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1. Introduction. Let Fr denote the free group of rank r and OutFr:= Aut/y/Inn/v
the outer automorphism group of Fr (automorphisms modulo inner automorphisms). In
[10] we determined the maximal order Tr\ (for r > 2) for finite subgroups of Out Fr as
well as the finite subgroup of that order which, for r > 3, is unique up to conjugation. In
the present paper we determine all maximal finite subgroups (that is not contained in a
larger finite subgroup) of Out F3, up to conjugation (Theorem 2 in Section 3). Here the
considered case r = 3 serves as a model case: our method can be applied for other small
values of r (in principle for any value of r) but the computations become considerably
longer and are more apt for a computer then; the method can also be applied to
determine the maximal finite subgroups of the automorphism group Aut Fr of Fr. Note
that the canonical projection Aut FT -»Out Fr is injective on finite subgroups of AutFr;
however, not all finite subgroups of Out Fr lift to finite subgroups of Aut Fr.

Our method is based on the following realization result observed in [11, p. 478], [12,
Theorem 2.3.4], see [2, Theorem 4.1] for the second part.

THEOREM 1. Let G be a finite subgroup of Out Fr. Then there exists a finite connected
graph F, with nxY = Fr, and an action of G on Y inducing on its fundamental group the
given action of G on Fr. Moreover G is the isomorphic image of a finite subgroup of Aut Fr

if and only if the action of G onT has a fixed point in T (and then any action realizing G
has a fixed point).

For the convenience of the reader, we shall indicate the proof at the end of the next
section.

In Section 4 we discuss a number p{G) associated to a finite group G which we call
the graph rank of the group. Recall that the symmetric genus of a finite group is the
minimal genus of a closed orientable surface such that the group acts faithfully on the
surface as a group of homeomorphisms. In the definition of p(G) instead of closed
surfaces and their genera we take finite graphs without vertices of valence one and their
ranks (where the rank of a graph is defined as the rank of its fundamental group), so p(G)
is the minimal rank of a finite graph without vertices of valence one on which the group
acts faithfully. For finite groups which are not cyclic or dihedral, it is also the minimal
rank of a free group Fr such that G embeds into Out Fr.

2. Preliminaries. Let G be a finite subgroup of Out Fr. By Theorem 1, G acts on a
finite connected graph T inducing the given action on Fr (a geometric realization of G). By
deleting all free edges (edges which have a vertex of valence 1) we may assume that T has
no free edges, or equivalently, no vertices of valence 1. Also, we may delete all vertices of
valence 2, amalgamating the adjacent edges into a single edge. Note that after this G may
act with inversions: an inversion is an edge and an element of G mapping the edge to
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itself acting as a reflection in the midpoint of this edge. The following Lemma may be
considered a converse to Theorem 1.

LEMMA 1. Let F be a connected graph of rank r > 1 without vertices of valence 1 and
G a finite group acting faithfully on F. Then the induced action on TTjF injects into Out ^ F .

Proof. Note that the induced action of G on tfjF is defined only up to inner
automorphisms because no base point is fixed, in general. Suppose g e G acts trivially on
ffjF, i.e. induces an inner automorphism. Then g acts trivially on the homology of F, so its
Lefschetz number is 1 - r which, by the Hopf trace formula, is also equal to the Euler
characteristic of the fixed point set of g which is a subgraph of F (assume here that G acts
without inversions, by subdividing edges). But then the fixed point set of g is equal to the
whole graph F because there are no free edges, therefore g is the identity and the Lemma
is proved.

A consequence of the proof of Lemma 1 is the following well-known result (see also
[11, Lemma 1.3]).

COROLLARY 1. The canonical projection Out Fr-»GL(r, Z) is injective on finite
subgroups of Out Fr.

In particular, the whole automorphism or symmetry group Aut F of a finite graph F
without free edges injects into Out ;r,F. As noted above, we may suppose that the graph F
has no edges of valence 2; in addition, we may assume that the graph F has no
Aut F-invariant forest (a disjoint union of trees), by contracting each tree of such a forest
to a point. We call a finite connected graph admissible if it has no vertices of valences 1 or
2 and no Aut F-invariant subforests. Then in Theorem 1 we may restrict ourselves to
admissible graphs F, and we have the following consequence of Theorem 1 and Lemma 1.

PROPOSITION 1. Up to conjugation, the maximal finite subgroups of Out Fr, for r > 1,
are among the automorphism groups of finite admissible graphs of rank r, by taking
induced actions on fundamental groups.

However, it is not clear that all these groups are really maximal since it may happen
that one is conjugate in Out Fr to a subgroup of another.

As an easy example we consider the case r = 2. There are exactly two admissible
graphs of rank 2 which are shown in Figure 1.

Their automorphism groups are the direct resp. semidirect product

S3xZ2 = D6 resp. (Z2)2XS2 = A,

(where Dn denotes the dihedral group of order In and Sn the symmetric group of order
«!), therefore up to conjugation these are exactly the maximal finite subgroups of Out F2.

Figure 1.
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COROLLARY 2. Up to conjugation, the maximal finite subgroups of Out F2 are D(,
and D4.

Of course this follows also from the well-known isomorphisms

and the fact that every finite subgroup of a free product with amalgamation is conjugate
into one of the factors.

In order to enumerate all admissible graphs of a certain rank r the following Lemma
is useful.

LEMMA 2. Let T be a finite graph of rank r > 0 without vertices of valence 1. Let e
resp. v denote the number of edges resp. vertices of F, and let u, be the number of vertices
of valence i. Then

Proof. This follows from

= l-r = v-e, ^iVi = 2e and

where ^(F) denotes the Euler characteristic of F.

In order to show that two finite subgroups of Out Fr are not conjugate we shall use
the extensions of Fr determined by them. For r > 1, each subgroup G of Out Fr determines
a group extension, unique up to equivalence of extensions,

determined by the following property: the given action of GcOutFr on Fr can be
recovered from the extension by taking conjugations of Fr by preimages of elements of G
in E. The extension E can be defined as the preimage of G c Out Fr in Aut Fr under the
canonical projection from Aut Fr onto Out Fr, noting that its kernel Inn Fr is isomorphic to
Fr. Then, by a short calculation, we have the following

LEMMA 3. Two subgroups G and G' of OutFr are conjugate if and only if the
corresponding extensions E and E' of Fr are isomorphic by an isomorphism mapping Fr to
itself.

Now suppose that G c Out Fr is finite and that G acts on a finite connected graph F,
with n:r = Fr, realizing the given action of Gc:Out Fr on Fr. Then the extension E
associated to G can be constructed in the following geometric way. Let f be the universal
covering of F, so F is a tree. Then the group of automorphisms of F consisting of all lifts
of elements of G to F is isomorphic to the extension E, where FT a E corresponds to the
group of covering transformations; we denote this group of automorphisms of F also by E.

In the next section, we shall represent the extension E as the fundamental group of a
finite graph of finite groups % which can be constructed as follows. The underlying graph
is the quotient graph f := T/E = F/G (here we suppose, by subdividing edges, that G resp.
E act without inversions so that the quotient is again a graph). In all examples in the next
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section, the quotient graph F will be a tree so we restrict to this case here. Then F can be
lifted isomorphically to F and from there to f, and we associate to the vertices and edges
of f their stabilizers in G or, what is the same (as Fr operates without fixed points), in E.
These groups are called the vertex resp. edge groups of the graph of groups. Note also that
we have canonical inclusions of the edge groups into adjacent vertex groups. The result is
a finite graph of finite groups CS, and the main theorem of the Bass-Serre theory of groups
acting on trees says that E is isomorphic to the fundamental group n^ oi this graph of
groups (see [9], [8] or [12]). In our case where F is a tree this fundamental group is the
iterated free product with amalgamation of the vertex groups amalgamated over the edge
groups.

Following [8] we call a graph of groups minimal if it has no trivial edges where an
edge is called trivial if it has distinct vertices and the canonical monomorphism (inclusion)
from the edge group to one of the two adjacent vertex groups is an isomorphism.

LEMMA 4. (a) Let E be the fundamental group of a finite minimal graph of finite
groups, associated to an action of E on a tree T. Then each maximal finite subgroup of E
has a unique fixed point in T. The conjugacy classes of maximal finite subgroups of E
correspond bijectively to the vertex groups of the graph of groups.

(b) Let <& and <S' be two finite graphs of finite groups which are minimal and have
isomorphic fundamental groups. Then there is a bijection between the vertices of <£ and <S'
such that corresponding vertex groups are isomorphic.

Proof, (see also [8, Lemma 7.6]).
Each finite group acting on a tree has a fixed point (consider the invariant subtree

generated by an orbit and delete external edges in an equivariant way). A maximal finite
subgroup M of E has a unique fixed point in F because otherwise the edges of the unique
edge path (segment) in the tree F connecting two different fixed points would also be
fixed by M; then M would occur also as an edge group and the associated graph of groups
would not be minimal. By a similar argument, each vertex group is a maximal finite
subgroup of E. This proves part (a) of the Lemma. Part (b) follows from the fact that, by
the Bass-Serre theory of groups acting on trees, each graph of groups is associated to an
action of its fundamental group on a tree.

In [4], [6] (see also the review of [6] in Zentralblatt Math. 793, 200017 (1994) and [1]
a more general result has been proved which takes care also of the edge groups and gives
an algorithm to decide whether the fundamental groups of two finite graphs of finite
groups are isomorphic.

Finally, we sketch the

Proof of Theorem 1. Let E be the extension of Fr associated t o G c Out Fr. By [5] (or
[12, Theorem 2.3.1]), a finite extension £ of a free group Fr is isomorphic to the
fundamental group nx <& of a finite graph of finite groups (S. By the Bass-Serre theory of
groups acting on trees the graph of groups $ is associated to an action of the group
£ = f i 'Sona tree f; in particular, Fr <= E acts freely. Then G = E/Fr acts on the quotient
graph F:= T/Fr and realizes the given action of G c Out Fr on 7r,r = Fr.

Moreover, G lifts to Aut Fr if and only if the finite group G is a subgroup of the
extension E (that is the extension splits), which in turn happens if and only if G is a
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Figure 2.

vertex group of the graph of groups ^ (using that every finite group acting on a tree has a
fixed point).

3. Maximal finite subgroups of Out F3. Using, for example, Lemma 2 it is easy to find
all admissible graphs of rank 3.

LEMMA 5. There are exactly five admissible graphs F j , . . . ,F5 of rank 3 which are
shown in Figure 2. Their automorphism groups G,•:= Aut F, are

Gi = SAx Z2, G2 = (Z2)3 XI53, G3 = 54> G4 = S2 x I2 and C5 = (Z2)3XiZ2

(note that G, = G2).

By subdividing edges such that G, acts on F, without inversions and then constructing
the quotient of that action we get the following.
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LEMMA 6. The graphs of group % associated to the Gi-actions on F, are as follows:

03 03 X Z*2

(Z2)
2X!S2 (Z2)

3X\S2

X

(Z2)
3 (Z2)

2 (Z2)
3 (Z2)

2 (Z2)
2X1Z2 ^

The groups G, determine subgroups of G, of Out F3 denoted by the same letter.

THEOREM 2. Up to conjugation, the maximal finite subgroups of Out F3 are exactly the
following groups:

G, = S4xZ2, G2 = (Z2)
3 >} S3, G3 = S4, G4 = S 3 xZ 2 and G5 = (Z2)3 XIZ2.

Proof By Proposition 1 it remains to show that no G, is conjugate in Out F3 to a
subgroup of some other G,. Denote by £, := TTj % the extension of F3 determined by G,. By
Lemma 4 the extensions £\ and E2 are not isomorphic because they have non-isomorphic
vertex groups, therefore by Lemma 3 the groups GY and G2 are not conjugate in Out F3.
In a basically equivalent way, the group G] has a fixed point on r\ and therefore lifts from
Out F3 to Aut F3 whereas G2 has no fixed point on F2 and does not lift, see Theorem 1.
Similarly, the subgroup A4 of G3 = S4 has no fixed points in F4 and therefore does not
occur as a vertex group of the graph of groups associated to the j44-action on F4 whereas
each subgroup A4 of G{ or G2 has a fixed point and occurs as a vertex group, therefore G3

is not conjugate to a subgroup of G] or G2.
It remains to show that G4 and G5 are not conjugate to subgroups of Gi or G2 (note

that for order reasons they cannot be conjugate to a subgroup of G3). Now G4 = 53 X Z2

has three different fixed points on F4 corresponding to the three vertex groups 53 x Z2 of
the graph of groups %. On the other hand, a subgroup G = 53 X Z2 of Gx resp. G2 with a
fixed point has exactly one fixed point, therefore the corresponding graph of groups
associated to the G-action on Fj resp. F2 has exactly one vertex group isomorphic to
53 x Z2. It follows that the extensions of F3 associated to G4 and to G are not isomorphic
and consequently G4 is not conjugate to a subgroup of G\ or G2.

Now consider G5 = (Z2)
3 y\ Z2 which has no fixed points in F5. As G2 has a fixed

point, G5 is not conjugate to a subgroup of G2. The subgroup (Z2)
3 of G5 has four fixed

points in F5. As there is no subgroup (Z2)
3 of G] with a fixed point (because (Z2)3 is not a

subgroup of one of the two vertex groups of %) it follows that G5 is not conjugate to a
subgroup of G\. This completes the proof of Theorem 2.

4. The graph rank of a finite group. Let G be a finite group. The (strong)
symmetric genus of G is defined as the minimal genus of a closed orientable surface on
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which G acts by (orientation preserving) homeomorphisms (see e.g. [3]). By analogy, we
define the graph rank of G, denoted by p(G), as the minimal rank of a finite connected
graph F without vertices of valence one (or equivalently, without free edges) such that G
acts on T as a group of automorphisms. Then only the trivial group has graph rank zero,
and the finite groups of graph rank one are exactly the cyclic and dihedral groups
(because the only finite graphs of rank one without free edges are subdivided circles). As
consequences of Theorem 1 and Lemma 1 resp. Corollary 2 and Theorem 2 we have

COROLLARY 3. The graph rank of a finite group G which is not cyclic or dihedral is the
minimal number r such that G embeds into the outer automorphism group Out Fr of the
free group of rank r.

COROLLARY 4. The finite groups of graph rank one are exactly the cyclic and dihedral
groups. There are no finite groups of graph rank two. The finite groups of graph rank 3 are
54 X Z2 = (Z2)3 X] 53 and its subgroups which are not cyclic or dihedral.

By [10] the maximal order of a finite subgroup G of Out Fr is 27!, for r > 2. For r > 3,
the unique (up to conjugation) maximal subgroup of Out Fr is (Z2)

r X Sr acting on the
graph with a single vertex and r edges (a "bouquet" of r circles), therefore

The possible isomorphism types of finite subgroups of Out Fr have been determined in [7];
in principle, this allows an algorithmic computation of the graph rank of a finite group G.
For example, it follows from the results in [7] that, for n > 3

p(Sn X Z2) = p(Sn) = p(An) = n - 1;

note that Sn x Z2 acts on the graph of rank n — 1 consisting of 2 vertices and n edges
connecting these vertices.

Suppose the finite group G acts on an admissible graph of rank r. As above, G
determines a finite group of finite groups *& and an extension

l^>Fr^E
Define the Euler number of <£ as

where the sum is extended over all edge groups Ge and all vertex groups of <S. Then we
have the formula

(see [5], [11] or [12, Prop. 2.3.3]). Conversely, given a finite graph of finite groups $ and a
surjection of E = n^G onto G with torsionfree kernel, this kernel is a free group Fr of rank
r where r is determined by the above formula (it is free because it acts freely on a tree).
Suppose in addition that E has no non-trivial finite normal subgroups. Then, by taking
conjugations of Fr c E with preimages of elements of G in E, we get an inclusion of G
into Out Fr. On the other hand, if E has a finite normal subgroup, then the elements of
that subgroup commute with the elements of the normal subgroup Fr of E and the induced
homomorphism from G to Out Fr is not injective. Thus we have

PROPOSITION 2. The graph rank of a finite group G which is not cyclic or dihedral is
equal to \G\ %(^S) — 1 where x(^) is the minimal positive Euler number of a finite graph of
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finite groups 'S such that ux{
cS) has no non-trivial finite normal subgroups and such that

there exists a surjection of nx 'S onto G with torsionfree kernel.

For example, for the finite groups

(Z2)nX5n, SnXZ2, Snresp.An

this minimum is obtained for the following graphs of groups:

(Z2)"Xl5n (Z2)"-'XSn-i (Z2)"X5n_1

Sn Sn_! £„_! x Z2

• •
S c e r e SP-

An An-i An

These graphs of groups are associated to the action of the group (Z2)
n X Sn on the graph

of rank n which is a bouquet of n circles, and to the action of Sn x Z2 and its subgroups Sn

and An on the graph of rank n - 1 with two vertices and n connecting edges.
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