 1996), who pointed out that grounded ice
masses with sufficiently high basal traction have their
mechanics described by the shallow-ice approximation
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(Hutter, 1983), and that significant longitudinal and other
non-shallow stress effects were in consequence confined to a
narrow boundary layer close to the grounding line. A large
number of theoretical studies of the grounding-line area
(Herterich, 1987; Barcilon and MacAyeal, 1993; Lestringant,
1994) support this idea. This means that in modelling marine
ice sheets, there are large areas of grounded ice where the
modelling of back pressure is not important; this could
include all grounded areas excepting the ice aprons at the
mouths of ice streams. 7 his means that the sheet model does not need
a coupled shelf model to compute the grounded-ice dynamics. A
consequence of this is that rather than a limited number of
steady solutions for ice-sheet geometry existing, which is true
for non-marine ice sheets, an infinite number of steady
geometries are possible (Hindmarsh, 1993, 1996); in other
words, the system is in neutral equilibrium. This has
significant implications for modellers, as ensuring dynamical
consistency between physical and numerical models of
marine ice sheets 1s somewhat delicate (Hindmarsh, 1996).

The fact that the back-pressure concept has been
reappraised means that there are now two distinct schools
of marine ice-sheet numerical modelling: (1) models where
shelf and sheet are coupled across the grounding line with a
computation of longitudinal stresses in this area (Lingle and
Clark, 1985; Van der Veen, 1985; Huybrechts, 1992; Pattyn,
1996), and (ii) uncoupled models where grounding-line
advance 1s computed from the kinematics (Hindmarsh,
1993, 1996). Models following method (i) can be criticized
because they have not yet attempted to demonstrate that
the numerical models are not adding spurious elements to
the dynamics of the marine ice-sheet system; method (i1)
can be criticized because it ignores the subtlety of ground-
ing-line dynamics.

We follow method (i1) and reply to the latter criticism by
saying that so far as the large-scale dynamics of marine ice
sheets are concerned, complex stress fields in the grounding
line are just a subtlety; there is no evidence or theoretical
argument that they affect the flow of sheet/inland ice where
basal traction is high. While these stress fields may affect
streams, they are only of significance for areas of streams with
slopes similar to those of ice shelves (Hindmarsh, 1993); such
areas are of limited areal extent. In any case, the dynamical
complexities of ice rises or marine ice sheets without streams
are sufficiently complicated that they warrant separate inves-
tigation. We do represent sliding in this paper such that a very
high proportion of the total velocity is due to slip, and check
that the shallow-ice approximation is still valid. This is done
by computing the “traction number” (Hindmarsh, 1993),
which is the ratio of the surface longitudinal stress to the
basal shear stress. If this number is around unity, non-
shallow-ice approximation effects are unimportant (see
Table 3, shown later). The computed traction numbers are
never significantly greater than unity.

We do not represent lateral variation in flux (“streaming”),
and it is possible that in streams where longitudinal stress
gradients play a significant role, the neutral equilibrium
concept on which the numerical schemes used in this paper
are based does not hold. This issue remains open; thus we
assert that the analysis is valid for slow-flowing inland ice, ice
streams with mechanics described by the shallow-ice approxi-
mation and possibly for all grounded ice. Since we do not
model a shelf, the model cannot represent shelf grounding
caused by sea-level drop.
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Fig. 2. Ice sheet resting upon a spherical Earth. Owing to axial
symmelry, and the fact that on the Earth’s surface v is equal to
the earth radius R, the spatial variables reduce to the co-latitude
0. The span Oy, determines the ice thickness at the grounding line
H,, as a function of the local free water depth f, via the
Sflotation criterion. The ice flow qo(6) is computed using the
shallow-ice approximation.

2.2. The ice-sheet equation in a spherical system

The continuity equation is

%H +V-q=a, (1)
where H is the ice thickness, a is the mass balance and q is
the mass flux. Assuming an axi-symmetric ice sheet resting
at the surface (r = R) of the planet, functions are a position
of latitude 6, and no dependence on longitude (¢) exists.
Figure 1 illustrates the spherical coordinate system (7, 6, ¢)
in terms of a Cartesian coordinate system (x,y, z) for an
arbitrary scalar field M. The divergence of the horizontal
flux q in the coordinate system (6, ¢) on a sphere becomes

1 Oqgy o 1 O(gysind)
. PR = 2
V-a +Rtan9 Rsin6 o (2)

"R 0

where gy 1s obtained from the vertically integrated ice hori-
zontal-velocity profile. Figure 2 illustrates the dependence of
thickness field H, surface elevation s and basal elevation b on
latitude. Free water depth is denoted f, and the thickness and
free water depth at the grounding line are denoted Hy,, fin,
respectively. The velocity v has two components (v;, vg). For
the moment, we assume ice motion to be exclusively due to
internal deformation (no basal sliding), with a non-linearly
viscous flow law, meaning that the meridional (outward) flux
component gg can be written as a function of local ice-sheet
thickness H and upper surface radial gradient O0s/d0
(Marshall, 1996),

”_11@
R 09’

1
Rnfl

0s

—_ _CH7L+2 e
qo 2

3)

where C = 2A(T)(pig)" /(n + 2), with A(T) a rate factor
for the ice, g the gravitational acceleration, p; the ice density
and n the exponent for the creep power law (Glen, 1955)

eij = A" 7 (4)
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Here, e;; is the deformation-rate tensor, and 7;; is the deviator
stress tensor which has second invariant

1
=57 T ()

By construction, the surface s() and bedrock elevations
b(0) are related by

s(8) = H(0) + b(0) (6)
(Fig. 2).

Sliding can also be incorporated into the description as
follows. By allowing sliding at the bedrock contact, the
velocity component at the base of the ice column (V4 (r, 6);
see Fig. 2) is no longer zero and is given by an appropriate
sliding law. We chose a Weertman-type sliding which relates
basal velocity to the basal shear stress o, according to

Vi (b) = Asor,. (7)

Integrating this velocity term all along the ice-column

thickness H gives gy = V},(b)H, the extra flux due to the
basal sliding. By expressing the basal shear stress as

1 0s

—pigH — — 8

plg R 89? ( )

this extra flux due to basal sliding qg can be written in a

form similar to that resulting from internal deformation in

Equation (3)

ds|" "1 os (9)
R*=1100] RO
Taking ¢ equal to n (3 in the computations), the total flux
now becomes

1
A
a5 = —Adpg)" HH!

1 |oas|"' 1 0s
R=1100] R 00
In our experiments, the value for Ag has been tuned so that
the flux due to basal sliding is a multiple « of that due to

g = _Hn+1

[As(pig)" + CH]. (10)

internal deformation at the grounding line and in the initial
steady state. Given Equation (10) and the value for C'in the
previous paragraph, this finally gives for A

CH, 2aA(T)H,

As = 2 o - ( ) ’ (11)
(pig) n+2

with A(T)the rate factor for the ice. Basal sliding is omitted

in this study except where it is specifically mentioned as

being included.

2.3. Computation of steady profiles

All of the dynamic computations reported in this paper have
steady initial conditions, and examining the steady profile
itself is also instructive. The steady profile is obtained from
Equation (1) by setting 0H /0t = 0. Then, from Equation
(2) and the zero-flux condition at the divide, we obtain

Q@ﬁgffﬁzzaRana (12)
q(0) =0, (13)
which can be integrated to give
alR
q(0) = - (1 — cosb). (14)

We discretize over latitude 6 by constructing N 4 1 nodes
with index k € (0, N). By expressing the flux in terms of a
finite-difference formula as a function of the ice thickness i
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and upper surface elevation s at the two successive nodes (k
and k 4 1) of the grid, we obtain from Equation (3)

O (Hp+ Hpp M s — s\
Qk+1/2——ﬁ 9 Te , (15)

where the subscript k + 1/2 stands for the flux at the grid
centre between the nodes k and k + 1, and Ay represents the
difference in co-latitude between two gridpoints. Compu-
tation of the steady profile consists of a backward integration
from the grounding line up to the ice divide.
The ice thickness at the grounding line H, obeys the
flotation criterion (Van der Veen, 1985; Hindmarsh, 1996)
H(em) =H,= &f(em) = &fnn (16)
pi Pi
where py, is the sea-water density (1028 kg m %), O, is the
prescribed span in degrees of latitude and fi, is the free
water depth at the grounding line (see Fig. 2). Equation (15)
1s solved for s; which, using the flux expression (14), gives

1

40(Or11/2) "

sk =sk1 + RAy C<Hk + Hk+1) i I
2

aR[1 — cos(By1/2)]

—sp11 + RA Hy+ Hya\""
Sk+1 0 C’(%) sin(0p11/2)

(17)
where 0}y /5 represents the position (k 4 1/2)Ag. In Equation
(17), (Hy + Hp+1)/2 s first approximated by Hyy1, leading to a
first estimate of s;, which is then used to yield an estimate of Hy,.
This latter value is then used for a more accurate estimate of
(Hy + Hy11)/2 in Equation (17) which is solved again. The
iteration 1s repeated until convergence is obtained. The conver-
gence 1s extremely fast since a relative variation in the solution
less than 10 " is reached after two or three iterations. The par-
ticular design of this scheme ensures consistency with the nu-
merical schemes used for the time-dependent equations
(Hindmarsh, 1996). When sliding is incorporated, Equation
(17) is modified by use of Equations (10) and (11) so that the term
[(Hi + Hyi1)/2]"™ in the denominator is replaced by
[(Hy + Hyn) /2 {[(Hy + i) /2] + ).

Throughout this study, we only consider isothermal ice
with a uniform flow law coefficient A(T') varying between
15x10 ®and 1.5 x10 " Pa * a ', which, according to Paterson
(1994), corresponds to ice temperatures between about —30°
and —10°C, respectively (without accounting for any enhance-
ment factor resulting from fabric). The exponent for the flow
law m has been set to 3, and the ice density is supposed to be
uniform and equal to 917 kg m °. Different steady-state profiles
are described in section 3.

2.4. Computing the response to forcing

24.1. Grounding-line migration and moving grid

Following Hindmarsh (1996), the time-dependent evolution
for the ice sheet is solved approximately using finite differ-
ences to discretize the continuity equation on a normalized
horizontal domain. Thus, we transform the spatial variable
by constructing a normalized co-latitude £ = /6, such that
the ice divide and the grounding line correspond to £ = 0 and
& =1, respectively, implying solution over the domain
¢ €10, 1]. It is known that such a transform permits (but does
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not ensure) consistency of the stability properties of the
discretized equations with those of the associated differential
equation. The grounding-line (angular) velocity O s
computed from a total differentiation of the flotation criterion
(16) at the grounding line with respect to time; such a form is
equivalent to a statement of mass conservation (Salamatin,
1989; Hindmarsh, 1996). Then, by replacing 0Hy, /0t by its
expression in the continuity equation (1), and 9/00 by
(1/61) (0/0¢), we can follow the procedure in Hindmarsh
(1996), but now in the different {-coordinate system used in
this paper, to obtain

Pw % 1 9(qy sin 0)

j P O Rbysing, O L_l—a(em)
m= 1 0H pe 1 Of ’
Ou 06 5 pi 0w O,
(18)

where Ofy, /0t is the time derivative of the free-water depth at
the grounding line. Since we neglect local variations in sea
level arising from variations in the elevation of the geoid, the
sea surface 1s assumed to be uniformly flat throughout time so
that (9f/0€)|c—y = (—0b/0€)|¢_;. The quantity fin/0; is the
difference between the eustatic rate of sea-level change and the
rate of change of bedrock elevation. Owing to grid motion
consequent upon changes in the ice-sheet span (6y,), the trans-
formation to the normalized domain introduces an advection
term (£60,/61) (Oh/OE) into the continuity equation, leading
to the expression

6_H_a(0)_ 1 O(gesinb) | &6n OH
o Rb,sinf ¢ O OF°

The discretization using an explicit time-stepping scheme

(19)

for Equation (19) as well as that for Equation (18) are given
in detail in the Appendix.

In the numerical experiments reported below, the forcing
consists mainly of sea-level changes which influence the
dynamic behaviour via the grounding-line migration (see
Equation (18)). Temperature changes also exert a strong control
on the rheological properties of ice through the temperature-
dependent rate factor A(T') (see, e.g., Paterson, 1994). How-
ever, temperature changes within the ice sheet in response to
climatic forcing are neither uniform nor instantaneous, and
these complex thermomechanical coupling effects are consid-
ered in the companion paper (Hindmarsh and Le Meur, 2001).
Our main concern in this paper is understanding the coupling
between ice flow and bedrock deflection.

3. RESULTS WITH A UNIFORM BEDROCK ELEVATION

3.1. Steady profiles

Steady profiles were computed using the iteration (17) for
different combinations of the parameters defining ice-sheet
and bedrock geometry and the accumulation rate. We first
tried to reproduce two major typical sizes with initial ice-
sheet semi-spans of 500 and 1000 km, representative of the
modern West and East Antarctic ice sheets, respectively.
The rate factor A was also adjusted depending on the size of
the ice sheet. The larger ice sheet is assumed to consist of
relatively cold ice (~—30°C with a corresponding rate factor
A =15x10 ""Pa ?a '), while the smaller ice sheet had a rate
factor of 1.5 x10 "7 Pa *a ! roughly corresponding to —10°C.
Basal sliding was also included in some of the calculations
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for the warmer ice sheet. This requires a slightly modified
computation as described in section 2.3. The effects of the
depth of the base (in particular the depth at the grounding
line) were also investigated for the smaller ice sheet with
values of both 500 and 1000 m below sea level used.

In addition, the consequences of different accumulation
distributions were considered. We first considered uniform
accumulation rates all over the ice-sheet surface, choosing
0.03 and 0.05ma ' as accumulation rates for the larger and
smaller configurations, respectively. We also introduced
spatial variation into the patterns by constructing them to
increase exponentially from the ice divide to the coast.
Calling ay the accumulation at the divide, and assuming
the accumulation rate to be agk, at the margin (grounding
line, 8 = 6,,), the general expression for accumulation rate
as a function of co-latitude becomes

a(0) = ayexp (M) . (20)

Orm

In that case, the steady continuity equation (12) becomes

O(qp(0) sin 6 O1n(k
% = ad%sin@exp(%). (21)
Integrating by parts twice yields
R In(k,) .
qo(0) sin = 0 5 <n( JSIH@—COSQ)
1+ ln(ka‘) om
0“1 (22)
0 1n(k,
p (M> + Cla
9111
and application of the zero-flux condition at § = 0 yields
oo mh -
L+ In(k,)
9Hl
We then obtain
agR
4o(6) = TR
sinf|1+ <M>
m (24)

) {(lné()ka) sin f — cos 0> exp (%) +1.

This new expression is used in Equation (17) in exactly the
same way as previously described.

The different parameter combinations used here are sum-
marized in Table 1. All the different accumulation param-

Table 1. Parameter sets used in Figure 3

Run RO, A/ Ag Sliding —b ao ks
km m ma !
1 1000 0.015 No 1000 0.03 1
2 1000 0.015 No 1000 0.03 10
3 1000 0.015 Yes 1000 0.03 10
4 500 0.15 Yes 1000 0.05 1
5 500 0.015 Yes 1000 0.05 1
6 500 0.15 Yes 1000 0.05 10
7 500 0.15 Yes 500 0.05 10

Notes: Ag is the European Ice-Sheet Modelling Initiative (EISMINT)
standard rate factor at pressure-melting point 10 ' Pa > a™! (Huybrechts
and others, 1996). Sliding, when specified, occurs only in the outer third
of the ice sheet with v = 1.
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Fig. 3. Imtial steady-state ice-sheet profiles corresponding to
parameler sets defined in Table 1 and computed according to
Equation (17).

eterizations are labelled with the corresponding (ay, ka)
combination (note that k, = 1 gives a uniform accumulation
rate). Where sliding is specified, the ratio a = 1. Correspond-
ing computed profiles are shown in Figure 3.

All the profiles exhibit the characteristic parabolic shape
for steady-state ice sheets. Since the marginal accumulation is
greater, the configuration where the accumulation rate varies
in space leads to an increased total ice input and therefore a
thicker ice sheet (compare runs 1 and 2 as well as runs 4 and
6), despite the fact that the same accumulation rate obtains at
0 = 0. Allowing for basal sliding for £ € [2/3, 1] increases the
overall ice velocity which, under the same accumulation pat-
tern, gives a thinner steady ice sheet (compare runs 2 and 3).
Run 5 uses a rate factor A =15x10 " Pa *a !
magnitude smaller than run 4. It indicates that the resulting
colder ice, by being more viscous, deforms less readily and
leads to a thicker ice sheet. Finally, run 7 shows the effect of a
shallower depth for the bedrock. In comparison with run 6,

, one order of

we see that the effect of increasing the bedrock elevation by
500 m increases the ice surface elevation by almost the same
amount close to the divide. Since the two systems are in steady
state, the necessity of maintaining the same flux through the
decreased thickness required by the flotation condition
implies that the margin slope is much greater for the
shallower sea (as already shown in Hindmarsh, 1996). This
can in principle have an influence on the evolving ice sheet,
since rate of expansion depends on the ice surface gradient
(see the term (OH /9€)|._; in Equation (18).

3.2. Time-dependent response

3.2.1. Validation of the marching scheme

In all experiments we computed a steady state with a certain
parameter set, and then integrated it through time, in general
changing the parameter set at t = 0. A necessary condition
for the numerical method to be valid consists of integrating
the marching scheme (Equation (Al) in the Appendix) with
exactly the same parameter set as that used to define the
steady state and ensuring that the resulting configuration lay
sufficiently close to the steady-state one. For runs 2 and 6 (the
most realistic parameter sets for East and West Antarctica,
respectively) we obtained almost exactly the same profiles
after 10kyr of integration: the grounding line retreated by
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Fig. 4. Grounding-line advance or retreat after 10 kyr in response
to sea-level fall or rise for both the small (500 km; b, d) and the
large (1000 km; a, c) ice sheet with the two different bedrock
depths (—1000m (a,b) and—500m (¢, d) ). The initial steady
profile is plotted with a dashed line, as are the final sea-level
stands at the end of the simulation (£50 m ). No bedrock deflec-
tion is permitted in these calculations.

only 0.52 and 1.40 m, respectively, while the thickness at the
ice divide changed by about 60 and 40 mm, respectively.

3.2.2. Sea-level forcing

We now consider transient effects induced by sea-level
changes. Sea-level fall and rise at a constant rate of
13mma ' are considered over a period of 10kyr. This
replicates the 130 m sea-level change between glacial and
interglacial epochs; the rate of rise is comparable with the
average rate during deglaciation. The computed profiles as
well as the initial steady profile for the two ice-sheet sizes
and bed configurations are shown in Figure 4. For the larger
ice sheet, the other parameters are as for run 2 (Table 1),
whereas the configuration for the smaller ice sheet is as for
run 6, but basal sliding is not permitted. When sea level
increases, the outermost part of the ice sheet is floated off,
thereby leading to a grounding-line retreat. Conversely, a
sea-level drop permits a grounding-line advance.

At this stage, it 1s worth pointing out the difference
induced by uniform and spatially varying accumulation
parameterizations on the ice-sheet evolutions driven by
sea-level change. Owing to the local character of the flux
equations (3) and the ice-thickness change at a given point
in space (Equation (19) without the advection correction
term (£01,/6y) (OH/OE)), changes in the grounding-line
position cannot modify the inland ice-sheet profile, pro-
vided the accumulation is spatially uniform. On the other
hand, the exponential dependence of the accumulation
term on normalized position leads to a time-varying accumu-
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Fig. 5. Effect of spatially uniform (case 1) and non-uniform
accumulation rates (case 2) on ice-sheet retreat in response to
sea-level rise (the parameter set here corresponds to Figures 4b
and 6b ). These experiments were repeated with twice as many
gridpoints (200) ( corresponding grey curves, which superpose al-
most exactly on the 100-gridpoint black curves in the zoom box ).

lation term at a given location as the span changes, which in
turn will perturb the ice-sheet profile (Fig. 4). In other
words, the accumulation rate varies as a function of normal-
ized position, which means the accumulation rate at a given
position in physical space changes as the grounding line
moves. Ultimately, this causes the ice-sheet elevation to
change in the grounded area. Owing to the relatively small
change of the ice-sheet span, this change in thickness is not
very pronounced in Figure 4.

Some cases where this effect is more obvious are shown in
Figure 5, which shows the effect of spatially uniform and
non-uniform accumulation rates upon ice-sheet retreat in
response to sea-level rise (the configuration here corres-
ponds to Figures 4b and 6b). Accumulation rates are the
same (50mma ') at the divide, but are 10 times larger at
the margin for the non-uniform case. This means that the
margin flux for this case 1s larger, meaning that the slope is
larger and the whole ice sheet is thicker. The larger slope also
means a lesser retreat. In the uniform-accumulation-rate
case (case 1, Fig. 5), ice-sheet elevation does not change in
grounded areas owing to the local form of the flux expression
arising from the local form of the driving stress given by the
shallow-ice approximation. In the non-uniform case (case 2,
Fig. 5), as a result of the construction of the accumulation
distribution, changes in the grounding-line position cause
changes in the accumulation distribution within the ice sheet,
which means that the ice-sheet elevation in the grounded
arca changes as well. In order to produce a substantial
retreat, a very high sea-level change was specified (total rise
of 530 m). The fact that the uniform-case profile does not
change shows that the numerical method is working success-
fully. These experiments were repeated with twice as many
gridpoints (200), and very similar results were obtained (see
the corresponding grey curves, which superpose almost
exactly on the 100 gridpoint black curves in the zoom box).

Hindmarsh (1996) observed a significant change of ice
thickness at the ice divide by exclusively forcing his model by
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sea level, even though a uniform accumulation rate was speci-
fied, which is an erroneous result. This problem was solved by
using higher-order finite-difference methods (see Appendix)
which can be shown to produce dynamically consistent
numerical schemes using a suitable modification of the tech-
niques described by Hindmarsh (1996, appendices 1 and 2).

Figure 4 also shows the strong effect of the free water depth
at the grounding line where a shallower bedrock induces a
greater ice-surface gradient. This effect tends to reduce the
grounding-line migration arising from sea-level forcing. To
see why, we note that since the flux is locally determined and
its gradient is approximately in equilibrium with the local
accumulation rate, if forcing is due to sea-level change only,
the grounding-line formula (Equation (18)) reduces to

Py Ofm

p Ot
1 oH
em 85 521

ém = (25)

when the bedrock is flat. (In fact, for display purposes, the
accumulation rate in Figure 4 is exponentially varying in
space 1n order to prevent the different profiles from being
coincident, but the flux gradient continues to more or less
balance the accumulation rate, and the profiles are very close
to steady-state profiles) It is therefore clear from Equation
(25) that for a given rate of sea-level change Jfy,/0t (recall
there is no bedrock change being considered at the moment),
the grounding-line motion will be inversely proportional to
the marginal ice-thickness gradient (1/6n) (OH/0§)lc_;.
The computed grounding-line migration rates are extremely
small; they can also be shown to be consistent with the initial
margin-thickness gradient in Table 2 and Equation (25). The
small retreats are a consequence of the fact that the thickness
gradients are quite high owing to the ice being cold and there-

Table 2. Steady ice-sheet thickness gradient at the margin and
corresponding grounding-line retreat computed from Equation
(19) integrated over the 10 kyr

Case
a b ¢ d
Margin slope 0.0363 0.019 0.0674 0.047
Retreat (km) 4.0 7.7 2.2 3.1

Table 3. Effects of including basal sliding for case B in Figure
4 and inTable 2 in terms of total retreat after 10 kyr, ice surface
slope at the grounding line and traction number o

o 0 1 5 10 50 100 500 750 1000

Retreat (km) 80 97 133 159 246 297 442 484 514

Slope (%) 190 154 108 089 054 043 025 022 020
Slope (%) 157 129 091 075 045 036 021 018 016
w 6.88 556 392 323 196 156 092 081 073

Notes: o gives the ratio of the flux at the grounding line due to sliding to
that due to ice deformation. In all cases the percentage of the ice-sheet
span from the grounding line where sliding is allowed is 66% in order to
emphasize the effects of sliding. Row 2 refers to the steady-state profile at
the beginning of the simulation, while row 3 refers to the end of the simu-
lation after 10 kyr of sea-level rise (13 mma ). Traction number @ is the
ratio of surface longitudinal stress to basal shear stress.
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Fig. 6. Same experiments as in Figure 4, showing grounding-line
velocity (solid line) and ice-sheet span (dashed line ) during the
10 kyr of simulation. Retreats (negative velocities) and advance
( posttive velocities ) computations are shown for each case.

fore stiff. However, the range of slopes we compute for both
steady-state and time-dependent results (see Tables 2 and 3)
are consistent with observations of slope, which show a range
of 01% to several per cent (Mclntyre, 1983; Jackson and
Kamb, 1997). For some context, notice that a thickness gradi-
ent of only 0.1% will produce a retreat of 112 km for a 100 m
sea-level rise; such a retreat is still small compared with that
observed for the Siple Coast (Licht and others, 1996; Conway
and others, 1999).

We now consider cases with the same free water depth, but
for the two different ice-sheet spans (compare Fig. 4a with
Fig. 4b, or Fig. 4c with Fig. 4d). When the span is larger, the
grounding-line flux is also larger, leading to a greater slope at
the grounding line. This effect is compounded by the fact that
we have specified the experiment such that the larger ice
sheet also has a smaller rate factor. This slope difference has
predictable effects on the total displacement of the grounding
line, as well as the respective grounding-line velocity and ice-
sheet span for the same cases (shown in Fig. 6).

Table 3 shows the effects of including basal sliding for the
configuration corresponding to Figure 4b. One can see that
basal sliding increases the total retreat after 10 kyr, and it also
reduces the slope such that the geometrical considerations
described above still apply. Although sliding makes the ice
sheet more sensitive to sea-level rise, the total retreat after a
sea-level rise of 130 m over 10 kyr still remains limited.

Also noticeable from the total displacement after 10 kyr in
Figure 4 is the asymmetric grounding-line motion in
response to sea-level rise and fall, respectively. The ice sheet
shrinks slightly more easily than it expands. This is readily
interpretable once one realizes that the ice-sheet expansion
1s limited by the necessity of providing the extra ice volume
through accumulation, whereas nothing similar can prevent
the ice sheet from retreating as fast as sea level dictates. The
features are demonstrated in Figure 6, where the grounding-
line velocity and the ice-sheet span are plotted against time.
When considering retreat, the grounding-line speed steadily
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Fig. 7 Ice-sheet profiles after 10 kyr sea-level change for different
bedrock slopes (—0.5% ,0% and 0.5% ) at the grounding line.
Three insets labelled 1-3 (for grounding-line bedrock slopes
0%,0.5% and —0.5% , respectively) are shown, as well as
the corresponding ice-sheet profiles (labelled accordingly ). Inset
1 represents advance and retreat for the flat case (dashed black
profiles). Also visible in this box are the two geometries at the
grounding line corresponding to the 0.5% and —0.5% slopes.
Insets 2 and 3 represent the positive and negative slope cases,
respectively, at the grounding line. The steady-state ice profiles
are in black, whereas both retreats and advances are gray dashed
lines. Corresponding ice profiles all over the ice sheet appear in
the main frame ( labelled 1—3) and one can see that owing to the
uniform accumulation pattern, steady-state, retreat and advance
profiles coincide in all cases. The differences in steady profiles
arise as a consequence of a different bedrock depth for the ice-
sheet interior, with —1550 m_for case 2, —1000 m for case I and
=650 m for case 3. There ts no sliding or isostatic deflection.

increases, whereas with grounding-line advance, the velocity
reaches a maximum generally after about 1kyr and sub-
sequently decreases. This asymmetric behaviour appears to
depend upon the relative rates of accumulation and sea-level
change. For example, in case A, the discrepancy between the
retreat and advance magnitudes which is 13.5% with a sea-
level rate of change of 13mma ", is only 6.8% when the rate
of sea-level change is halved.

A final point is that given that the speed of retreat
increases in all cases, it may be of interest to address the
longer-term evolution of the ice sheet. However, if one wants
to reproduce a realistic deglaciation forced by sea level,
either a non-zero rate of change of sea level has to be
specified for the first 10kyr only (at the same rate of
13 mma "), or it needs be specified to last for longer but at a
lower rate. In the first case, after 10kyr of sea-level rise
(13mma ), the speed of retreat rapidly falls to zero within
<200 years, leading to the same total retreat after 50 kyr as
after 10kyr (in fact there is a slight decrease in the total
retreat of 40 m which is due to a slight readvance during
the last 40 kyr of constant sea level). In the second case, a
halved rate of sea-level change over twice as long a period
(20 kyr) leads to the same final retreat with rates which are
exactly halved. Similar results were also obtained in case of
ice-sheet advance in response to sea-level fall.
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4. SENSITIVITY TO UNIFORM BEDROCK SLOPE
AT THE GROUNDING LINE

It has been suggested by several authors (Hughes, 1973;
Weertman, 1974; Lingle and Clark, 1985) that grounding-line
motion is sensitive to the local bedrock slope (recall a positive
slope in our coordinate system means decreasing depths with
0 or £). The dependence upon the local sea-floor slope is in fact
discernible from the term (9f /0€)|c_; = —(b/ )|, in the
grounding-line velocity expression (18). We investigate this
dependence through a series of numerical experiments,
testing a range of slopes (Fig. 7). In the first instance, the effects
solely arising from slope variations were investigated by
keeping the depth at the steady-state grounding-line position
the same (—1000m) for all the cases. We restricted consider-
ation to the smaller ice sheet (initial span 500 km, A(T) =
15x10 " Pa’a 1, with a uniform accumulation rate of
50mma ' and with no basal sliding. Again, the simulation
lasts 10 kyr with a constant sea-level change (rise or fall) of
13mma . The results displayed in Figure 7 show an increas-
ing total retreat as the slope gets more positive (12.68, 14.44
and 16.75 km for slopes of —0.5% (case 3), 0% (case 1) and
+0.5% (case 2), respectively). Note the almost constant value
for the advance (11.39, 11.77 and 12.26 km for the same slopes,
which suggests that grounding-line advance rate is being
restricted by the accumulation rate.

The range of slopes is deliberately kept small since
guaranteeing a uniform slope in the zone where the
grounding line migrates has a strong influence on the
bedrock depth in the interior of the ice sheet (—650 m (case
3) and —1350m (case 2) for slopes of —0.5% and +0.5%,
respectively). Such changes in the bedrock configuration
modify the ice-sheet initial profile (see profiles 2 and 3 in
Fig. 7) and, in consequence, make the effects of grounding-
line slope difficult to isolate.

5. SENSITIVITY TO UNIFORM BEDROCK SLOPE
AND THE DEPTH AT THE GROUNDING LINE

The first results in section 3.2.2, where two sea-floor depths
were used, also showed an influence of the free water depth
on the grounding-line dynamics. The preceding sensitivity
study was generalized to assess the combined effects of both
the bedrock depth and slope at the grounding line. The same
simulation as the preceding one has been carried out where the
two parameters were varied between —0.5% and +0.5% for
the slope and between —1000 and —200 m for the water depth
at the grounding line. The contours in pale grey in Figure 8
represent the corresponding total grounding-line retreat after
the 10 kyr of simulation. The main result is the predominant
dependence on the free water depth (note how the contours
are shifted primarily along the depth axis). This effect pre-
sumably arises as a consequence of the effect of the free water
depth on the thickness gradient at the grounding line.

6. INCORPORATING BEDROCK DYNAMICS
6.1. Bedrock model

The results above have made it clear that any process
modifying depth and slope at the grounding line through
1sostatic Earth accommodation under surface-varying loads
will play a role in the grounding-line dynamics.

The bedrock model used here (Le Meur 1996a, b) is based
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Fig. 8. Total ice-sheet retreat in km after 10 kyr with a sea-level
rate of change of 1.3cma " shown as a_function of both the
bedrock slope and the free water depth at the grounding line.
Cases with and without isostatic deflection are shown. Initial
conditions are shown in Figure 7, which in particular shows
the areas where the bedrock slope is non-zero. In the case where
wsostatic deflection was incorporated, this bed profile was
taken to be in isostatic equiltbrium at the start.

upon previous approaches (Longman, 1962; Farrell, 1972; Wu
and Peltier, 1982) which led to a new generation of SGVE
spherical Earth models. Self-gravitation is a fundamental
aspect, and the perturbation in the gravity field induced by
deformation is not only explicitly computed but also fully
included as an extra driving force in the stress-balance
equations. The spherical approach is effected by a spectral
decomposition onto a basis comprising the spherical
harmonic system of orthonormal functions. The spherical
approach allows proper account to be taken of the radial
distribution of the Earth’s mechanical properties, especially
when computing the far-field response. The model incorp-
orates the entire mechanical structure of the planet from
the outer elastic lithosphere down to the core with a three-
layer mantle lying in between, where most of the isostatic
accommodation takes place. The Earth’s structure is
summarized in Table 4. A significant feature is the use of a
Maxwell body model to represent the viscoelastic response
of the mantle; this introduces the characteristic time-scales
which are mainly responsible for the Earth dynamics. The
viscoelastic approach is formulated using the conceptual
framework of the “correspondence” principle (Biot, 1954;
Peltier, 1974). The Green’s functions cause the solution to
have an instantaneous elastic response and several relaxing
viscous modes. The response to any loading history can be
obtained by a double space- and time convolution of these

Table 4. Earth parameters used in the unit bedrock model

Green’s functions with the space and time distribution of
both ice and water overburdens.

For the sake of more accurate results as well as a faster
computation, the model has been coded with the symbolic
manipulator Mathematica (Spada and others, 1990, 1992).
By replacing approximate numerical calculations with
exact symbolic operations, many of the propagating round-
off errors can be avoided in the numerous matrix products
involved. Given an Earth structure, the corresponding set of
Love numbers (amplitudes in the spectral domain from
which Green functions are summed later) represents the
actual output for the unit model. This only needs to be
computed once.

6.2. Asynchronous coupling between the two models

Following Le Meur and Huybrechts (1998) it was found that
computing the bedrock evolution every 100 years was a
sufficiently fine temporal resolution to reproduce correctly
the ice-sheet/Earth dynamics (the time-step for the ice
model being about 0.2 year). This time-scale emerges as a
consequence of the characteristic time-scales for the viscous
mantle response and is a trade-off between computational
effort and accuracy.

Following summation in a Legendre series of the elastic
and viscous Love numbers computed by the unit bedrock
model (see, e.g., Le Meur and Hindmarsh, 2000), the
impulse Green function response reads

G(0,t) = GE(0)5(t) + ZN: GY(0,1), (26)
=1

where G®(6) represents the elastic instantaneous Green’s
function, and Gy(e, t) each of the jth viscous-mode Green’s
functions. From there the bedrock response at time ¢ for any
of the kth gridpoint along the flowline (and also at sea) can
be expressed as

t
Ri(t) = / GWiiy it — 1)
<imjd>€Dk t—Amem

. H(ia,jg, t,) dt/Az,

(27)

where the summation represents the spatial convolution.
This consists of integrating the contribution to deformation
of all the neighbouring points lying within a circle of radius
1000 km. The circle (symbolized as Dy,) is discretized along
a local latitude (index ,,) and a local longitude (index j3),
and 7j_(;, j,) is the angular distance between the gridpoint
k and the point whose contribution is considered. The
element area is Ay = Rsin0AgAy where Ay, A, are the
grid dimensions on the surface of the sphere. It should be
noted that lithospheric rigidity causes the steady bedrock
response to deviate from local compensation, being now
partly driven by the neighbouring loads.

Core Lower mantle Upper mantle Lithosphere
6371-2900 km 2900-670 km 670420 km 420100 km 100-0 km

Viscosity (Pas) 0 5 x 102 5 x 1020 5 x 102 00
Density (kgm ) 1.09 x 10* 4.51 x 10° 4.12 x 10° 4.12 x 103 3.3 x 10°
Shear modulus (N m ?) 0 2.0 x 101! 1.1 x 101 9.5 x 100 7.3 x 1010

Notes: The inner solid core is not considered. The lower part of the upper mantle (670420 km) is sometimes called the “transition zone” The lithosphere is

assumed to be compressible with an elastic modulus A = 1.27 x 10" Nm 2
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The time integration expresses the fact that the current
response does not exclusively depend upon the current state
of loading, but also includes the contribution from past loads
(see H(ia,js,t') in Equation (27)) because of the delayed
viscous response. A memory period (Apen) therefore has
to be chosen according to the particular viscosity structure
of the model, so that the viscous response is completely
accounted for. In our case, with the viscosity values adopted
(see Table 3), it appears enough to convolve 15 kyr back in
time in order to retain >98% of the viscous response.

Every 100vyears, the loading function H(iq,jg,t) Is
updated from the current ice distribution and sea level, and
1s used to compute the new bedrock profile according to Equa-
tion (27). Bedrock response at sea is computed up to an appre-
ciable distance (1.5 X the ice-sheet span) from the ice-sheet
edge, since change of the depth of the seabed induces a load-
ing variation by modifying the water column. In this respect,
local sea-level changes induced by geoidal undulations should
theoretically also be taken into account. The need for such a
level of sophistication is, however, questionable since it would
require a global approach for solving the sea-level equation
(e.g. Peltier, 1994), with limited gains compared with the accu-
racy of both the ice-sheet and the bedrock models. Finally, the
newly computed deflection rate is used during the succeeding
bedrock interval (100 years).

7. RESULTS FROM THE COUPLED ICE-SHEET/
EARTH MODEL

7.1. Specification of initial conditions for the bedrock
deflection

The uncoupled SGVE model has the dynamics of a linear
system; in other words, it relaxes exponentially towards that
1sostatic equilibrium corresponding to the current loading.
The fact that linear systems admit superposition of solutions
gives us some flexibility in formulating initial conditions.
One possibility (method a) is to choose an ice-sheet span,
compute the profile on a flat bed, determine from this the
loading, and compute the steady bedrock deflection induced
by this load. With this deflection and with the same span,
one computes the new ice-sheet profile, and proceeds
iteratively until convergence is obtained. In practice,
around 20 iterations are needed for the same level of
accuracy as in the computation of the steady profile in
section 3. This approach has the merit of conceptual
simplicity, as we simply compute the steady deflection of an
initially flat bed, and the approach shows clearly what the
equilibrated Earth response to an ice sheet means in terms
of bedrock displacement. This aspect is considered in
section 7.3 where the bedrock response computed according
to method a reveals some interesting geometrical features.

In fact, as a consequence of superposability, a flat bed is
not a unique choice for a bed in isostatic equilibrium with a
spatially uniform load. Superposability means that we can
choose any bed profile and define it to be in isostatic equi-
librium with the initial ice-sheet profile. Lithospheric
deflections due to subsequent loading changes are readily
computable using superposition principles. We can justify the
approach by pointing out that in general the bedrock profile
corresponding to ice-free conditions will not be a flat bed. We
term this method b. We shall carry out investigations using
these two methods.
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7.2. Time-dependent response

The same sensitivity tests on the depth and the slope at the
grounding line as for a rigid bed (see section 5) were carried
out, but with the bedrock deflection included using method
b. The results (darker contours) are displayed along with
those computed for the rigid Earth (pale grey) in Figure 8.
For the parameter set considered, the inclusion of iso-
statically induced bedrock deflection results in an increase
in the total computed grounding-line retreat. This increase
becomes more pronounced for larger depths and, to a lesser
extent in this range of parameters, for greater slopes.

Figure 9 shows some ice-sheet and bedrock profiles arising
from these coupled evolutions. The 13 mm a ™' sea-level rate of
increase over the simulation leads to a total rise of 130 m
which significantly depresses the bedrock beyond the
grounding line. Underneath the ice sheet, the bedrock
deflection hardly changes. As shown in the lower zoom box
and in the upper inset, the bedrock response noticeably
increases the final water depth at the grounding line (from
1213 m to 1245 m, i.e. by about 15% ), whereas it has almost
no effect on the slope (change is less than one-fiftieth). Note
that since there are no physical mechanisms represented in
the ice-sheet model which allow substantial change of the
inland ice sheet, no isostatic recovery is expected and the
consequence of deglaciation of distal areas (e.g. in the
Northern Hemisphere) is increased bedrock deflection at
the grounding line via sea-water loading.

Owing to the fact that changes in the total loading around
the grounding line are relatively small (the ice which has
been floated off is replaced by a water column of similar
weight), the bedrock response there is mainly the result of
the regional bending of the lithosphere in response to the
sea-level change and to changes in the loading beyond the
grounding line (Fig. 9). A consequence of this is that the local
slope is hardly modified, whereas the free water depth at the
grounding line increases rather more (see the enlargement
and the time-dependent evolution of these two fields for both
cases 1n the upper part of Figure 9). The effect of the change in
bedrock deflection is to increase the rate of change of free
water depth, which has a similar effect to the sea-level forcing
This effect is directly detectable by inspection of the ground-
ing-line migration-rate formula (Equation (18)) where the
rate of change of bedrock elevation db/0t associated with
the rate of sea-level change contributes to the rate of change
of the free water depth Jfy, /Ot

7.3. The steady-state bedrock response

Finally we investigate the coupled response of ice sheet and
the Earth using method a, iteratively computing a steady
deflection corresponding to the ice-sheet loading; we now
assume that the ice-free bedrock profile is a flat bed (Fig.
10a) or with pre-existing topography as in Figure 9 (see
Fig. 10b). Note that ice-free conditions imply that the bed-
rock is now submerged, meaning that the additional load
we actually consider is that due to the ice freeboard. Both
panels in Figure 10 show the resulting steady configuration
when bedrock accommodation is either neglected (grey) or
accounted for (black) according to method a as previously
described. In particular, they show the effects of the rigidity
of the lithosphere on the overall geometry of the bedrock
response under an ice sheet.

The response is regional in the sense that it not only
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depends on the local load but also includes the contribution
from all neighbouring points lying within a certain
distance. In other words, since the sea level is kept constant,
the bedrock deflection due to the presence of inland ice
extends beyond the ice-sheet margin. A corollary is that
the rigidity of the lithosphere reduces the maximum
deflection compared with local compensation according to
Archimedes’ principle. For example, with an ice/astheno-
sphere density ratio of 917/3350, local compensation would
give a maximum depression below the ice divide of about
515 m instead of the 368 m we obtained (see Fig. 10a).

The more rigid the plate (generally the thicker), the
smoother the overall profile (less pronounced amplitude and
more widely spread features). In particular, this means that
the slope at the grounding line is strongly controlled by the
lithospheric thickness, a parameter which is unfortunately
poorly constrained and which probably undergoes strong
lateral variations.

8. CONCLUSION

This paper contains the results of some accurate calculations
of the coupled behaviour of marine-ice-sheet and lithospheric
evolution. We use a self-gravitating viscoelastic model for the
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Earth, and use a marine ice-sheet model which ensures
consistency between the dynamics of the governing equations
and the corresponding discretized (finite-difference) approxi-
mation.

Our main conclusion is that sea-level change and
lithospheric coupling are unlikely to play significant roles
in the retreat of marine ice sheets. The postglacial rise in
sea level would have caused no more than around 100 km
of grounding-line retreat for the WAIS, and figures of a few
tens of kilometres are more likely. These results are broadly
consistent with the retreat of East Antarctica, but we must
look to different mechanisms to explain the retreat of the
Siple Coast. There is no evidence that reverse slopes lead to
wnstability but they do increase sensitivity.

Incorporating coupling with lithospheric dynamics does
not produce markedly different effects, and we did not dis-
cover any change in the qualitative dynamics; the dynamics
remain dominated by the neutral equilibrium properties of a
marine ice sheet. A major physical reason for this is the fact
that a retreating marine ice sheet is replaced by a water
column which exerts a similar load to the ice load near the
margin. When sea level rises, the increased loading leads to a
lowering of the bedrock, which increases free water depth and
thus total grounding-line retreat.

Including sliding does have a significant effect on total
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Fig. 10. Computed steady bedrock deflections according to method a. This figure shows the regional nature of the deflection, which
oceurs as a consequence of lithospheric rigidity. Rigid Earth (no isostatic response) and corresponding ice-sheet profiles (with or
without isostasy) are also shown. (a) Ice~free equilibrated flat bed; (b) Ice-free bedrock with the same relief as in Figure 9.

retreat, but even with large amounts of sliding the total
retreat is an order of magnitude smaller than that required
to explain the postglacial retreat of the Ross Sea ice sheet.
This small retreat seems to arise from the fact that for a
given flux the margin slope is proportional to the inverse
cube root of the rate factor. The range of feasible margin
slopes is thus relatively small. Since retreat is inversely
proportional to margin slope, the range of possible retreats
is also rather restricted.

Clearly the presence of ice streams should be expected to
affect these results. However, (i) ice streams, being flatter,
should not be expected to have strong lithospheric coupling;
(i1) many of the sea-level rise effects discussed in this paper are
simply geometrical; and (ii1) highly enhanced sliding does not
affect results very much. We have carried out calculations with
enhanced sliding, inducing slopes comparable to those found
in the flatter parts of Ice Stream B, and have not found suffi-
ciently large retreats to explain the postglacial retreat of the
WALIS (Table 3). The implication of these studies is that mar-
ine ice-sheet retreat is caused by other processes, which might
include ice-stream processes. Some of these are considered in
the companion paper (Hindmarsh and Le Meur, 2001).
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APPENDIX

SPATIAL DISCRETIZATION AND THE EXPLICIT
TIME-STEPPING SCHEME

By using normalized coordinates £ the spatial discretization
with an evolving span can still be dealt with similarly to the
steady state as described in section 3. The elementary differ-
ence in co-latitude between two successive gridpoints now
reads Ag = A¢by, with A¢ = 1/N, N being the total number
of gridcells. From Equation (19), and from the discrete
expression for the flux at any intermediate point (k+ 1/2)

as in Equation (15), the explicit time-stepping iteration
scheme for the ice thickness becomes:

Hi™ = Hj + A
_qZH/QSin[(k + I/Q)Agem] _q;;,l/QSin[(k_ 1/2)A§0m]
Rsin(£0),) Act,
KAWL (Hj,, — Hj )
2000 ’

ai

(A1)
where k is the position index such that kA = &, i is the time
index and A; the time-step. For ¢/, the grounding-line
angular velocity at time-step %, we get from Equation (18):
pw [ SL' = SL=' by — by
Pi At AT
q?\ul/Q sin[(k — 1/2) At — qn—3/2 sin[(k — 3/2) Al

Rsin[(N — 1)A8 |A0

N
em -

i Pw bJN+1 B bg\/—l
— Dy(H —_ ===
+ —ay_y/ | De(Hy) + PRI

(A2)

Note that due to the discretization, [0(gg sin 0)/9¢] cannot be
evaluated rigorously at £ = 1. When no bedrock deflection is
accounted for (as in sections 3-5), the bedrock evolution
(b — b%l)/AT is zero and the sea-floor slope at the
grounding line (b}, — by_;)/(20}, A¢) is given by the initial
steady-state topography for the simulation. Where isostatic
deflection 1is included, these two terms are explicitly
computed by the bedrock model but less often than for the
ice-sheet model (the reason for a different time index j, and
time-step A;).

Here, Dy is the ¢th-order finite-difference expression for
the slope at the margin. For example, Dy =
(3HY —4H' |+ HY_,)/(2A¢#), and higher-order for-
mulas may be readily computed using Taylor expansions. It
was found that higher-order formulae substantially increased
the accuracy compared with the first-order formula used by
Hindmarsh (1996) and that in all the computations here we
used a fifth-order formula. In practice, we used the numerical
algorithm for finite-difference weights due to Fornberg (1996)
which for fifth order gives

D; =
137H), —300H:, | +300H, , —200H, , +75H! , — 12H},
60A D! '

m

(A3)
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