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One Level Density for Cubic Galois
Number Fields

Patrick Meisner

Abstract. Katz and Sarnak predicted that the one level density of the zeros of a family of L-functions
would fall into one of five categories. In this paper, we show that the one level density for L-functions
attached to cubic Galois number fields falls into the category associated with unitary matrices.

1 Introduction

Given an L-function, the one-level density is the function
ylog X
(L, f):= —,
()= L 1(55)

where f is an even Schwartz test function and the sum runs over all non-trivial zeros
of the L-function p = 1/2 + iy. The Generalized Riemann Hypothesis tells us that y
will always be real. However, we do not suppose this.

Remark 1.1 The log factor in the definition of the one-level density is to ensure our
zeros have mean spacing 1.

One can think of f as a smooth approximation to the indicator function of an
interval centered at 0. Therefore the one-level density can be thought of as a measure
of how many zeros are close to the real line, the so-called low-lying zeros.

For a suitably nice family J of L-functions and Schwartz function f, Katz and
Sarnak [5] predicted that

(2(LN), = lim = > ()= [ FOWG) (0L,

m ———
X=oo [F(X)] 1)

where the F(X) are finite increasing subsets of ¥ and W (G)(t) is the one-level den-
sity scaling of eigenvalues near 1 in a group of random matrices (indicated by G). This
group, G, is called the symmetry type of the family .
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Moreover, Katz and Sarnak predicted that W(G)(t) would fall into one of these
five categories

1’ G = U)
sin(27t) —
1- 820m) G =Sp,
W(G)(t) = {1+ 185(1), G=0,
1+%’ | G = SO(even),
1+ 80(1) - #55, G =S0(odd),

where § is the Dirac distribution and U, Sp, O, SO(even), and SO(odd) are the groups
of unitary, symplectic, orthogonal, even orthogonal, and odd orthogonal matrices,
respectively.

1.1 Number Fields

In this section, we will discuss some known results for L-functions attached to number
fields.

For any number field, K, define (k(s) = 3., Na™*. Denote {g(s) := {(s). Then the
L-function associated with the field K would be

_ Ck(s)
¢(s)

Further, if we denote the discriminant of K by Dk, then the one-level density will be

LK(S)

ylog Dk
1.1 P2(K,f) = — >
(1) N =25
i.e., set X = Dg. Then Katz and Sarnak [4] proved the following.

Theorem 1.2  Let F(X) be the family of number fields of the form Q(\/8d) with
X < d < 2X and d square-free. Assuming GRH, if supp(f) c (=2,2), then

NS > @(K’f):wa(t)W(Sp)(t)dt.

lim
Xeo [F(X)) KeJF(X)

Therefore, we see that the symmetry type for quadratic extensions is symplectic.

Further, in his thesis [11], Yang considered the family of cubic non-Galois number
fields.

Theorem 1.3  Let N3(X) denote the set of cubic fields of discriminant between X and
2X and whose Galois closure is S3. If supp(f) c (-1/50,1/50), then

. 1
lim ———
X—oco [N3(X))|

> oK)= [ FOWsp) (e

KeN3(X)

Therefore, the symmetry type of cubic S3-fields is symplectic as well.

https://doi.org/10.4153/CMB-2018-002-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2018-002-4

One Level Density for Cubic Galois Number Fields 151
1.2 Function Fields

Every finite extension of Fy (¢) corresponds to a smooth projective curve C. We define
the zeta-function of the curve as

n

> u
Zc(u) = exp ( > N,,(C)—) ,
n=1 n
where N, (C) is the number of IF ;-rational points on C. Since the GRH is known for

Zc(u) (proved by Weil in [9]), we have

Le(u)
(1-u)(1-qu)’

where Lc(u) is a polynomial that satisfies the function equations

Zc(u) =

Le(u) = (quz)ch( qiu)

where g is the genus of the curve C and all its roots lie on the “half-line” [u| = g7/2.
Hence, we can find a unitary symplectic 2¢ x 2¢ matrix O, called the Frobenius class
of C, such that

Lc(u) = det(I-u\/q0¢).

Then the zeros of Lc(u) correspond to the eigenangles of @ c.
Since the eigenangles of @ are 27-periodic, we need to modify the one-level den-
sity definition a bit. So, for an even Schwartz test function f, define

F0)= 5 (N5, )

so that F is 27-periodic and centered on an interval of size roughly 1/N. Then for any
N x N unitary matrix U with eigenangles 6, ..., Oy, define

Zi(U) = 3. F(6)).
j=1

Finally, we then get that the one-level density for C will be
I(Le. f) =Z5(Oc).

The literature on the one-level density in the function field setting give slightly
different predictions than in the number field setting. For a suitably nice family of
curves J and even Schwartz function f, the literature predicts

1
50 Cé{fz(x) 24(0¢) = fG Z;(U)dU +o(1),

where G is the symmetry type and dU is the Haar measure.
Specifically, Rudnick [7] proved the following theorem.

https://doi.org/10.4153/CMB-2018-002-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2018-002-4

152 P. Meisner

Theorem 1.4  Let q be odd and let F,4,, be the set of hyperelliptic curves with affine
model C:Y? = f(X) with deg(f) = 2g + 1 (and thus the genus of C is g). Then if

supp(f) c (-2,2),

1

1
— Z:(O¢) = / Z(U)dU+0O( — ).
|:¥2g+1| Ce;z:gﬂ f( C) USp(2g) f( ) ( g)

Hence, the symmetry type of hyperelliptic curves is USp(2g). This is to be ex-
pected, as all these curves correspond to quadratic extensions, and Theorem 1.2 shows
that quadratic extensions in the number field setting have symmetry type Sp.

Bucur, Costa, David, Guerreiro, and Lowry-Duda [1] proved the following theo-
rem.

Theorem 1.5 Let E3(g) be the family of cubic non-Galois extension of Fq(X) with

-~

discriminant of degree 2g + 4. Then there exists a 5 > 0 such that if supp(f) c (=, B),
then

. > Zf(GC):f

1
Zi(U)du+0(—).
‘E3(g)| CeEs(g) USp(2g) f ( g)
This again, matches with what is know from the number field case in Theorem 1.3
as a cubic non-Galois extension would have Galois closure Ss.
Finally, in the same paper Bucur, Costa, David, Guerreiro, and Lowry-Duda extend
RudnicKs result.

Theorem 1.6  Let £ be an odd prime, q =1 mod ¢, and let T, be the moduli space

of curves of € covers of genus g. Then if supp(f) c (—75> 75), then
1 1
— Zi(®¢) = [ Zs(U)dU+0O[ —).
|Fgel cgu s(6c) U(2g) s(U) ( g)

Here, we see a new symmetry type, that of U(2g).
1.3 Main Theorem

The aim of this paper is to calculate the one-level density over cubic Galois number
fields. Noticing the parallels in the function field setting, and the number field setting
we can use Theorem 1.6 to predict that the symmetry type we should expect is U.
Indeed, that is what we find.

Theorem 1.7  Let F3(X) be the family of cubic, Galois number fields of discrimi-

nant between X and 2X. Then if f is an even Schwartz test function with supp(f) c
(-1/14,1/14), we have

1 ° 1
o0 o, 70 S fow)@dof <)

Moreover, if we assume GRH, then we can take f with supp(f) c (<1/2,1/2).
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Two of the key ingredients of Theorem 1.7 are (1): 3 is a prime and (2): Z[{3] isa
PID. Therefore, the same arguments could be extended to the family of Z/pZ Galois
number fields where p is an odd prime such that Z[{, ] is a PID. Unfortunately, these
conditions are very limiting as this is only true for primes less than 20. However, with
this and Theorem 1.6, it is reasonable to conjecture the following.

Conjecture 1.8  Let p be an odd prime and let T, (X) be the family of Z./ pZ Galois
number fields of discriminant between X and 2X. Then there exists a 3 > 0 (depen-
dent only on p) such that for every even Schwartz test function f such that supp(f) c

(=B, B), we have
> o= [ fowuna.

1
lim ———
X=oo |Fp (X)] ke ()

2 Classifying Cubic Galois Extensions
In this section we will give a construction for all cubic Galois extensions of Q.

2.1 Class Field Theory

We will begin by stating some main results of class field theory. For general reference,
we refer the reader to [2].

Let K bea global field. Denote by D(K) the group of divisors of K. For any effective
divisor m € D(K), define

Dm(K) = {D e D(K) : supp(D) nsupp(m) = &},
Pu(K)={(a):aecK*;a=1 mod P4 (™ forall places P of K},
Clm(K) = D (K) /P (K).
For a divisor D, we use supp(D) to denote the support of D: the set of primes that
appear in D with non-zero coeflicient. This is not to be confused with the support of

a function as used in Section 1. P, (K) is the ray of K modulo m, and C¢,, (K) is the
ray class group of K modulo m.

Theorem 2.1  There is a one-to-one correspondence between finite abelian Galois
extensions L of K unramified outside of m with Galois group G and subgroups H of
Clw (K) such that G = C¢,, (K)/H.

If we set K = Q, then D(Q) 2 Qs and effective divisors correspond to positive
integers. Hence, we will write an effective divisor of Q as m instead of m to illustrate
that it is an integer. Further, we will denote by supp(m) the set of primes dividing .
Therefore, from the definitions, we get that

Cln(Q) = (Z/mZ)".
Moreover, if we want to find subgroups of €2,,(Q) such that
Cln(Q)/H=Z/3Z
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it suffices to look for subgroups of index 3 of the three torsion subgroup of the ray
class group:

Cln(Q)[3]=(z32)°" x T[] z/3z,

plm
p=1 mod3

where 8, = 1if 9|m and 0 otherwise. Finally, since C¢,,(Q) is a finite abelian group,
subgroups of C¢,,(Q) of index 3 are in one-to-one correspondence with subgroups
isomorphic to Z/37Z.

Before we state the next result, we need a definition.

Definition 2.2  Call an integer 3-split if all its prime divisors are congruent to 0 or 1
mod 3.

Lemma 2.3  For any integer m, there is a two-to-one correspondence between cube-
free 3-split integers, D, such that supp(D) c supp(m) and cubic Galois extensions of Q
unramified outside of the primes dividing m.

Proof As was stated above, there is a one-to-one correspondence between Z/3Z
subgroups of C¢,,(Q)[3] and cubic Galois extensions of QQ unramified outside of the
primes dividing m. There is a one-to-two correspondence between such subgroups
and non-zero elements of

Cen(Q3]=(Z/32) x [ ZJ3L.
plm
p=l mod 3

Let e, be the coordinates of a element in ¢, (Q)[3]. Now we construct the cube-free
3-split integer as
D:= [T »r

plm
p=0,1 mod3

This correspondence is one-to-two, since there are two generators for each subgroup.
|

Corollary 2.4 Let D; and D, be two distinct cube-free 3-split integers. Then they
correspond to the same cubic Galois extension of Q if and only if there existsa D € Q
such that D, = D?D?.

Proof Let

D; = HPe"’i

be the prime factorization of D;, i = 1,2. Then by the proof of Lemma 2.3, we see
that Dy and D, correspond to the same cubic extension of Q if and only if the vectors
(ep,1) and (e, 2) generate the same subgroup in €2, (Q)[3] where m is any positive
integer such that supp(D;) Usupp(D,) c supp(m). Since D; # D,, this is if and only
ifep, = 2e,,; mod 3 for all primes p. Setting

ep2—2¢p 1

D=[]p™ >

suffices. |
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2.2 Explicit Correspondence

In this section, we will construct an explicit correspondence between cube-free 3-split
integers and cubic Galois extensions of Q.

Let {5 be a primitive cubic root of unity and denote K = Q({3). The following are
well-known facts about the cyclotomic field K.

Lemma 2.5 (i) The only ramified prime in K is 3, and a prime p splitsif p = 1
mod 3 and is inert if p =2 mod 3.

(i) O =Z[{s] is a PID.

(iil) O = {£1, +G, 3}

(iv) K/Q is Galois with Gal(K/Q) = Z/27Z

Denote the unique prime dividing 3 in Ok by %3;. Hence, 30k = 32. Moreover,
denote the unique generator of Gal(K/Q) by o.

Lemma 2.6 Let D be a 3-split integer. Then there exists Dy, D, € Ok such that
D = +D,D,, 6(Dy) = D, and ged(Dy, D,) = B2,

Proof Since D is 3-split, we can write

D=3%T]p%,
pID
p#3
where all the primes appearing in the product have the property that p =1 mod 3
and hence split in K. That is, we can write pOg = 1'B,, where Py = ,.
Define
@,’ = H %;P.
pID
p#3

Since Ok = Z[{3] is a PID, we can find D} such that ; = (D}). Moreover, since
DY = Py, we can assume ¢ (D)) = D). Now we notice that 3 = (1- {3)(1-{3). Define

Dy =(1-{)%D) Dy,=(1-)%D),.

Then o(D;) = D, and DOk = (D1 D,). Therefore, D = uD; D, for some unit u of O.
However, since both D and D, D, are fixed by o, we see that u is also fixed by o, so
u ==+l

Finally, we remark that gcd(Dj, D) =land B3 = (1- )0k = (1- ()0, W

Definition 2.7  For any 3-split integer, we will call the factorization D = +D; D, as
in Lemma 2.6 its 3-split factorization.

Remark 2.8 The 3-split factorization of an integer is not unique. It depends on
choices of primes 3 € Ok dividing 3-split primes p € Z. As we will see, the classifi-
cation depends on the choice of factorization of the 3-split primes in Ok, and hence
is not canonical. However, when we count such extensions this choice will not mat-
ter (as it shouldn’t). Therefore, for every 3-split prime p # 3, we will fix a prime
P € Ok dividing it and thus fix its 3-split factorization p = £p;p, where B = p;Og
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and P = p,Ok. Further, we fix a generator of *J3;, the unique prime dividing 3, to be
1 — (3. Consequently, this fixes a 3-split factorization of all 3-split integers.

As aresult of fixing these primes we see that if D and E are two 3-split integers with
3-split factorizations D = +D;D; and E = £E, E,, then gcd(Dy, E,) = ged(Ds, Ey) =
P4 for some integer e. This is due to the fact that the primes dividing D, and E; are the
B corresponding to the primes p dividing D and E, respectively, whereas the primes
dividing D, and E, are the 37.

Lemma 2.9  For any 3-split integer D with 3-split factorization D = +D,D,, the
extension K}, := Q({5,/D1D?) is a Galois extension of Q with Galois group Z/6Z.

Proof By Kummer theory, we have that K}, is a Galois extension of K with Galois
group Z/3Z (since y3 c K). Let 7 be a generator of Gal(K, /K) such that 7(y/D;D3) =
{33/ D1 D3 and let o be the generator of Gal(K/Q) as above.

We know that 0(D;D3) = D?D,, and so, up to a choice of cube root of D D,, we

get 0(y/D1D2%) = /D?D,. Therefore, K7, is a Galois extension of Q.

Thus, ¢ is an element of order 2 and 7 is an element of order 3 in Gal(K},/Q).
Hence, 0 and 7 generate Gal(K,/Q), since [K}, : Q] = 6. So it remains to show that
o and T commute.

Clearly, 07({3) = 70({3), since 7 fixes K. Now,

O'T( \3/ D]D%) = U( (3\3/D1D§) = 53\3/D12D2,
2 2
3/D DZ 23 D DZ _
70(3/DiD3) = 7(3/DiDy) = (¥ Dlz )= VD: 2 - {3/DD,.

Therefore, ¢ and 7 commute and Gal(K},/Q) = Z/6Z, as claimed. [ |

Let H={1,0} c Gal(K,,/Q) and let Kp, = (K},)¥ be the fixed field of H. Then

Kp = Q(3/DiD% +/D?D,)

is Galois with Gal(Kp/Q) = Z/3Z.

Lemma 2.10 Let Dy, D, be distinct 3-split integers. Then Kp, = Kp, if and only if
there exists a D € Q such that D, = DD

Proof Since K}, = Kp,({3) and Kp, = (K}, )", we have Kp, = Kp, if and only if
K}, = Kp,.

Let Dy = +Dy D15, Dy = £D, 1D, » be the 3-split factorization of D; and D,. Then
Kummer Theory applied to K tells us that K}, = K7, ifand only if there exists E € K*
such that

(2.1) Dz,ng,z = D1,2D3,1E3'

Let p # 3 be a prime and let ‘P be the fixed prime lying above it in Og. Then by
Remark 2.8, we have that 3 does not divide D, ; nor D5 ;. Thus, vz (Dy,1) = v,(D1)
and v (Dy,2) = vy (D3).
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Combining this with (2.1), we get
vp(D2) = v(D2,1D;3,) = vy (D12Di, E*) = 2v,(Dy) + 3v (E).
In particular, v,(D;) = 2v,(D;) mod 3.

Finally, if we let 35 be the unique prime lying over 3 in K, and consider just the
powers of 33 appearing in (2.1), then by the construction of the 3-split factorization
we get i

3V3(D2)(1 _ (3)V3(Dz) — 3V3(D1) (1 _ (S)VS(DI)Eg’,
where Ej is the part of E divisible by 35. Using the fact that1— {3 = 3/(1 - (3) and
rearranging, we get

(2.2) 32v3(D2)-vs(D1) _ (1 _ {3)V3(D1)+V3(D2)E§"

Now, E3 = u(1 - {3)" for some unit u and some integer n. Since all the units satisfy
u® = +1, we have E; = +(1-{3)*". Therefore, (2.2) implies that v;(D;) +v3(D;) = 3n.
In particular, v3(D;) = 2v3(D;) mod 3, as required. ]

Proposition 2.11  The two-to-one correspondence from cube-free 3-split integers D
such that supp(D) c supp(m) to cubic Galois extensions of Q unramified outside the
primes dividing m, as in Lemma 2.3, can be explicitly given by

D +— Kp =Q(~/DiD3 ++/D?D,).

Proof We must first show that this map is well defined. That is, that Kp is cubic,
Galois, and unramified outside of the primes dividing m. We have already shown that
Kp is in fact cubic and Galois. Since [K:Q] = 2 is coprime to 3 = [Kp:Q] = [Kp: K],
we see that a prime ramifies in Kp if and only if a prime lying above it in Ok ramifies
in K7, if and only if p|D. Therefore, the map is well defined. Finally, Lemmas 2.3, 2.10,
and Corollary 2.4 show that this map is two-to-one and surjective. ]

From now on, D will always denote a cube-free 3-split integer.
2.3 Discriminant

Denote Ap as the discriminant of Kp. If we let fp be the conductor of Kp, then we
have Ap = f. Theorem 10 of [3] states that v,(f) = 1or 0 if p # 3, while v3(f) = 2
or 0. Thus, we get that
(2.3) Ap=3* ]  p%
p ramified in Kp

where §p is1if 3 is ramified in Kp and 0 otherwise. Therefore, it remains to determine
which primes ramify in Kp.

As was mentioned in the proof of Proposition 2.11, a prime p ramifies in Kp if and
only if p|D. Since D is cube-free we can find d;, d, square-free, coprime, and coprime
to 3 such that D = 3"3(P)d,d2. Then we have

Ap = (9°°dyd,)?,

where 8p is 1if 3|D and 0 otherwise. (Note that this definition of 6 agrees with the
definition in (2.3) as 3 is ramified if and only if 3| D.)

https://doi.org/10.4153/CMB-2018-002-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2018-002-4

158 P. Meisner

Finally, recall that F3(X) is the set of cubic, Galois extensions of determinant be-
tween X and 2X. Then [10, Theorem 1.2] states that there exists a constant ¢, such
that

(2.4) |F5(X)] ~ cX/2,

3 L-Functions and Explicit Formula

Before we begin, we will fix some notation. We will denote p as a prime in Q, p as
a prime in Kp, and ‘B as a prime in K = Q({3). Hence, when we write an infinite
product over primes, the set of primes that we run over will be indicated by which of
the above three symbols we use. Moreover, we will denote by Np and N*J3 the norms
of p and P8 over Q. Later, in Section 4, we will also use € to denote a prime in Q and [
a prime dividing it in K and NI to denote the norm over Q.

For any prime p denote by e(p) and f(p) the ramification index and inertial de-
gree of p in K and by ep(p) and fp(p) the ramification index and inertial degree of
p in Kp. Further, let g(p) and gp(p) be the number or primes dividing p in K and
Kp, respectively.

3.1 L-Functions

Let {(s), {k(s) and {p(s) be the {-functions of Q, K and Kp, respectively. That is,

1y-1
{(s) = El(l_?) . k(s) = 1;[(1-
which all converge for R(s) > 1.

- Les)
Lg(s) = 70s)

be the L-functions of K and Kp, respectively.
Since both K and Kp are Galois, we can rewrite {x and (p as

1 1 1
N‘Bs) ; (D(S):IJ(I—NPS) ,

{p(s)
¢(s)

and Lp(s) =

1 &)
Ck(s) = IPT (1- pf(P)S)

>

1 -gn(p)
{p(s) = 1} (1‘ pfo(p)s)

From Lemma 2.5, we have that

(2,1,1) p=3
(e(p). f(p)-&(p)) =1(1L,1,2) p=1 mod3,
(1,2,1) p=2 mod3.

Therefore, it remains to determine the possible values of (ep(p), fp(p), gp(p))-
Since [K:Q] = 2 is coprime to [Kp:Q] = 3 and K}, is the compositum of K and
Kp, we get that if I3 is the prime dividing p in K that was fixed in Remark 2.8, then

(en(p) fo(p),gp(p)) = (exyx(B)s fir, /x (B gx,x (B)) -
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A prime B in K ramifies in K}, if 8| D, D3, splits if D, D3 is a cube modulo 3 and is
inert otherwise. Therefore,
(3.11) plD,
DD}y _
(3.1 (en(p): fo(p) gp(p) = (1L1.3) (%), =1
D, D?
1L31) (=), #0.1L

where ( %) , is the cubic residue symbol for K.
Since D, = o(D; ), where o is the generator of Gal(K/Q), we get that

(), =e(5),- ()

(P%),-(2),
PUNERIAR
Now, every integer can be written as DD’ where D is 3-split and all of the primes

dividing D" are 2 mod 3. Define a multiplicative character on the integers as

(3.2) xp(DD') = (%)3.

Hence,

Then we can rewrite (3.1) as

(3,1,1) p|D,
(ep(p), fo(p).gp(p)) =4 (LL3) xp(D) =1,
(1,3,1)  xp(D) #0,1

Note that y, is not a Dirichlet character.

Remark 3.1 In the case of p = 3, everything will be a cube modulo 3. Hence, we
have y3(D) =1 unless 3| D, and therefore

(3,1,1) 3|D,
(1,1,3) otherwise.

(ep () fo(3). 20(3)) - {

Further, if # is an integer such that all its prime factors are 2 mod 3, then y,(#) = 1.

Putting everything together, we can write the L-functions of K and Kp as

)= 1 (1 1)71 I1 (1+i)71,

p=1 mod 3 B E p=2 mod3 ps
172 1 1,1
(33) Lp(s) = 1;[ (I_E) 1;[ (1+E+ﬁ) .
xp(D)=1 xp(D)#0,1

If y is any character on K modulo f, we define the L-function associated with this
character as

_ _Xp(m) -1
LK(X,S)—I;(I N&BS) .

Finally, we will need a zero density theorem. We use [6, Theorem 2.3].
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Theorem 3.2 Foranyl/2<a <land T >0, let N(a, T, x) be the number of zeros
p=p+iyof Lx(xs) witha < f <1and|y| < T. Then there exists an A > 0 such that

S S N(a Toy) < (QPT) 53 (log QT)A,

q<Qymod g

where Y.* indicates that we sum over principal characters.

3.2 Explicit Formula

Since Kp has one embedding into R and two embeddings into C, the function

Ap(s) = |Ap P *Tr(s)Te(s){p(s)
satisfies the functional equation
Ap(s)=Ap(1-5),
where
Te(s) = n75/?T(s/2) Te(s) = 2(2m)T(s) = Tp(s)Tr(s +1)

and T'(s) is the usual Gamma function.
Let pp,j =1/2+iyp,;j be the zeros of Lp(s) and let f be an even Schwartz function.
Proposition 2.1 of [8] gives the explicit formula

1 [ 2 & A(n)Ap(n) = logn
2) = — 1 A d - C >
2.1y 2 [oo f(x)log Apdx 27 ,; vn f( 2 ) s
where the sum runs over all zeros of Lp (s), A(n) is the von-Magoldt function, Ap(#)
satisfies

Lo(s) _ 5 AGAn()

Lp (5) n=1 n

and

Cf:;ﬂf:f(x)(zll:?i(;+ix)+211:§(;—ix)+§i(z+ix)+§ﬂ%(i—ix))dx

is independent of our choice of D.
Recalling that the definition of 2(K, f) from (1.1) requires multiplying the zeros
by a factor of L := %622 e apply the explicit formula and the definition of A(7) to

get 2
(34) 9(Kp,f)= Zf(LVD,j)

_re 2 & Ap(pm)logp oy logp™y
- [ fwax oain 22 I iogay) PO

where we use the observation that f(Lx) = 1/Lf(x/L) and Cy(D) is the same as C
with f replaced with f(L-).
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3.3 Main Term

Applying the explicit formula (3.4), we get

1 oo
155(X)) KD;(;() (Ko f) = [ fOW(U)(0)dt - ET,

where

(35) ET = ! > (

Ap(p™ )logp logp™\ =
[F5(X)| KpeFa(X) Z 2 f< ) +Cf(D)).

logAp 7215 VP logAp

So it remains to show that ET = O( Tog x)

4 Error Term

First, we note that if Kp € F3(X), then X < Ap < 2X, and so log Ap ~ log X, and we
can rewrite (3.5)

1 2 Ap(p™)log p - log p™ )
ET ~ +C/(D
VX KDe;(X) logX( ;1%: V" f( log X ) f( )

where we also use (2.4) to write |F5(X)| ~ cv/X.
4.1 Easy Error Terms

In this section, we show that most of terms of ET are trivially O( 1 X) .

By a change of variable in the definition Cy, we see that C f(D) O(
hence

logA ) and

1

1 1 1
cvVX KDE;3(X) Cf(D) ( VX KDe;(X) logAD) B O( logX)'

Now, we use the known bound Ap(p™) = O(m) and the trivial bound f(x) =

0(1) to get
1 2 & Ap(p™)logp o log p™
—= f
VX gpérix) logX ;4;3%: V" ( log X )
1 > mlogp
K —
VX1og X k,Fi(x) %: mZ:3 Vi
1 1
=0 .
< log X Zp: p3lre (logX)

It remains to determine what happens to the sums when m =1 or 2.
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4.2 Coefficients of %

Direct computation from (3.3) shows

0 xp(D)=0,
Ap(p) =An(p*) =42  xp(D)=1,
-1 x,(D) #0,L

Moreover, if y, is as in (3.2), it is easy to see that

Ap(p) = Ap(p*) = xp(D) + X, (D),
since y, is a cubic character.
Therefore, we need to estimate

1 log p(x»(D) + x3(D)) A( IOng)

VXlog X KpeFs(X) P VP log X
form=1,2.
Since y, is a cubic character, we have Xf, = Xp- Hence, it will be enough to deter-
mine
1 D)log p — log p™
(41) Xo( )mgpf( 8P )
\/XlogX KpeTs(X) P VP log X
form=1,2.
Applying Proposition 2.11, we can write (4.1) as
1 oy Xp(dldﬁ)IOng( logp’“)
ﬁlogx\/}sdldzs\/ﬁ p VP log X
L1 / 5 Xp(3d1d3) logpf( log p™ )
ﬁlogx,/x/msdldzs\/zx/m P VP log X
. 1 / D )(p(9d1d§)logpA( logpm)
ﬁlogX\/X/slsdldzsx/ZX/Sl r VP log X

where ¥ means we are summing over all pairs d;, d, that are square-free, 3-split,
coprime and coprime to 3. We see then it will be sufficient to estimate

1 log p —~/ log p™ / 2
did
\/XlogXZp:\/IWf( log X )dI%:gYXP( 1)

form =1,2.
4.3 Generating Series

Fix a prime p and consider the generating series

Rl Xp(dldg)
9[](5) _d%:iz (dldz)s 5

which converges for R(s) > 1.
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It is tempting to treat §,(s) as a multi-Dirichlet L-function. However, y, is not
a Dirichlet character. It is, however, related to a cubic Dirichlet character on K =
Q(¢3) modulo *B. The following proposition shows exactly how G, (s) is related to
L-functions over K.

Proposition 4.1  Let *B be the prime in K dividing p fixed in Remark 2.8 and let
xp = ( 5) , be the cubic residue symbol modulo *B on K. Then

(42) Gp(s) = \/Lic o> ) L (15> $) Hp (5),
where H, (s) is some function (defined in the proof) that absolutely converges for R(s) >
1/2.

Proof We can write an Euler product expansion for G, (s) as follows:

5,()= I 1+Xp(€)+X§(€))
p(s) = =),

s
¢=1 mod 3 ¢

If [ is the fixed prime dividing € in K, then we get y,(£) = yx([). Moreover, we
see that

Xp(€) + Xp(8) = xp (D) + 135 (1) = 43 (1) + xp (1),
where ¢ is the generator of Gal(K/Q). That is, the argument in the Euler product is
independent of the choice of prime dividing ¢.

Further, if £ = 1 mod 3, then there always exist two primes lying above it with
NI = ¢. Thus,

1+Xp(€)+)c§,(f) - (Hm([)w%([))l/z_

s s
¢=1 mod 3 ¢ e NI

¢=1 mod 3

Finally, if £ =2 mod 3, then there exists a unique [|£ and NI = ¢2. Therefore,

0 (1200

¢=1 mod 3
)+ x& (1 )+ x& (D) -1
:1—[(1+X‘J3() SXq}()) I 1+X‘13()25Xq3())
1#93 NI ¢=2 mod 3 ¢
XDy xp(Dy -
_H(l— ) H(l— ) Hi(o)
= L (x> 5)Lx (3 $) Hp ()
where Hy,(s) is some Euler product that converges for R(s) > 1/2. [ |

Corollary 4.2
, ) 1+ioco Y
> wo(ddd) = [ Gy()=ds.

did,<Y
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Proof We know that Lg (xs,s) and LK()(%, s) are entire and zero free on R(s) = 1.
And since H,(s) can be written as an Euler product that converges for R(s) > 1/2,
it will also be analytic and zero free on JR(s) = 1. Hence, G, (s) will be analytic on
R(s) = L The result then follows from Perron’s formula. [ |

The goal now is to analytically continue G, (s) to a region to the left of 9R(s) = 1
and move this contour integral as far as we can. Since we do not know anything about
the convergence of H,(s) to the left of RR(s) = 1/2, the furthest we can hope to move
the contour is to the line R(s) = 1/2 + e. Moreover, if Lx(xsp,s) has a zero, then the
right-hand side of (4.2) fails to be analytic at this zero.

Our plan moving forward is to move the contour for as many primes as we can
and use Theorem 3.2 to bound the number of bad primes for which we cannot move
the contour. Of course GRH implies that we can move all the contours to the line
R(s) =1/2 + ¢, but we will refrain from using that for now.

4.4 Bounding the Error Term

Proposition 4.3 Suppose supp(f) ¢ (=B, B). Then for any T and 13/14 < a < 1, we

have
1 log p —~ log p™ ’ 2
(dd;) <
VXlog X Zp: \/me( log X )dldzz:syxp o
X(B-1)/2se ( Y e Y(X28T) 55 (log XT)A
“hogx (777 XEDE

Proof First of all, if supp(f) c (—f, ), then this will restrict the sum over the
primes to the region X/™. Combining this with Corollary 4.2, we get

—

1 log p — log p™ ’ 2
did?) =
\/XlogXZp:\/p"’f( log X )dldzzjgy)(p( 1)

1 log p =/ log p™ l+ioo Y*
—_ =L —ds.
\/YlogX ps%:/m vaf( log X ) fl-ioo Gp(s) s )

We can write
1+ioco YS 1+iT Y$ YS$
'/Hoo 9P(S)Td5 = fHT SP(S)TdS + fm(s)=1 Sp(s)Tds.
|3(s)]>T
Let S; be the sum consisting of the former and S, the latter. Then
1 log p — log p™ Y*
52 > ELF Jorom 5o (6)
VXlog X ,im VP ( log X ) BORT s
- Y log p
Tv/Xlog X pexpim N/ P

Y {Xﬁ/2+€ m= 1’ Yx(ﬂfl)/2+€

K — <
TﬁlogX logXﬁ/2 m=2, Tlog X
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Define
&,(Q,T) = {p < Q: Lx(xgp,s) has a zero in the region a < R(s) < 1,|3(s)| < T}.

Then we will write S; = S3+8S4, where S; consists of the sum of primes not in &,(Q, T)
and S, consists of the sum of primes in &,(Q, T).
By definition, G, (s) is analytic in the region a < 9R(s) < 1,|3(s)| < T for p ¢
&y (XP, T), so we can shift the contour for these primes. That is,
1 log p -~ log p™ /l”T Y*
Sa = —ofr S,(s)—ds
} VXlog X pﬁé‘;/'" VP f( log X ) 1-iT p(s) s
pé€(XP,T)
~ 1 log p ]?( log p™ )
VXlog X pexhim VP \ log X
pEE(XP,T)

a+e+iT Y$ Y$
([ ) st [t Sp(9) - ds)
a+e—iT S [3(s)|=T N
1 logp (are Y
L — Y 4+ —
\/XlogX pextin \/p’"( T)
P& (XP,T)
1 Y Xﬁ/2+€ =1 X(ﬁ—l)/2+6 Y
<<7(Y“+e+—) X " <<7(Y“+€+—).
VXlog X T/ |logXxf? m=2 log X T
Finally, recall that N(«, T, y) is the number of zeros of Lk (y, s) in the region a <
R(s) <1,|3(s)| < T. Therefore, by Theorem 3.2, we get for some A > 0

6(Q T <Y ¥ N(w T, x) <« (QPT) 55 (logQT)".

q<Qy mod g
Therefore,
1 log p = log p™ [“"T Y*
S4= —- —2= fl —=2— Sy(s)—ds
! VXlog X psg‘:’/"‘ \/pmf( log X ) 1-iT p(s) s

pe&(XPIM T

Y 1
K —=

VX psé/m VP

pe&y(XPI™.T)

For m = 2, we can bound the remaining sum by log X and get that Sy < % log X
which suffices. In order to manage when m = 1, we will split it up into dyadic intervals.

Therefore,
1 1 ; 2il2
=Y <X D
xF 2 <p<xF 237 \/1_) XxP 2 <p<xF oIt \/ﬁ X
Ppeba(XP,T) pe&(XP 2971, T)
4(1-a)
« (XzﬁT) 3-2a (logXT)Azj/z(l_%).
XB/2
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And so,
2 @ A Blog, X 1601
S, < Y(X*T) 55 (log XT) 3 2il20- 1550
X(B+1)/2 =
. Yt T) 5% (log XT)A

X(B+1)/2 '
This last line is true because the sum converges, since « > 13/14 (and hence the expo-
nent appearing is negative). |

Corollary 4.4  Assuming GRH, we have

Y1/2+6x([3—1)/2+6

1 log p —~ log p™ ' 2
did;) <
VX log X ; \/pmf( log X )dlgg)(p( 142) log X

Proof In the notation of the proof of Proposition 4.3, GRH implies that &}, (Q, T) =
@ for all choices of Q and T'. Therefore, S4 = 0, and we can take T — oo to get that
S, =0and

Yl/2+€x(ﬁ—l)/2+s
Sk — [}
log X

4.5 Proof of Theorem 1.7
Now, we can finally prove Theorem 1.7.
Proof of Theorem 1.7 By Propositions 4.3 and 3.3, we see that if supp(f) ¢ (=5, B),

then
1

|F3(X)]
where forany T > 0and 13/14 < a < 1,

> 9(Ko.f) = [ FOWU)(Dd-ET,

KpeTF3(X)

(B-1)/2+¢ , y1/2
ET « Xi( X § XO/2e

) X2 (X28T) 555 (log XT)A L1
log X T

X (B+1)/2 logX'

Setting T = X*, we get
1 X(a+ﬁ—l)/2+€ 2(0-0) 1
- + L xPOEER S (log X)* +
XPBl2=¢log X log X

Since o > 13/14, we get that % - 1 <0, and so the only restriction on 8 comes

from the second term. That is as long as § < 1 - a < 1/14 we have

ET « .
log X

ET « .
log X

If we assume GRH, then by Corollary 4.4 we get
X (B-1/2)/2+e 1

ET « + ,
log X log X

and as long as 8 < 1/2, we get ET «< @. ]
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