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A UNIFORM DESCRIPTION
OF AN OSCILLATOR'S RESONANT TRANSITION
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Abstract

A uniform approximation to the description of a linear oscillator's slow resonant
transition is calculated. If the time scale of the transition is e"1 , the approxi-
mation contains explicitly the 0(1) and 0(e''2) terms, and fixes a uniform 0(e)
error bound.

1. Introduction

Linear oscillation problems on infinite and semi-infinite intervals provide a
rich source of interesting and delicate problems to which there are a relatively
small number of explicit solutions or substantiated approximations. Not in-
frequently these show unexpected properties which, even if evident in careful
numerical studies, are not easily explained.

For an example of the capricious behavior of such solutions, take the
asymptotic calculation of reflection coefficients [1] for the equation

e2d2y/dt2 + w2{t)y = 0, 0 < e « 1.

The results are striking. The exponentially small reflection coefficient has an
accumulation point of zeros as e —> 0, a > 0 fixed, and the limits a —> 0+ ,

a —> 0_ , e fixed, are non-uniform, when w(t) = (l + a / ( l + t2)). This
curious behaviour could not have been anticipated.

It is therefore not unreasonable to study particular oscillation problems
where it is possible to obtain substantiated approximations, in order to look
for significant phenomena. One can then attempt to prescribe sufficient con-
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194 P. B. Chapman [2]

ditions for similar analysis to proceed, but further computation of specific
examples, and study of their results may yet be the more fruitful procedure.

A substantial literature is available in the discussion of perturbation tech-
niques for oscillatory systems and equations with weak nonlinearities and/or
slowly varying coefficients. Perhaps this literature might be categorised as
modern and classical. The former category uses as a starting point the aver-
aging method of Krylov and Bogoliubov [4] and proceeds by ingenious formal
procedures to construct a succession of differential equations whose integrals
provide progressively more refined approximations [3]; the latter category
moves from the Liouville-Green (or equivalent) formalism [5] to Picard it-
erate a Volterra integral equation to a similar end. The modern approach is
recently described by Kevorkian [2], while a description of the classical one
is given in Olver's [5] treatise, although in a limited scenario.

The advantages of the classical approach, at least for linear problems, are
that the validity proofs are directly available, a uniformly applicable approx-
imation is naturally provided and, with that, an identification of appropriate
slow and fast time scales. For example, in the problem discussed below, the
uniform argument arising is

(e"1 lncoshe/)1/2 &(e/2)i/2t 0 < et < 1

«(r-ln2/e)1 / 2 et» 1

and the two time scales in the problem follow.
The present study examines a particular transiently-resonant linear equa-

tion

d2y/dt2+ (l+atanhet)2y = kel/2sint, 0 < a < 1, 0 < e <: 1 (1.1)

with two free parameters a, e (the constant k can be removed by scaling,
but is left in as a "tag" on terms in the calculation). It is convenient but not
essential to restrict discussion to positive values of a; negative values can be
similarly treated by reversing the sense of time. When a = 0, equation (1.1)
is resonant, and all solutions are ultimately unbounded in the limit \t\ —> oo,
but when a > 0 the right-hand side is only instantaneously resonant at t = 0,
where the frequency of the periodic forcing term (the right-hand side) is
coincident with the natural frequency of the unforced constant-coefficient
system. With a positive value of the parameter a, the system makes a slow
(because e is small) transition through the resonance at t = 0. For large
negative (et), it is to be expected that there will exist a solution of equation
(1.1)

y = (1 - ayl/2(aei{l-a)t + ae"'*1"0') + kel/2 sin t/(a(a - 2)) + SR_ (1.2)
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[3] A uniform description of an oscillator's resonant transition 195

and this could reasonably be expected to connect with a solution

y = (l+a)-l/2(liei{i+a)t+-pei{l+a)l) + ke1/2smt/(a(a + 2)) + dR+ (1.3)

at large positive (et), where a and ft are constants and \SR+\ and \SR_\

have a uniform o(e^2) bound. The factors (1 ± a)~1 / 2 are included to
simplify the final statement of results, which will describe the solution of
equation (1.1) for nonlarge values of (et), establish the bound for the errors
8R± and the relation

connecting the constants a and /?. As Kevorkian [2] points out, the descrip-
tion of the transition through resonance requires a Fresnel integral, which is
taken here to be

F±(z) = I e dw = I cosw dw±i I sinio dw (1.5)
Jo Jo Jo

for a real variable z . Its asymptotic behaviour is

lim
Z —+ ±OO ' ~ — w — - e ^ v _ / w \ / T "O"\~/ \ -> | \ / 1 ' ( * • " )

2. Analysis

The equation

dy2 /dt2 + (I + atanhufy = ke1/2 sint (2.1)

is studied as a model of a transiently resonant system, where

u = et; (2.2)

k, a(0 < a < 1), and e(0 < e < 1) are real parameters. The coefficient

(1 + a tanh uf = {d<j>/du)2 (2.3)

is slowly varying between (1 - a)2 and (1 + a)2 as u —> -oo , and +oo,
respectively and at u, t = 0 the right-hand side is instantaneously resonant.
The definition of d(/>/du allows a choice

<j>{u) = u + a ln(cosh M) (2.4)

and requires
d2<j>ldu2 = a seen2 u. (2.5)
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The boundedness and decay behaviour of the second derivative (2.5)
, 2 -2|«| ,. . |

sech M~e / 4 , \u\ —* oo
confer desirable properties on integrands which arise in the construction of
the solution of (2.1).

It might reasonably be supposed that a solution of (2.1) which behaves as

y = (l- a)-l/2(aei(l-a)l + a<T'(1-fl)') + kel/2sin//(«(« - 2)) (2.6)

as (et) —• —oo, will behave as

y = (l+ a)-l/2(fieill+tt)t + Je-
i{i+a)t) + kel/2 sin t/(a(a + 2)) + SR (2.7)

as et —» oo, where d, a constant depending on e, is o(e ) and R is
uniformly bounded. The aim of the present study is to calculate y when
(et) is not large, and to establish the P(a) and d(e) relationships. In doing
this, it is convenient to integrate from the origin t — 0 both backwards and
forwards but, in order to suppress the irrelevant complication of the presence
of sgn(w) factors in expressions, only the details of the forward integration
are given; those of the backward integration are analogous.

Following the Liouville-Green approximation [5], a solution of equation
(2.1) is expressed as

[ [ (2.8)
(where the convention ' = g- is employed), with the condition

e* + (w/yfjj^ e^=0 (2.9)

imposed as one of the two necessary to determine the complex valued func-
tion W of the real variable u. The second condition is that the y so denned
(by (2.8)) satisfies the differential equation (2.1), and this can be shown to
be

I U\[7) +Wcf>"e=^/(2<f>') (2.10)W = -ke

after using (2.9).
Still following, for example, Olver's [4] proof of the Liouville-Green ap-

proximation, (2.10) is restated as a Volterra integral equation

? ' dv
4

? • dv

—r. u, (2.11)

20
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(5] A uniform description of an oscillator's resonant transition 197

where W0(u), / ,(«) and J2(u) are defined in a natural way. Solutions of
this integral equation (2.11) are differentiable, and will satisfy the differential
equation (2.10) on their existence interval.

The existence and uniqueness of solutions of the integral equation (2.11)
is proved by showing convergence of its Picard iteration

^ - W ^ i v ) ) ^ ^ dv (2.12)

n = 0, I, ... with W_x(u) = 0 on some interval [O, U] where U > 0 . If,
for the existence interval [0, U], (which will later be shown to be [0, oo))
a constant d can be chosen so that

Q ^ (2.13)

then for any u in the interval

\W2-Wx\<d

since both cj>" and <f>' are positive (2.3, 2.5). Thus it follows that

\W2-W{\<d(inyf^\ /2 (2.14)

and by induction,

Thus the sequence {Wn} is pointwise convergent on [0, U], and uniformly
convergent, by the M test. For a continuous Wo, the successive Picard
iterates are continuous functions of u, so their (unique) lim W =W is a

n—•oo

continuous function and satisfies

\W-W0\<d{sfi' -\). (2.16)

It is now routine to show that the limit satisfies the integral equation (2.11) on
any interval 0 < u (i.e. U is unbounded) and thus the differential equation
(2.10), so it only remains to calculate Wo, and show that d is sufficiently
small, that approximating W by Wo is useful. An approximation evaluation
of WQ is first given.

In Appendix Al the integral 7, (u) = /„" e « /y<f>'dv is calculated and it
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is shown that, in terms of the Fresnel integral (1.5)

/,(«) = {2e/a)l/2F_ (y/alncoshu/e}

, - i

[6]

— ! l~)

)e ' ((tanhw) (1+atanhw) y - (2/ncoshw) ) +

+ e3/2CT, M > 0
(2.16)

where |cr,| < sx and ^j is a constant, independent of e .

In Appendix A2 the integral /2(M) = So e ' l\j^ ^v ^s calculated, and
it is shown that

J2(u) = ei + e u > 0 (2.17)

where |CT2| < 52 and s2 is a constant, independent of e. It then follows that
the uniformly applicable approximation to

W0(u) =

is

1/2 la In cosh M\ 1/2.
- e 1

~a~\e

1

)((tanhw) (1 + atanhw)

-(21ncoshM)"1 / 2 )+ |

-1/2

(2.18)
Here we note, that as u —> oo (Incosh u -* u - In 2 , 0 —• w(l + a) - a In 2)

I n

e ' i + O(e).
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Hence also follows the limit behaviour

* 1V(Q) k(l-i) Fit kei/2ii) Fit kei/2i\ •"<'+••>-"•

1/2. r ^ H

V [+ V [(2 + «)(•+,)^j+°">
and the contribution to the solution y from the first term above is

as was anticipated from (2.7). Similarly, as « - t o o , analogous computations
show that

* ' 2 i \ '"Q -̂-"-2W{0) k{l-i) fn ke'2i

and the second term here contributes e
a(a

sl"2y ̂  to the solution y , as antic-
ipated from (2.6).

The P(a) relationship is therefore obtained by eliminating W{Q) between
appropriate parts of the expressions (2.19) and (2.20). It is

The calculation of (c.f. (2.11), (2.13)).

D(u) = W,{u) - W0(u) = f" M _ < , ^ dv, (2.22)
Jo 2<p

or, more specifically, the constant d in the bound \D(u)\ <d\n \J<t> follows
from the evaluation of

I" ?=* ^ ^ + a3 (2.23)
3

I e dv = c + - ^
0 2<f>' 4(<f>')2

~2u(where c sa - / a / 4 is an 0(1) complex constant and |cr3| < eLe~2u with L
an 0(1) constant), which is shown in the appendix A3.
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With this definition (2.23) of Z , one has

D{u) = e f Z'WQ dv
Jo

= e[ZeW0]
u
0 - e f WQZ dv (2.24)

Jo
and, (from 2.10, 2.11) W^ is known and

so, using (2.23), obtain an integral expression

D(u)=e[ZWQ];-'^— { e < - e ~ ) . (2.25)
H Jo

— lit . \

. dv
c+ . . . . . ; +>

which can be estimated, as follows.
The integrated part e[ ]£ has a uniform 0(e) bound on the positive half

line, from the bounds on Z and IVQ . The integral

ke'2 (e ' -e ' ){c + o3)/\J<t>'dv
Jo

is subject to a uniform 0(e) bound (u > 0), the dominant part being evalu-
ated as in Al. The integral ksl/2 /0" e^®<f>"/(4(<j>')5/2) dv can be treated as
in A2, and a uniform 0(e3/2) bound established for u > 0. There remains
the integral in (2.25) to be bounded:

"
dv

^5/2

fj^t^a) dv
Jo \(<j>) )

where the right hand side is obtained using the definition of (A 1.1) of Jx

and using
27

The total variation V of ( f'ifi — a) is finite on the positive half line, so

([2], p. 51)

el/2

1/2 / imJ. . I r a / . \ f-
< e ' max , _ ' - min _ ' VV2,

y O ) RUX (0,oo) RlJl J
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[9] A uniform description of an oscillator's resonant transition 201

and since the real and imaginary parts of 7, have an 0(e1/'2) bound for
u > 0 (A1.2), then \T(u)\ has an 0(e) bound. Hence, finally there exists a
constant M such that \D{u)\ < Me for u > 0 so

d = Me (2.26)

or, in (1.3) \SR+\ is 0(e) uniformly, and similarly \SR_\, that is 3 = e .

3. Concluding remarks

The transition through resonance of the more general oscillator

e2d2y/dt2 + (I + £l(u))2y = kel/2 sint (3.1)

can be described using the same analytic approach provided the real valued
function

Q( M ) = <t>\u) - 1 (3.2)

is suitably restricted. Examination of the preceding calculations suggest that
the following restrictions suffice for any twice continuously differentiable Q.

(1) 1 + Q(M) > 6 > 0 for all u, where d is independent of e;
(2) lim (£l(u)) — k± where k± are positive constants;

(3) tl(u) — 0 has a unique solution u = 0;
(4) Q'(0)^0-
(5) il"(u) = 4>"\u) is continuous and both locally and improperly inte-

grable; and
(6) |£2'(M)| , |MQ"(M)| , (and hence |ft"(M)|) are both locally and improp-

erly integrable

Restrictions (1) and (2) validate the algebra used to pose the problem
and (3) and (4) ensure that there is one transition point, and that solutions
are locally described by the Fresnel integrals F±. Restrictions (5) and (6)
are necessary to make the error estimates; in particular (6) makes the total
variation of (f>" and 4>" finite on any interval of u. Thus the analysis of
the previous section can be followed through with a much slower decay of fi
to its asymptotic values—for example algebraic decay

<t>{u) = u + a tan u

or
Cl(u) = a tan" u

- i
u - » v j lol<;-
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202 P. B. Chapman [10]

In retrospect, the calculated example's exponential asymptotic decay rate (in
Section 2) is something of an overkill.

The key to the docility of integral estimates in the convergence proof to the
success of the method, lies in the presence of the </>" factor in the residual
in (2.10)

with its attendant asymptotic decay properties, as can be seen from the proof
of the Picard iteration's convergence (Section 2). The damped, nonlinearly
perturbed form of (3.1), viz.

d y dy i \n ( dy\
—j- + 2p£-j—h (1 + Q) y — ke suit + 8 f I y, —=— I P > 0 (3.4)
dt dt \ dt)

would generate an equation (corresponding to 2.10)

r^f 7= , iJ<j>\We' - We • ) (3.5)

2^'e V \ft J
where WQ is specified in (2.11).

The absence of the mollifying factor <f>" from part of the residual (W' +
PW — WQ) will restrict the interval of applicability of convergence proofs,
and make consequent estimates less controllable, for any nonzero S . Then
a solution matching procedure may be inevitable, as in [2]. If 8 = 0, then
the Picard iteration which is natural,

\ ~ Wn-\) d W (3-6)

converges provided

/ c/>"/(2<f>') du = S(u) (3.7)
Jo

is uniformly bounded for all u > 0. This follows on defining:

/(2(f)) + p) dw (3.8)

and making the inductive hypothesis

\Wn{u)-Wn_x{u)\<e-puJ7n{u)dln\

It follows that

\Wn+l(u) - Wn(u)\ < e~pu^n+\u)dl{n + 1)!,
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[11] A uniform description of an oscillator's resonant transition 203

so that the sequence {Wn{u)} converges for any u, and

\W{u) - FT0(«)| < rf{exp(^(M) - fiu) - 1}

l} (3.9)

where W0{u) = e~pu ^ ePw W^ dw and

a = \\Wl-W0\\. (3.10)

The condition (3.7) is exactly the same as that for the convergence of the
undamped, linear system; this indifference to damping is perhaps to be ex-
pected.

Appendix 1

The integral defining the function

Jl(u) = fe^/Jj/dv (Al.l)

where (/> is defined in (2.4), is reduced by the change of variable v(w) =

cosh (e 2 ) (w(v) — VUncoshv) to

Jo
( e^w{\ - e-wY1/2(l + «(1 - e-w)l/2)-l/2 dw

o
The latter's integrand possesses a limit at to = 0, which allows writing it as

/ ,(«)= / e^~edw
Jo

/•«(«) ^Le r -w\-l/2,t , , -^,1/2,-1/2 -ll ,
+ / e 2 ( 1 - e ) ' ( l + a ( l - e ) ' ) - t o d w

Jo I J
The first of these integrals is a complex Fresnel integral (^)X'2F_{{^)l

where F_ is defined in (1.5). The factor [ ] in the second (together with
its limit — | at w — 0) defines an analytic function on the real line, which

decays as w —• oo to a constant [ ] = (1 + a)~1/2 - to"1 4- 0(e~w ) . Thus an
integration by parts yields

2}

-J.
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The factor in the last integrand j^[ ] is analytic on the real line, and decays
as w —• oo as 0(w~2). Its total variation V on the interval [0, oo) is finite,
and so

w =¥•' d .. , (2e\l/2fd \ / / 1 \1 / 2 A

where

by the second mean value theorem for integrals ([2] p. 51) since

max f2 cos 2 , . fw cos 2 , . fn
n . / . w aw —mini . w aw < \ —
0<wJ0 sin J0 sin y 2

Then, in summary, we have

»\ =*• '[(i-^r1
•a(l-e~

where |ffj| is uniformly bounded, independent of e, \ax\ < A{.

v=w(u) + 2)

(A1.2)

Appendix 2

The evaluation of the integral

J2(u) = (A2.1)

where 4> is defined in equation (2.4), is by partial integration and error
estimation. The partial integration is possible since the derivative

—(v + <f>) = 2 + a tanh v

vanishes nowhere on [0, 00) (or on (-00, 0] , as 0 < a < 1).
Thus the integral is

J2{u) = ie e '

(
- i e f e '•* - j - I

Jo dv y
dv
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[13] A uniform description of an oscillator's resonant transition 205

with the last term being taken as the error. Rewrite the error integral as

and apply the second mean value theorem ([1] p. 51). The factor { } in the
integrand of the expression for E itself contains a factor <p"(v) = sech v
and therefore decays exponentially as \v\ —• oo; and denning the total varia-
tion of { H , , ^ - { } \ v = 0 to be V{, we have

with \E{\ < eFj2\/2. Hence it follows that \E\ < s2 where the constant a2

can be chosen independently of e .

Appendix 3

Since <f>" = a sech2 u, <j> = I + tanh u, the factor ^- in the integrand in
the definition of

z(«)=7 rtje^dv (A3-1)
e Jo l<p

is bounded and exponentially decaying (0(e~ )) as M-*OO. Then integra-
tion by parts shows that

Because (-) ;£(-^7) is positive, and monotone decreasing to zero at u —>
(0)

00, and {<t>')~ is positive and monotone decreasing to its constant value
(1 + a)"1 in the same limit, then the derivative of their product is negative
and

du \4fdu \(<t>')2
{cf>')2

u=0
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Because of the asymptotic exponential decay of (j>" a constant L can there-
fore be prescribed, independent of e , such that

_£ /"— (-— (-£-W ^ a
8 70 du \(t>'du \{<t>')2))e

< eL(e~2u + 1) (A3.2)

for all u > 0 .
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