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Abstract

Ramanujan conjectured that if n is of a specific form then/>(«), the number of unrestricted partitions
of n, is divisible by a high power of 7. A modified version of Ramanujan's conjecture was proved by
G. N. Watson.

In this paper we establish appropriate generating formulae, from which Watson's results follow
easily.

Our proofs are more straightforward than those of Watson. They are elementary, depending only on
classical identities of Euler and Jacobi. Watson's proofs rely on the modular equation of seventh order.
We also need the modular equation but we derive it using the elementary techniques of O. Kolberg.

1980 Mathematics subject classification (Amer. Math. Soc): 10 A 45; Secondary 10 D 23.

1. Introduction

In 1919 Ramanujan [6] conjectured that if a 2s 1, if Sa is the reciprocal modulo 5°
of 24 and if Xa is the reciprocal modulo 7" of 24, then

(1.1)

and

(1.2)

p(5an + Sa)

p(Tn + XJ

= 0mod5a

= 0mod7a.

This article comprises, in the main, the first chapter in the author's Masters thesis (University of
N.S.W., 1982).
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[21 Watson's partition congruences 317

In each case he proved his conjecture for a = 1 and 2. In 1938 Watson [7] proved
(1.1) for general a. Watson's proof has been simplified by many writers of which
the most recent are Hirschhorn and Hunt [4].

Chowla [2] noticed that (1.2) fails for a = 3. In fact from Gupta [3] we have

/>(*3) = M243) = 13397 82593 44888,

which is divisible by 72 but not by 73. Watson [7] proved the appropriate
modification of (1.2), namely that if /? s* 1 then

(1.3) p^-'n+ \2fi_,)=0modlfi

and

Watson also proved that if ft > 1, then

(1.4) p{l2fin + \2p - 4.72*-') =p{l^n + \2/} - 2.72"-')

X2/?-72^-') =0mod7"+1.

Watson proved (1.3) and (1.4) using the modular equation of seventh order. We
also need the modular equation but we derive it using the elementary techniques
of O. Kolberg [5]. The remainder of our proof of (1.3) is analogous to that of
Hirschhorn and Hunt. Our main result stated below contains an algorithm for
calculating the coefficients in the generating functions for p(T"n + Xa). We carry
out these calculations for a = 1,2.

It is worth noting that Atkin [1] has generalised (1.1) and (1.3) to the functions
p_k{m). Atkin has proved his congruences in detail for powers of 5 but has only
sketched briefly the basic formulae required for certain power primes. Here/?_£ is
defined by

(1-5) 1 P-k(n)q"= 110 -?" ) '* ,

so that/;_i(n) = p(n).
Our main result is

THEOREM (1.6). If a s* 1, then

••-• ( g )
4 f + | , a even,

)
4E(q)
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318 F. G. Garvan [31
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[4j Watson's partition congruences 319

where E(q) = UK3.i(l ~ q"), x, = (7,49,0,0,...), and for a > 1,

xaA, a odd,
( L 7 ) " a + 1 \xaB, a even.

Here A = (aij)i,Ja>1 fi = (6,,,),,^, are defined by

0-8) ai.j = m4i,l+j, Kj = m*l+\,i+J>

The first seven rows of M are given in (1.9), and for i > 4 w,, = 0, for i > 8
m, 2 = 0 and for / > 8,7 > 3,

(1.10) m,j = 7m,_3J_1 + 35w,_2,y_, + 49m,_Iiy._1

21m,-_s>>_2

147m//_3>y._2 + 343w/_2i>_2 + 343m,_1>y_2.

2

We need some preliminary results.

LEMMA (2.1).

E{q) = E(q<9)[Q0- qQx - q2 + q*Q5],

where Qo, Q] and Q5 are power series in q1 which satisfy

(2.2)

(2.3)

PROOF.

and

Here we assume

E(q)--

E(qf = 1

Qo(

Qo

22 - Qo +?7e5

- Q\ - q'Q&l

QlQs-q'Ql

00

= 2
- 0 0

(_i;

QoQxQs

(-i)V"1

• " ( 2 / 1 + 1 )

- G i

= l .

-«)/2

= 0

= 0

= 0

0 / 2

>

(Euler)

(Jacobi).

Write £(^r) = Eo + Ex + E2 + E3 + E4 + E5 + E6 where Et contain those terms
of E{q) in which the power of q is congruent to /mod 7.
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320 F. G. Garvan 15]

Since \(3r2 - r) 2 3,4 and 6 mod7,

£3 = £4 = £6 = 0 and E(q) = Eo + £, + £2 + £5.

Now

(3r2-r)/2 =
mod7

(-i)V3r2"r)/2 = 1 (-i)V3'2-r)/2

mod 7

oo

= (£0
3 + 6EQE2E5 + 3E2E5) + (£5

3 + 3£O
2£, + 6EiE2Ei)

+ (3EOE2 + 3E2E2 + 3E2E5) +(£,3 + 6E0ElE2 + 3E0E
2)

+ (3EOE2 + 3E2E2 + 3£,£5
2)

+ (3£O
2£5 + 3£2£5

2 + 3£,£2
2) +(£2

3 + 6£0£,£5)

n»O

and since j(n2 + n ) £ 2 , 4 and 5 mod 7 we have

(2-4)

3£0£2 + 3£0
2£2 + 3£2

2£5 = 0,

3£O£2
2 + 3£,2£2 + 3£,£5

2 = 0,

3£O
2£5 + 3£2£5

2 + 3 £ , £ | = 0., £ |

If we define Qo, 0 , and Q5 by

E0 = E(q49)Q0, £, = - ? £ ( / 9 ) e , and Es =

then Qo, Q\ and Q5 are power series in q1. (2.2) follows from (2.4) and we have

E(q) = E(q49)[Q0 - qQx - q2 + q'Q5].

Multiplying the first equation in (2.2) by Qs and substituting QlQ5 = Qt + q1Q\
we obtain

or

Q0Q
2Qs = 0 ,

5 = 1 , which is (2.3).
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In fact, it can be shown that

O —— 11 "̂  ^
*^0 1 1 / , 4QM — 7 \ / i 49n — 4? \ '

using Watson's quintuple product identity.

LEMMA (2.5). If a1 = 1, u ^ 1

PROOF.

6

n p( ,,6

= n ( I - ? - ) 7 n
n=0mod7

,". y n o
nH0mod7

°.('-'")'_g(,')1

The main result of this section is Lemma (3.1). Our proof relies on the modular

equation of seventh order (3.14), which appears in Watson's paper but which we

obtain by elementary method.

We now introduce the operators / / , , 0 < / < 6 which act on a series of powers

of q and simply pick out those terms in which the power of q is congruent to i

modulo 7. Set H = Ho.
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322 F. G. Garvan [7]

LEMMA (3.1). Fori s* 1,

(3.2) #({-'•) = 2 mitJT-i
7 * 1

where

(3.3)

and the mt j are defined by (1.9) and (1.10).

We leave the proof of Lemma (3.1) till later. As an immediate consequence we
have the following lemma.

LEMMA (3.4). For i ^ 1,

-4i\ _ V T-i-i

where the ai y, />, 7 are defined by (1.8).

PROOF. It is easy to check that H(i-~4') as a polynomial in T'x has no terms of
degree i or less. So by Lemma (3.1)

-41) = 2 aljT-'-J = 2 mAIJT-J.

Therefore a- y = m4i i+J = a, y, and

We can argue similarly to show that H(t(Ai+])) = 2j>\ bUjT-'~J.

In order to derive the modular equation we first need some preliminary results.
Following Kolberg [5] we define

(3.5) a = -q-2Q0, 0 - q-'Q{ and y = -q3Q5.

From Lemma (2.1) we have

(3-6) £(<?) = 2 ^ ( / L = 1-2Qo ~ f'Qx - 1 + V3Qs = - (a + /J + y + 1).
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From (2.2) and (2.3) we obtain

(3-7)

aft2 + a2 + y = 0,
py2 + p2 + a = 0,
ya2 + y2 + p = 0,

apy=\.

Let

(3.8) y{ = a3p, y2 = p3y and y3 = y3a.

Then, by (3.7) we easily find

= -y3

= > - 2

« 7 = -

The following lemma is 5.20, 5.21 and 5.14 of Kolberg's paper.

LEMMA (3.9).

-Vi^+^s+^i = T+5,

where T is defined in (3.3) and the yt are defined in (3.5) and (3.8).

PROOF. Let <o7 = 1, « ¥= 1. Then, from Lemma (2.5),

(3.10) T
6

II
/=0

= -det

i=0

1 0 0 y 0 o P
P 1 0 0 y 0 a
a P 1 0 0 y 0
0 a P 1 0 0 y
y 0 a P 1 0 0
0 y 0 a P 1 0
0 0 y 0 a P 1

i i r»\2
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324 F. G. Garvan (91

using (3.8) in the evaluation of the determinant. So,

(3.H) yt+y2+y3 + 8 = ±T.

We now calculate the first term in the expansion of each >>,. y{ — a3/? = -q'nQ\Q\
= -q-1 +-..,y2 = /i2y = - Q ^ = - 1 + • • • , y3 = y3« = qiQ\Q0 = q1 + • • • .

We therefore have to take the - sign in (3.11) so,

yx+yi + ^3 = - r - 8 ,

+ yiys + y^\ = -y\ - yi - J3 - 3 = T + 5,

and the lemma is proved.

LEMMA (3.12).

= 107+49,

PROOF. From (3.5) and (3.7), H{a + /? + y) = 0, H((a + fi + y)2) = 0,
H((a + P + y)3) = 6aPy = 6 and using (3.5), (3.7) and Lemma (3.9),

H((a + 0 + Y)4) = 4(«3>S + )83Y + y3«) = 4( j ; , + y2 + y3) = -AT - 32.

Similarly, H((a + )8 + y)5) = 107 + 50, H((a + $ + y)6) = 108, so #(£') =
H(-(a + yS + y) - 1) = -1 and the results for the other H(£J) follow in the
same way.

LEMMA (3.13). i/3( |3) = 0, H5U
3) = 0, //6(£3) = 0.

PROOF. From (3.7) we have H3(a + /? + y) = y, H3((a + /? + y)2) = a2,

H3{e) = H3(- (a + P + yf-3(a + (l + yf - 3(a + /} + y) - l)

= -3a i8
2 - 3«2 - 3y = 0.

Similarly, /75(£
3) = -3j8y2 - 3/82 - 3a = 0, / / 6 ( | 3 ) = -3ya2 - 3y2 - 3)8 = 0.

LEMMA (3.14) (the Modular Equation of Seventh Order).

T2 = (7£3 + 35£2 + 49^)r + f + 7|6 + 21£5

+49 | 4 + 147|3 + 343|2 + 343|

where T and £ are defined in (3.3).
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PROOF. For 0 < / < 6 define £,(#) = £(«'<?) where w7 = \,u ¥= 1. Then

1
') = f 2 «V?) = f 2 «/•

i=0 1=0

Let Pj = £{)+ ••• +£{. From Lemma (3.12), i>, = -1, P2 = 7, P3 = -49, P4 =
-287 - 49, P5 - 707 + 343, P6 = 343. Let S, be the symmetric functions of
degree 7 in the £,. Then, from standard formulae it follows that 5, = - 7 , S2 = 21,
S3 = -49, S4 = IT + 147, 55 = -35T - 343, 56 = 497 + 343. Finally, from
(3.10), 57 = 7 2 . Hence the £, are the roots of

X1 + IX6 + 2\X5 + 49X4 + (77 + 147)*3

+ (357 + 343)*2 + (497 + 343)* - 7 2 = 0.

But £0 = £ and the lemma is proved.

We are now in a position to prove Lemma (3.1). From Lemma (3.14) it follows
that

Picking out those terms in which the power of q is congruent to 0 mod 7 we
obtain:

(3.15)

From (3.15) and Lemma (3.12) we have

//(I"1) = ( 7 - 3 5 + 49)7-' +[49 + 7(107+49) + 2 1 ( - 4 7 - 7 )

+ 49(-7) + 147 - 343 + 343] 7"2

or

(3.16) ^ ( r 1 ) = 77"1 + 497"2.
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326 F. G. Garvan [n]

So (3.2) is true for i = 1. Similarly it is easily verified that (3.2) holds for
; = 2,3,4,5,6,7 from (3.15) together with Lemma (3.12). Further it is clear from
(3.15) that we can write

') = 2 m'.jT-'.

Already we have m'/j = mi j for 1 < / < 7. It follows from (3.15) that m'i{ = 0 for
i > 4 and m\ 2 = 0 for / > 8. From (3.15), we have for i > 8

2 <jT-J = 2 (7m;_3,y + 35m;_2,,.

i',-2J + 343m'l_lJ)T-->-2

= 2A \'mi-3J-\ '

Hence, for i> S,j ^ 3

+ 7m;_6i>_2 + 21m;_5,y._2 + 49m;_4>,-_2 + 147m;_3i>_2

49m;_1>y._,

Therefore m\ j = w, y for every /, y > 1.

Before proving our main theorem we need one more lemma.

LEMMA (3.17). Xa, the reciprocal modulo T of 24, satisfies X, = 5 and for a > 1,

A / -i- Aa, a even.

PROOF.

= f £ ( 1 7 X 7 « + l ) , a odd,
a | ^ ( 2 3 X 7 a + l ) , a even,

since this is an integer which satisfies 0 < \a < T and 24 \ o = 1 mod 7". It is
easily shown that this \a satisfies the recurrence.
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We are now in a position to prove Theorem (1.6). For convenience we write the
theorem in the following equivalent form

ix^TT^/qEW), a odd,

» + K)qn = •

where T and £ are defined in (3.3).
We have

) , « even,

1 _ Z -1

q2E{q49)

Picking out those terms in which the power of q is congruent to 5 mod 7, we have
by (3.16)

E\i )

or

Now

- 2

SO

(4.2)

So we have

Substituting T = tf"7^7)4

Ramanujan's result:
)4 and I"1 = q2E(q49)/E(q) we obtain

which is the case a = 1 of Theorem (1.6).
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We now proceed by induction on a. Suppose a is odd and

[131

Picking out those terms in which the power of q is congruent to 6 mod 7 we have
by Lemma (3.4),

I p{T{ln + 6) + \a)q
7"+6=

ys-i

/qE{q>).

It follows from (1.7) and Lemma (3.17) that

i>\

From (3.3) and (4.2) we have

2p{7a+]» + K+l)q" = \]

Now suppose a is even and

Picking out those terms in which the power of q is congruent to 4 mod 7, we have
by Lemma (3.4),

2 p{T(ln + 4) + KW+t=\ 2 xa,,

It follows from (1.7) and Lemma (3.17) that

n»0 i»l
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From (4.2) we have

329

/qE{q>).

This completes the proof of Theorem (1.6).

We now turn to Watson's results. Let v(n) denote the exact power of 7 dividing
n. Then

LEMMA (5.1). v( [\(lj - 2i - 1)].

PROOF. Consider the matrix V = (Kw, y)),,/>i- The first seven rows of Fare:

1
0
0

0 0

0 0

0 0

•
8

8
8

2
2
1
1
0
0
0

00

00

0 0

4
3
3
2
2
2

0 0

5
5
4
4
3
4

oo
7
6
6
5
6

0 0

8
8
7
7
7

0 0

10
9
9
9

0 0

11
11
10
11

0 0

13
12
13

oo
14
14
14

1 oo
16
16

0 0

17 | oo oo
18 20 20 I oo oo • •

Define the matrix N —
rows of N are:

by vtJ — [(7/ — 2/ — l) /4] . The first seven

6 8 9 11 13 15 16 18 20 22 23
0
0
-1
-1
-2

1 9 11 12 14 16 18 19 21 23
3 5 1 8~1 10 12 14 15 17 19 21 22
3 4 6 8 10 il I 13 15 17 18 20 22
2 4 6 7 9 11 13 14 I 16 18 20 21
2 3 5 7

- 2 - 1 1 3 5 6 8
10 12 14 16 1 7 1 19 21
10 12 13 15 17 19 20~|

Observe that for / < 7 and for i > 7, j < 2, v{mij)
that for i >l,j> 2,

vtj. From (1.10) it follows

2,

3> V(mi-\J-2)
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while, as is easily checked

",,, = 'i-ij-i + 1. ",-2j-i + 1, "i-ij-1 + 2,

",-7,,-2> ".-6J-2 + U ",-5,,-2 + U

"/-4J-2 + 2 . ".--3,7-2 + 2, "(--2,y-2

Lemma (5.1) follows by induction.

LEMMA (5.2).

PROOF. From (5.1) we have

, » , . [ 7(/ + y ) - 8/ - 1 1 [ 7/ - / - 1 1

7 ( / + y ) - 2 ( 4 i + l ) - l | [ Ij - i - 3^ J = [ ^
LEMMA (5.3). v(xlx) = 1, K^i,2) = 2 and for ^^ 1,

PROOF, X, = (7,49,0,0, . . . ) , so v(xxx)=\, v(xi2) = 2. We have x2j =

2>y s o

2>>) > min{l + v(aUj), 2 + v{a2J)}

= 2 + — - — , as required.

Now suppose 0 > 1 and v{x2pi) > (^ + 1) + [(7/ - 6)/4]. We have x2/3+1 y

2U 1*20 A y SO

, asrequired.
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Finally, given K*2/3+i,i) >(P + 1) + [(7/ ~ 4)/4], we can argue similarly to
show that

Lemma (5.3) follows by induction. It follows that *2/s-u = 0 mod 7^ and
x2|g. = 0 mod7^+l, which together with Theorem (1.6) yield the following
theorem.

THEOREM (5.4). For $ > 1,

P(l2p~ln + X2p_,) = 0 mod7*.

X2/>) = 0

THEOREM (5.5). For /? > 1,

1) S j , ( 7 V - ' « + X2/, - 2 .7^" ' )

( ) = 0 m o d 7 " + 1 .

+ X2/J - 4.72""1) S j , (7V- '« + X2/, - 2.7

PROOF. From (4.1) we have

n + \2p_x)q" =\

If we pick out those terms in which the power of q is congruent to k mod 7 we
have

From Lemma (3.17) it follows that

From Lemma(5.3) v{xx,) = 1, v(xxl) — 2 and for/} > 2,
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So modulo 7^+ ' we have

From the modular equation (3.14) we have

Picking out those terms in which the power of q is congruent to (k + 1) mod 7 we
have

But form (3.13) we have Hk+](£
3) = 0 for k - 2, 4 and 5, so

^ + 1 ( ^ - 4 ) =0mod7 for k = 2, 4 and 5.

Since x2^_, , = 0 mod 7^ we obtain

\2fi+ (k - 6)72<i-])qln+k = 0modl(l+l for * = 2,4 and 5,

which is the required result.

We have calculated x a for a = 1,2. They are

x, = ( 7 , 7 2 , 0 , 0 , 0 , . . . ) ,

x2 = (2546 X I2,48934 X 74,1418989 X 75,2488800 X I1,2394438 X 79,

1437047 X 7U,4043313 X 712,161744 X 715,32136 X 717,

31734 X 718,3120 X 72O,204 X 722,8 X 7 2 4 ,7 2 5 ,0 ,0 ,0 , . . . ) .

Therefore from Theorem (1.6) we have
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which is Ramanujan's result and

2 /»(49n + 47)?" = 2546 X l 2 ^ \ + 48934 X
«»o E(q)

333

\
E(q)

+ 1418989 X 75qlE „ + 2488800 X Vq3 '
- ' - * " E{q)xl

7 V ^ 1 uq5+ 2394438 X l9q4 Kq I, + 1437047 X luq

+ 4043313 X 7l2g
W 7\

7l2g6 ^ \
2

+ 161744 X 7 ' V7'V ^

+ 32136 X 7 ' V

+ 3120 X

7'V j
+ 31734 X 7 ' V7'V

^ 204 X )

T

This confirms a result of H. Zuckerman [8]. We have omitted the calculation of

xa for a 3= 3, since there are computational difficulties. For an idea of the size of

these numbers see Hirschhorn and Hunt [4], who have calculated the first four

coefficient vectors corresponding to the generating functions for p(5an + 8a).

I wish to express my thanks to my supervisor, Dr. Michael Hirschhorn, for his

help and encouragement in writing this paper.

References

[1] A. O. L. Atkin, 'Ramanujan congruences forp_k(n)', Canad. J. Math. 20 (1968), 67-78.
[2] S. Chowla, 'Congruence properties of partitions', / . London Math. Soc. 9 (1934), 247.
[3] H. Gupta, 'A table of partitions', Proc. London Math. Soc. (2) 39 (1935), 142-149.
[4] M. D. Hirschhorn and D. C. Hunt, 'A simple proof of the Ramanujan conjecture for powers of

5', 7. ReineAngew. Math. 326(1981), 1-17.
[5] O. Kolberg, 'Some identities involving the partition function', Math. Scand. 5 (1957), 77-92.
[6] S. Ramanujan, 'Some properties of p(n), the number of partitions of n', Proc. Cambridge

Philos. Soc. 19 (1919), 207-210.

https://doi.org/10.1017/S1446788700025386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025386


334 F. G. Garvan [19]

[7] G. N. Watson, 'Ramanujans Vermutung iiber Zerfallungsanzahlen', J. Reine Angew. Math. 179
(1938), 97-128.

[8] H. S. Zuckerman, 'Identities analogous to Ramanujan's identities involving the partition
function', Duke Math. J. 5 (1939), 88-119.

School of Mathematics The Pennsylvania State University
University of New South Wales Department of Mathematics
Post Office Box 1 University Park, Pennsylvania 16802
Kensington, N.S.W. 2033 U.S.A.
Australia

https://doi.org/10.1017/S1446788700025386 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025386

