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The Nusselt number of a hot sphere levitated by a
volatile pool
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When placed at the surface of a volatile liquid, a sphere of hot dense non-volatile material
remains suspended until it cools sufficiently. The duration of this ‘inverse Leidenfrost’
phenomenon depends on the Nusselt number Nu of the sphere, itself determined by
flow in the film of vapour separating particle and liquid. It is shown that provided the
Nusselt number is large, it can be calculated numerically using only the Laplace relation
and the equations governing the thin film; patching to a solution for the outer thick
film is not necessary. This method is demonstrated by using it to determine Nu for a
sphere sufficiently small that in the governing equations, the acceleration due to gravity is
negligible except where multiplied by the density of the sphere. Numerical results giving
Nu as a function of a dimensionless measure of sphere weight are supplemented with
analysis showing that, when the weight is of the order of the maximum supportable by
surface tension alone, the film consists of a spherical bubble cap bounded by its contact
rim. The solutions for these regions are coupled: although the apparent contact angle χ
for the cap is determined within the rim, its value depends on the flow rate arriving from
the cap as well as on the additional evaporation from the rim. The latter acts to reduce χ
from the value it would otherwise have, thereby reducing the thickness of the entire cap.
For the example treated here, the value of Nu is doubled by this mechanism.

Key words: contact lines, thin films, boiling

1. Introduction

A warm dense particle of non-volatile matter can float at the surface of a cooler but
less dense liquid if the temperature difference exceeds the value needed for evaporation
to produce a continuous film rather than individual bubbles. Because the film is thin in
practice compared with the size of the particle, its presence causes the bulk meniscus to
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have an apparent contact line where the contact angle measured through the liquid has
been increased from its static value to π (Hendricks & Baumeister 1971). The increase in
contact angle increases the lift exerted by the liquid on the particle. As a result, a particle
which would otherwise sink can remain suspended for as long as the film is present.

The duration of the phenomenon depends on the heat flow from the particle. The
literature on vitrification of droplets of aqueous solution on liquid nitrogen contains two
different treatments. Hendricks & Baumeister (1971) and Adda-Bedia et al. (2016) model
the vapour film as a squeeze flow between two concentric spheres. Because the shape
of the interface between the film and pool is prescribed, the balance of normal stress
is not satisfied. The thickness of the film and the pressure distribution within it are
determined using the Reynolds equation, the conduction equation and the force balance
on the sphere. Song et al. (2010), by contrast, apply existing theory for film boiling on a
sphere (Frederking & Clark 1963; Carey 1992, p. 275). In it, flow within the film is assumed
to be driven by the pressure gradient within the pool, as in the free convection boundary
layer in a single phase; this analogy holds if the drops are large enough for surface tension
to be negligible in the balance of normal stress. For the experiments performed by Song
et al. on freezing drops of an aqueous solution on liquid nitrogen, drop radii range from
∼80 μm to ∼1 mm; because the capillary length of liquid nitrogen is ∼1 mm, it is not
obvious that surface tension should be negligible.

Numerical simulations by Maquet et al. (2016) of their own experiments satisfy all
relevant governing equations and boundary conditions. Their figure 5 shows film profiles
calculated for the Leidenfrost flow between a volatile drop and a non-volatile pool of
denser liquid. Because the density ratio is fixed in those calculations, the deflexion of the
pool surface increases with drop size. Though the film structure evolves with drop size,
those simulations do not determine whether the change in structure is a result of increasing
deflexion, or of something else. The behaviour of volatile drops large compared with the
capillary length is analysed by van Limbeek et al. (2019). Motion in the film is proved to be
driven by the pressure gradient within the underlying liquid. Film structure and thickness
are determined but no result is given for the total heat flow.

Here, the first systematic calculation is made to determine the Nusselt number for steady
axisymmetric Leidenfrost flow between a rigid sphere of radius b and density ρs, and a
pool of liquid of density ρ�. Results are given only for a drop sufficiently small for the
pressure gradient imposed by the underlying liquid to be negligible compared with the
gradient in capillary pressure.

In § 2, the boundary value problem is posed for a sphere of arbitrary radius. This
problem contains five parameters:

Pr = μcp

k
, Bo = ρ�gb2

γ
, Cr = μκ

γ b
, D = ρs

ρ�
, Ja = cp�T

Hv
�

. (1.1a–e)

Symbols without a subscript � or s refer to the vapour; k = ρcpκ and Hv
� denote its thermal

conductivity and the enthalpy of evaporation. The Prandtl number Pr is about one. The
sphere is denser than the liquid: D > 1. For a sphere of radius 1 mm at 293 K on liquid
nitrogen at its normal boiling point of 77.355 K, the crispation number Cr = 0.8 × 10−6,
Jakob number Ja = 1.2 and Bo = 0.9. (Though Bo is often called the Bond number,
in Bashforth & Adams (1883, p. 15), the same group appears (as their β) in an early
example of a dimensionless boundary value problem. Bond was born in 1897.) Properties
were obtained using the site at https://webbook.nist.gov; other than surface tension γ ,
they were evaluated at the mean temperature of 185 K. Because the characteristic film
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Nusselt number of a hot sphere levitated by a volatile pool

thickness h0 → 0 as Cr → 0, the boundary-layer approximation is made following the
initial formulation of the problem.

At the end of § 2, it is shown that in a film covering an O(1) fraction of the sphere, the
motion is driven by the pressure gradient imposed by underlying liquid if Bo � h0. In the
other extreme Bo � h0, the imposed pressure gradient is negligible; this limit is analysed
here. Jones & Wilson (1978) give an equivalent criterion for the isothermal flow in the gas
film beneath a sphere settling onto a pool.

In § 3, the problem is simplified by assuming creeping flow. The convective nonlinearity
in the energy equation is retained, however. The simplified equations admit a similarity
solution determining the temperature profile across the film, and providing a pair of
coupled ordinary differential equations determining the streamwise evolution of the
pressure p and volume flow rate q within the film in terms of film thickness h. The
similarity solution allows the effect of the convective nonlinearity in the energy equation
to be described completely by a modified form of the crispation number Cr. The method
used to compute the Nusselt number is also outlined in this section.

Section 4 contains the main results of the numerical solutions. In addition to determining
the Nusselt number, these solutions show how the solution evolves as the weight of the
sphere is increased from an initial small value for which the interface is nearly plane. The
film profile eventually assumes the form of a spherical bubble cap bounded by an apparent
contact region. This structure is analysed in the rest of the paper.

The chief properties of the bubble cap are given in § 5. The boundary value problem for
the contact region is derived in § 6, then in § 7 transformed into a simpler form and solved
by a series expansion in powers of a parameter λ representing the strength of evaporation
in the contact region. The expansion is carried out to O(λ3). Section 8 contains the results
for the apparent contact angle χ for the bubble cap and for the total evaporation. In § 9,
these predictions are compared with numerical results. Conclusions are given in § 10.

Appendix A contains the forms of the Laplace relation used here; Appendix B,
the similarity solution; Appendix C, the theory used to calculate the Nusselt number;
Appendix D, the explicit solutions used in §§ 7 and 8; and Appendix E, the analysis used
in the discussion of the numerical results in § 4.

Jones & Wilson (1978), Duchemin, Lister & Lange (2005), Snoeijer, Brunet & Eggers
(2009) and Sobac et al. (2014) describe analyses similar to that given here in §§ 5
and 6. Only that of Sobac et al. involves evaporation from the film and its contact
region. In that analysis, and in this one, evaporation from the contact region is negligible
to a first approximation. Including evaporation from the contact region in subsequent
approximations reduces χ . By reducing the thickness of the main film, evaporation form
the contact region therefore has a significant effect on the total evaporation rate. Though
Sobac et al. (2014) calculate the first correction to χ , they neither comment on this effect
nor demonstrate its importance for the total evaporation.

2. Governing equations

Figure 1 shows the geometry of the problem. The liquid is isothermal at the saturation
temperature T�v; pressure within it is hydrostatic. The sphere is at uniform temperature
T�v +�T . Arc length along the interface to point P is denoted by s; r(s) denotes the
position vector CP of P relative to the centre C of the sphere. The thickness of the vapour
film h(s) = r(s)− b; as shown in the figure, h0 = h(0). The unit normal n to the interface
points into the liquid; it has Cartesian components ni. The origin O for the cylindrical
coordinates {σ, z} is at the level of the flat interface at infinity. The inset shows the relation
between ds, dσ , dz and the inclination α, i.e. the angle between the tangent to the interface
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dz

dσ

α

n

dr

s

L

ρ�, T�v

σ

z

O

c

θ

h0, p0

r

b

T�v + �T, ρs

p

P
h

Tension γ

ρ, μ, k

p�

C

Figure 1. Cylindrical coordinates (σ, z), z = 0 on the flat interface. Sphere: centre C at z = c. Liquid–vapour
interface: s = |LP|, arc length from the lowest point L to point P; r(s) = CP, position vector of point P. Vapour
layer: thickness h = |r| − b, pressure p; h0, p0, values at s = θ = 0. Inset: unit normal n; tangent dr, inclination
α; ds = |dr|.

and the horizontal. The force exerted by the sphere on the liquid is denoted by −2πFez.
(The sphere is assumed to be stationary, and the solution to be axisymmetric. Adda-Bedia
et al. (2016, p. 1080) show by experiment that the particle in fact translates and the flow
is not axisymmetric.) The body force is negligible within the vapour but not (in general)
within the liquid (ρ � ρ�).

Dimensionless variables (without asterisks) are based on the primary quantities b, γ /b,
�T and the scale κJa/b imposed by the balance of energy at the interface:

r∗ = br, v∗ = κJa
b

v, p∗ − p∗a = γ

b
p, T∗ = T�v + T�T. (2.1a–d)

Within the vapour

div v = 0, (2.2a)

Pr−1Ja2v·∇v = −Cr−1∇p + Ja∇2v, (2.2b)

Ja v·∇T = ∇2T, (2.2c)

so that heat is transferred by pure conduction if Ja � 1.
On the sphere

v = 0, T = 1. (2.2d,e)

On the liquid–vapour interface

T = 0 = n·(v − ∇T), (2.2f,g)

p + Bo z = div n + Ja Cr σ ′
ijninj, (2.2h)

σ ′
ijnj − (σ ′

klnknl)ni = 0; (2.2i)

the deviatoric stress tensor σ ′
ij = σij + p δij, stress tensor σij. Equation (2.2g) is a simplified

form of the balance of total energy at the interface. The body force enters only through the
boundary condition (2.2h).
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Nusselt number of a hot sphere levitated by a volatile pool

As stated by (2.2h) and (2.2i), the liquid is assumed to exert only a hydrostatic pressure
−Bo z on the phase interface. This assumption is explained next. Motion in the liquid
consists of a primary flow required by continuity of the component of v along the interface
and a weaker secondary flow required by continuity of the mass flux ρv·n. The shear
stress exerted by the liquid can be negligible, or not, depending on the magnitude of the
parameter M = μb/(μ�h0). For M → ∞, the characteristic shear stress in the vapour
is large compared with that in the liquid; continuity of the shear stress then requires the
shear stress to vanish in the vapour at the interface. Similarly, for M → 0, the tangential
component of v vanishes in the vapour at the interface. Jones & Wilson (1978, p. 269)
assume the former; Hendricks & Baumeister (1971, table 1) and van Limbeek et al.
(2019, p. 1161) assume the latter. Following (4.4), it is shown that within the lubrication
approximation, the choice of boundary condition amounts to modifying the value used
for Cr.

For the sphere to be in equilibrium,

F = 2
3 D Bo =

∫ π

0
p cos θ sin θ dθ + Ja Cr

∫ π

0
(σ ′

rθ sin θ − σ ′
rr cos θ) sin θ dθ. (2.3)

At s = 0, pressure p0 and film thickness h0 are to be determined as part of the solution.
The outer boundary conditions are

as h/h0 → ∞, p/p0 → 0; as s → ∞, z → 0. (2.4a,b)

Condition (2.4a) is stated in terms of h rather than s because the structure of the film
determines the value of s at which p/p0 → 0. The problem so defined determines h0, p0
and the ordinate c of the centre of the sphere as functions of Bo, Ja, Pr, Cr and F.

Next, it shown that when the film covers a fraction ∼ 1 of the surface of the sphere,
motion within the film is driven by the gradient in capillary pressure if Bo � h0;
conversely, it is driven by the pressure gradient imposed by the underlying liquid if
Bo � h0.

In the boundary-layer approximation, the momentum equation is

Pr−1Ja2v·∇vθ = −Cr−1 dp
dθ

+ Ja
∂2vθ

∂θ2 . (2.5)

In this approximation p is uniform across the thin film. It is determined by (2.2h), which
with error O(h2

0) is

p = Bo{(1 + h) cos θ − c} + 2 − 2h − 1
sin θ

d
dθ

(
sin θ

dh
dθ

)
. (2.6)

The term in braces represents the pressure imposed by the underlying liquid; remaining
terms represent the capillary pressure. As noted by Jones & Wilson (1978), there are
two extremes. For Bo � h0, the pressure gradient is given by dp/dθ = −Bo sin θ , except
within the contact region: the motion in the main film is then driven by the pressure
gradient imposed by the underlying liquid. Conversely, for Bo � h0 the pressure gradient
within the film is equal to the gradient in capillary pressure. (Because h0 is a flow property,
it has different values in the two inequalities.) This condition for the gradient in hydrostatic
pressure to be negligible is more demanding than the condition Bo � 1 required for the
hydrostatic pressure itself to be negligible in the force balance on the sphere. Brandão &
Schnitzer (2022, p. 1121) analyse the behaviour of the film assuming D to be fixed and
Bo → 0. Consequently, F � 1 and the film covers only a vanishingly small part of the
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sphere. As a result, their analysis is only indirectly related to the argument of Jones &
Wilson (1978) just summarized.

The scaling Ja/Pr for the ratio of inertial to viscous terms is not an artefact of a
particular choice of scales. Within the main film where the dimensional radial velocity
v∗

r is determined by the balance of total energy at the interface, the product of dimensional
film thickness h∗ with v∗

r depends only on κ and Ja: h∗v∗
r ∼ κ Ja and the ratio of inertial

to viscous terms is ρh∗v∗
r /μ ∼ Ja/Pr. Within the contact region, the velocity is, however,

determined instead by the total evaporation from the main film; this will slightly increase
the effect of inertia there. Despite this, fluid inertia is assumed to be negligible in the rest
of this work. The convective nonlinearity in the energy equation is retained, however.

3. Specialization to quasi-parallel creeping flow

The coupled energy and momentum equations now admit a similarity solution including
convective heat transport (Appendix B). In addition to determining the profiles of velocity
and temperature, it provides two equations relating the streamwise evolution of p(θ) and
q = ψ(1 + h, θ) (Stokes streamfunction ψ) to the unknown film thickness h(θ). (The
volume flow rate is given by 2πq.)

3.1. Chief properties of the similarity solution
The equations for p and q are

h
sin θ

dq
dθ

= Γ (Ja),
h3 sin θ
Ja Crq

dp
dθ

= −c. (3.1a,b)

The constant c depends on the boundary condition for vθ at the interface. For
∂vθ/∂r|1+h = 0, as assumed here, c = 3. For vθ (1 + h θ) = 0, c = 12.

The function Γ (Ja) is the product of film thickness with the heat flux into the
vapour–liquid interface:

Γ (Ja) = −h
∂T
∂r

∣∣∣∣
1+h

. (3.2)

This function is given by (B9); it describes completely, and without approximation, the
effect of convective transport of heat.

Figure 2 shows Γ as a function of Ja. In the limit as Ja → 0, Γ → 1 because the
left-hand side of (2.2c) then vanishes and, in the thin-film approximation, T varies linearly
across the film. For Ja > 0, Γ < 1 because vapour flows from the interface towards
the sphere: this motion reduces the temperature gradient at the liquid–vapour interface
but steepens that at the sphere. The corresponding difference between the heat fluxes is
transported downstream. The choice of c has only a modest effect on either flux.

The form of (3.1a) and (3.1b) reflects the choice of b, Ja κ/b and γ /b as scales for
length, velocity and pressure. If instead, Γ Ja κ/b is used as the scale for velocity, with
no other change, q is replaced by Γ q, and the pair of equations contains only the single
parameter Γ Ja Cr. The effect of convective transport of heat is therefore equivalent to that
of reducing Cr by the factor Γ (Ja). With this understanding, Γ is set to unity.

3.2. The boundary value problem for Bo � h0

The Laplace relation provides the equation needed to complete the system. In the form
given as (A2) it is expressed using arc length s along the liquid–vapour interface.
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Nusselt number of a hot sphere levitated by a volatile pool

Ja

–h ∂T
∂r r=1+h

–h ∂T
∂r r=1

1.2

1.0

0.8

0.6

0.4

0.2

0 0.5 1.0 1.5

Figure 2. Product of film thickness and heat flux as given by the similarity solution (B9). Solid and broken
curves show the effect of the boundary condition on vθ at the vapour side of the interface: solid curves,
∂vθ /∂r = 0 (c = 3); broken curves, vθ = 0 (c = 12). Short curves, Taylor series (B11) to O(Ja2).

Without approximation, (3.1a) and (3.1b) are therefore expressed in terms of s by
multiplying throughout dθ/ds.

With σ = (1 + h) sin θ denoting the cylindrical coordinate of a point s on the interface,
θ its spherical coordinate and α the inclination (figure 1), the five dependent variables α,
h, θ , p and q satisfy the following problem.

For 0 < s < ∞,

−1
3

h3 sin θ
dp
ds

= Ja Cr q
dθ
ds
, (3.3a)

h
sin θ

dq
ds

= dθ
ds
, (3.3b)

dα
ds

+ sinα
σ

= p, (3.3c)

dh
ds

= sin(θ − α), (3.3d)

dθ
ds

= cos(θ − α)

1 + h
. (3.3e)

The geometric identities (3.3d) and (3.3e) are derived in Appendix C. According to these
identities h is a decreasing function of s if the inclination α of the interface exceeds that
of the tangent to the sphere; and dθ/ds ≷ 0 according as α ≷ θ − 1

2π: θ increases with s
until the radius vector becomes tangent to the interface, but decreases thereafter.

The boundary conditions are

0 = θ = α = q, h = h0, p = p0 (3.4a–e)

at s = 0; and
p/p0 → 0 (3.4f )

as h/h0 → ∞.
Because Bo does not enter into the system (3.3), its solution is decoupled from the

interface displacement. It is now convenient to choose the origin for z to be at the centre
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C of the sphere (rather than at the level of the flat interface at infinity, as in figure 1). With
this choice, the cylindrical coordinates of a point on the interface are given by

σ = (1 + h) sin θ, z = −(1 + h) cos θ. (3.5a,b)

For ease of reference, the relation for σ given above (3.3) is repeated as (3.5a).
Although Bo does not enter into (3.3), it still enters into the force balance (2.3) but only

as part of the group F = 2
3 Bo D. The solution of (3.3) satisfying the boundary conditions

therefore depends on only two parameters, Ja Cr and F, rather than all five listed as
(1.1a–e). (In effect, except where g is multiplied by the density ρs of the sphere, gravity is
taken as negligible for the analysis in this paper.)

The system (3.3) admits a solution such that in the limit as s → ∞, p = o(s−3), α → 0,
θ → 1

2π, h = O(s) and dq/ds = o(s−2). The outer boundary (3.4 f ) is therefore satisfied,
and q approaches a limiting value, q∞ (say). However, in the limit as s → ∞, h = O(s)
so that the thin-film approximation underlying (3.1a,b) is no longer valid. Despite this, the
limiting value q∞ can be interpreted once it is understood that in the limit as Ja Cr → 0,
the solution of (3.3) has an inner-and-outer structure.

The inner region consists of the thin film and its contact region. The outer limit is defined
as Ja Cr → 0 (fixed h). In this limit, h = O(1), and the Reynolds equation (3.3a) becomes

dp
ds

= 0, ⇒ p = 0, (3.6a,b)

where the outer boundary condition (3.4 f ) has been imposed. From (3.6b), it follows that
the outer limit describes the bulk meniscus extending from the apparent contact circle
to infinity. Because the reduced heat equation (3.3b) does not contain the small parameter
Ja Cr, the contribution of the outer region to the total evaporation is O(1), i.e. independent
of Ja Cr in the limit. Provided the limiting value q∞ � 1, the contribution from the outer
region is therefore negligible. Values for Nu obtained from the numerical solution therefore
have a relative error O(Nu−1). All other properties of the numerical solution are limited
only by the precision of the numerical integration.

The outer solution for h has an apparent contact circle at which h → 0 and q → ∞.
To demonstrate that this contact singularity is resolved by accounting for the thin film,
Appendix C contains an example in which the outer solution for q is obtained explicitly
and matched to that for the thin film.

The numerical solution of (3.3) was obtained in parametric form. The program consists
of three nested do loops. First, with Ja Cr fixed, the innermost loop integrates the system
(3.3) from s = 0 to a large value s1 for a given pair {h0, p0}: this determines p(s1) for
the pair {h0, p0}. Second, the intermediate loop imposes the condition p1(h0, p0) = 0
iteratively using Newton’s method: this determines p0 in terms of h0. In this loop, F is
also obtained using the relation∫ s1

0
( p − p1)σ

dσ
ds

ds =
{
σ sinα − 1

2
pσ 2

}∣∣∣∣
s=s1

= F. (3.7a,b)

(It follows by integrating the Laplace relation in the form (A1).) The result of the
intermediate do loop is a triplet {p0, h0,F} satisfying (3.4 f ) for the fixed value of Ja Cr.
Third, the outer loop uses continuation to vary one of either p0 or h0: this generates the
graphs of p0(F, Ja Cr) and h0(F, Ja Cr) given as the next figure.

The solution of (3.3) depends on only two parameters: in this work Ja Cr and F are
chosen.
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Figure 3. (a) Pressure and (b) film thickness at the stagnation point at θ = 0. Broken curves, numerical
solution of (3.3) for the values of − log10(Ja Cr) indicated by the labels. Broken curves have two branches;
as indicated by the dotted horizontal line in (a), the branch point occurs asymptotically at p0 = 2. Solid curve,
solution of the simplified system (E2) describing the limit Ja Cr → 0 (fixed F/(Ja Cr)1/3).

4. Results from numerical solutions of (3.3)

4.1. Response curves
In figure 3(a,b), broken curves show values of p0 and h0/(Ja Cr)1/3 obtained from the
numerical solution of (3.3) graphed against F/(Ja Cr)1/3. With this choice of independent
variable, results for different values of Ja Cr form a single curve on the left-hand side of
each panel. Each broken curve consists of two branches; the tangent to each curve becomes
vertical at the branch point. In each panel, a single solid curve shows corresponding values
obtained by solving the simplified system given in Appendix E; it describes the solution
in the limit as Ja Cr → (fixed F/(Ja Cr)1/3). Unlike the broken curves, the solid curve
has no branch point: instead, it defines h0/(Ja Cr)1/3 and p0 as single-valued functions of
F/(Ja Cr)1/3. Broken curves coincide with the solid curve for fixed F/(Ja Cr)1/3; as Ja Cr
is reduced, broken and solid curves coincide over an increasing range. For F/(Ja Cr)1/3
→ ∞, the solid curve for p0 approaches the asymptote p0 = 2.

The overall behaviour of the solution of (3.3) is determined by the presence of the
maximum in p0 (figure 3a). According to the solution of (E3), this maximum occurs when

F = 10.23(Ja Cr)1/3; then h0 = 1.771 (Ja Cr)1/3, p0 = 2.4396. (4.1a–c)
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The maximum value of p0 is only about 20 % greater than the pressure within a spherical
bubble of unit radius. Once established, (4.1) was used to provide initial values for the
method of continuation.

Because the maximum pressure exceeds 2, there are two values of F/(Ja Cr)1/3 for
which p0 = 2. The smaller value occurs on the left-hand side of the figure where the
broken and solid curves coincide. According to the solution of (E3), for p0 = 2,

F = 2.282(Ja Cr)1/3, h0 = 1.021(Ja Cr)1/3. (4.2a,b)

To the left of this point in figure 3(a), h has a minimum at s = 0 and increases
monotonically with s; to the right of it, h has instead a local maximum at s = 0. In the
form (A3), the Laplace relation determines the location r(θ) = 1 + h(θ) of the interface
in spherical coordinates. By evaluating it at θ = 0,

rθθ |0 = 1
2 r2

0

(
2r−1

0 − p0

)
. (4.3)

Consequently, h has a minimum at θ = 0 if p0 is less than the pressure 2/r0 within a
spherical bubble of radius r0; a maximum otherwise. In the limit as Ja Cr → 0, r0 → 1
and rθθ changes sign when p0 → 2. As F is increased from zero, the critical condition is
necessarily first satisfied on the left-hand side of the pressure maximum.

Once the local maximum in h has formed, it is necessarily paired with a local minimum
for s > 0. Indeed, dh/ds must then have two zeros because it is negative immediately
beyond the maximum, but subsequently becomes positive because r → ∞ as s → ∞. As
F/(Ja Cr)1/3 is increased above the value (4.2a), the ratio of h0 to the minimum increases.
This leads to formation of a bubble cap and its contact ring.

Formation of the paired maximum and minimum can also be explained physically.
Because the film is thin, the capillary pressure cannot exceed a value of the order of unity.
Consequently, as the weight of the sphere is increased, the force balance on the sphere can
be satisfied only if the capillary pressure acts on an increasing area. This requires that the
film increase in length. However, for vapour to flow along the film, the capillary pressure
must decrease with increasing θ . By itself, the increase in film length required by the force
balance tends to decrease the magnitude of d2h/dθ2. This effect can be compensated if
d2h/dθ2 changes sign from negative to positive somewhere along the length of the film.
Film profiles shown below illustrate this effect.

The weight of the heaviest sphere supportable by surface tension alone is determined by
the point where the tangent to a broken curve in figure 3(a) becomes vertical. In the limit
as Ja Cr → 0, p0 → 2 at this point and F → 1. As p0 falls below 2 on the lower branch
of the pressure curve, r0 increases so that rθθ |0 remains negative, as it must for the bubble
cap to remain present. This increase in film thickness is evident in figure 3(b).

4.2. Film profiles
Figure 4 shows profiles obtained from the numerical solution of (3.3). As stated above
(3.5), in the rest of this paper, the origin for z is taken to be at the centre of the sphere.

For figure 4(a), the value of F/(Ja Cr)1/3 is ∼5 times the value given by (4.2a) at which
a local maximum first appears at θ = 0. As shown by the inset, the paired local maximum
and minimum are present, but the ratio of the maximum value to the minimum is not large
(∼1.3). For figure 4(b), the value of F/(Ja Cr)1/3 is ∼13 times the value given by (4.2a);
though a spherical cap can now be fitted to the film profile, the contact region is hardly
defined.
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Figure 4. Interface profiles for Ja Cr = 10−8 and values of p0 at, or to the right of, the maximum in figure 3(a):
(a) p0 = 2.4311 (F/(Ja Cr)1/3 = 10.24), inset showing the local minimum in h; (b) p0 = 2.35 (F/(Ja Cr)1/3 =
28.78), inset showing the spherical cap used to determine the contact angle χ ; (c) p0 = 2.0 (F/(Ja Cr)1/3 =
464.1); and (d) p0 = 1.8. Solid curves, numerical solution of (3.3). Broken curves, sphere osculating with the
interface at its lowest point.

For figure 4(c), F = 1 and F/(Ja Cr)1/3 is ∼200 times the value needed for the existence
of a paired local maximum and minimum. The ratio of film thickness at the local maximum
to that at the minimum is approximately 12.95. The spherical cap (dotted curve) clearly
intersects the spherical particle; consistent with this, the contact region is clear in the
figure.

Last, figure 4(d) shows a profile having an apparent contact circle on the upper
hemisphere; because the figures are drawn to a common scale, it is clear that the bubble
cap inflates as β is increased. The cap now appears to be almost tangent to the particle at
the contact circle. (In the limit as the contact circle shrinks to a point, the two spherical
surfaces are necessarily tangent there.)

4.3. Nusselt number from numerical solutions of (3.3)
The heat flow into the phase interface is given by Q∗ = 2πkb�T Nu, where k is the
conductivity of the vapour. With the units defined by (2.1a–d), Nu = q∞. The numerical
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Ja Cr

10–510–10 10–9 10–8 10–610–7

Nu h0

101

102 10–1

10–2

Figure 5. Solid lines, values of Nu and h0 from the numerical solution of (3.3) for p0 = 2, approximating
the state of maximum force in figure 3. Broken line, (4.4) for the value Bo = 0.03 used for the example. The
relative error in the values of Nu is O(Nu−1).

solution of (3.3) determines q∞ as a function of F and Ja Cr; superheat �T affects the
value of Nu through the Jakob number (1.1e). As stated below (3.6), the relative error in
the values of Nu obtained from the numerical solutions is O(Nu−1).

Figure 5 shows Nu as a function of Ja Cr for p0 = 2, approximating the state of
maximum force in figure 3. Because heat is conducted across a film of characteristic
thickness h0, it might be expected that Nu ∝ h−1

0 . According to the figure, this is not so:
decreasing Ja Cr by a factor of 105 increases Nu by a factor ∼10, but decreases h0 by a
factor of only ∼5. This behaviour is explained by the analysis in §§ 5 and 6.

According to the discussion ending § 2, these results apply to a physical system for
which Bo � h0. For the value Ja Cr = 10−6 given in § 1, the figure shows that h0 � 0.1.
If, for the sake of example, Bo � h0 is interpreted as meaning Bo ≤ 1

3 h0, the solid curves
might be expected to describe a physical system having Bo � 0.03.

The same conclusion is reached by comparing the value of Nu obtained from (3.3) with
that obtained in the opposite limit Bo � h0 when the motion is driven by the pressure
gradient imposed by the liquid. By modifying the analysis of Frederking & Clark (1963)
to account for the boundary condition of vanishing shear stress used in this paper, the
expression for Nu for a film covering the lower hemisphere is then

Nu = 0.8282
(

Bo
Ja Cr

)1/4

. (4.4)

As shown in the figure, for Ja Cr = 10−6 and Bo = 0.03, the value obtained from (3.3)
is about three times that given by the modified Frederking–Clark relation (4.4). This is
consistent with the conclusion reached in the previous paragraph.

Figure 6 shows values of Nu and F obtained from the numerical solution of (3.3); here,
the scale used for Nu should be viewed as a convenient device allowing values of Nu for
different values of Ja Cr to be included in a single figure. The upper branch of each curve
corresponds to unstable equilibrium of a freely floating sphere. As Ja Cr is reduced, the
gap between the branches of a given curve becomes smaller; as shown by the broken curve,
it vanishes altogether when evaporation from the contact region is negligible. (The formula
for the broken curve is given in § 9.) The maximum value of Nu does not quite coincide
with that of F, but instead occurs nearby on the upper branch of each curve. Comparing
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−
Cδ

log δ
Nu

F

6

20

5

2

1

0 0.2 0.4 0.6 0.8 1.0

Figure 6. Total evaporation Nu and force F obtained from numerical solutions of (3.3) are shown as solid
curves; the upper branch of each curve corresponds to an unstable equilibrium in which the apparent contact
circle is on the upper hemisphere as in figure 4(d). The two branches coincide in the limit of vanishing
evaporation from the contact region (broken curve). Numerical constant C = 1.30588; scale δ is defined by
the relation δ6 = −Ja Cr log δ. The relative error in the values of Nu is O(Nu−1).

the solid curve for Ja Cr = 10−6 with the broken curve shows that the total evaporation is
doubled by the effect of the contact region.

The behaviour of the response curves on the right-hand side of the pressure maximum
is described by the following analysis. It describes the bubble cap and its contact region;
both are apparent in figure 4.

5. The bubble cap: the limit Cr → 0 (fixed θ , F )

It is assumed, and later verified, that film thickness vanishes in the limit as Cr → 0.
By setting r = 1 + h in the form (A3) of the Laplace relation and omitting terms O(h2),

1
sin θ

d
dθ

(
sin θ

dh
dθ

)
+ 2h = 2 − p; (5.1)

because Bo → 0, the term Bo z no longer enters into the Laplace relation.
Because the profiles shown in figure 4 can be fitted by a spherical cap, pressure is now

assumed be uniform outside the contact region. In § 6, this assumption is shown to be
self-consistent in the limit stated in the heading to this section.

Let this uniform pressure be p0. Then, the solution of (5.1) satisfying h(0) = h0 and
h(β) = 0 is

h = h0
cos θ − cosβ

1 − cosβ
, (5.2a)

p0 − 2
h0

= cot2
(

1
2
β

)
− 1. (5.2b)

Because p is uniform, (5.2a) describes a spherical cap of radius 2/p0. For fixed β /= 1
2π,

p0 − 2 = O(h0). But for β → 1
2π, p0 − 2 = O(h2

0). In this limit, the cap has unit radius
and centre at distance h0 below that of the particle.
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The apparent contact angle measured through the cap is given by

χ = −dh
dθ

∣∣∣∣
θ=β

= h0 cot
(

1
2
β

)
. (5.3)

The force exerted by the vapour on the particle is given by 1
2 p0 sin2 β. Because (5.2b)

implies that p0 = 2 + O(h0),
F = sin2 β. (5.4)

According to (5.4), for a given value of F, the sphere can be in equilibrium for either of
two values of β; that for which dF/dβ < 0 is unstable because the interface then behaves,
in effect, as a spring with negative modulus. See, for example, Rapacchietta & Neumann
(1977, p. 563).

With h/h0 given by (5.2a), the solution of (3.3b) vanishing at θ = 0 is

q = sinβ
χ

log
(

h0

h

)
. (5.5)

Equation (5.3) has been used to express the pre-logarithmic factor in terms of χ . In this
form, q is proportional to the perimeter 2π sinβ of the apparent contact circle, varies
inversely with χ and increases logarithmically as h → 0 at the apparent contact line.

The pressure difference needed to expel vapour from beneath the bubble is obtained by
solving (3.3a) subject to the condition p = p0 at θ = 0. With q given by (5.5), and h/h0
by (5.2a), the solution is

p0 − p = −3 Ja Cr

h4
0

∫ 1

h/h0

log v
v3ϕ(v)

dv, (5.6)

where v = h/h0, ϕ(v) = (1 − v){v + cot2(1
2β)} and (5.2a) has been used in the form

sin2 θ = (1 − cosβ)2 ϕ(h/h0). In § 6.3, (5.6) is used to estimate the magnitude of p0 − p
within the bubble cap.

Near the apparent contact circle, h/h0 → 0 and the integral in (5.6) diverges. Because
p varies rapidly as h/h0 → 0, the principal curvatures identified below (A3) can then be
approximated by 1 − d2h/dθ2 and 1 so that

p = 2 − d2h
dθ2 . (5.7)

Because the right-hand side (mean curvature) must decrease as p falls, d2h/dθ2 becomes
positive and the interface turns away from the sphere, creating the gap through which
vapour escapes to the atmosphere.

Boundary conditions for the contact region are imposed by the flow at the outer edge
of the bubble cap. By assumption, the angular dimension θs of the contact region is
small compared with β. Because of this separation of scales, there is a range where
β � β − θ � θs. Within this domain, (5.2a) can be approximated by the first term in
its Taylor expansion about θ = β, so that as θ → β,

h = −χ(θ − β)+ O([θ − β]2), (5.8)

q = sinβ
χ

{
− log(β − θ)+ log tan

(
1
2
β

)
+ O(β − θ)

}
. (5.9)

For β /= 1
2π, the relative error in (5.8) and (5.9) is O(θ − β). For β = 1

2π, it is O([θ − β]2)

because cos θ has an inflexion at 1
2π.
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6. The contact region: limit as Cr → 0 (fixed (θ − β)/θs)

6.1. Derivation of scales
Because the characteristic angular dimension θs of the contact region is small compared
with β, the motion here is, in effect, plane flow having flow rate per unit perimeter
q/ sinβ; the hoop contribution 2h to the curvature is also negligible. This allows the parent
equations (3.3a), (3.3b) and (5.1) to be simplified by replacing sin θ by sinβ and taking
the term 2h to be negligible:

− 1
3

h3 dp
dθ

= Ja Cr
q

sinβ
, h

d
dθ

(
q

sinβ

)
= 1,

d2h
dθ2 = 2 − p. (6.1a–c)

For β /= 1
2π, the error made in replacing sin θ by sinβ is O(θ − β). For β = 1

2π, it is
O([θ − β]2) because sin θ has a maximum at θ = 1

2π.
The following derivation of the scales for the contact region uses only (6.1) and the

requirement that the region should define a contact angle for the bubble cap; it uses neither
(5.8) nor (5.9).

Let hs, qs and θs be the scales in question. By balancing terms in (6.1c), hs/θ
2
s = 1;

and in (6.1a), h3
s sinβ/(θs qs) = Ja Cr. Because the contact region defines the apparent

contact angle (scale χs = hs/θs), h grows linearly towards the bubble cap: h ∝ (θ − β)χs
as (θ − β)/θs → −∞. By substituting this asymptote into (6.1b) and integrating, q ∝
(sinβ/χs) log |θ − β|. This is satisfied by putting qs = −(sinβ/χs) log θs.

Let δ = χs. By eliminating qs, hs and θs between the four equalities in the preceding
paragraph,

δ6 = −Ja Cr log δ. (6.2)

This scale differs from a related scale defined by Sobac et al. (2014) in their study of the
Leidenfrost phenomenon on a plane substrate. Here δ is a known function of the group
Ja Cr. In Sobac et al., their defining equation (29) contains the apparent contact angle
which itself depends on the scale being defined, itself determined only subsequently by
numerical integration.

Though sinβ was included consistently in the expressions relating hs, θs and qs, it
cancels from (6.2). So, θs and hs are both independent of β, but the flow rate is proportional
to the perimeter of the apparent contact circle: q ∝ sinβ. With decreasing Ja Cr, δ
decreases monotonically: smaller values of Cr correspond to larger surface tension and
smaller vapour viscosity, allowing vapour to escape more freely to the atmosphere.

Let

λ = − 1
log δ

. (6.3)

Then the solution of (6.2) is given by

λ = 6
W (6/[Ja Cr])

. (6.4)

The Lambert function W(z) is defined by the equation WeW = z.
Let

θ = β + δ θ̂, h = δ2 ĥ, h0 = δ h̃0. (6.5a–c)

The swung dash ∼ on h̃0 denotes a property of the bubble cap. Because h0 and θ − β have
the same scale δ, the angular dimension of the contact region is of the same order as the
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film thickness at θ = 0. The angular dimension of the contact region is therefore small
compared with that of the bubble cap: there is a separation of scales.

Also let

χ = δ χ̂, p = p̂, q = − log δ
δ

q̂. (6.5d–f )

Though these new variables are defined within the context of an inner-and-outer analysis,
they are also used independently of that analysis in graphing and interpreting numerical
solutions of (3.3). For example, according to figure 5, reducing Ja Cr from 10−5 to 10−10

increases Nu by a factor ∼10, but reduces h0 by a smaller factor ∼5. The scales given
above show that the stronger dependence shown by Nu results from the factor log δ, itself
the expression of the logarithmic growth in q at the edge of the bubble cap; see (5.5).

Expressed in this notation, (5.3) becomes

χ̂ = h̃0 cot(1
2β). (6.6)

6.2. Boundary value problem
By substituting (6.5) into (4.4), then taking terms O(δ) as negligible but keeping those
O(λ) that are only logarithmically small in δ,

− 1
3

ĥ3 dp̂

dθ̂
= q̂

sinβ
,

d2ĥ

dθ̂2
= 2 − p̂, ĥ

d

dθ̂

(
q̂

sinβ

)
= λ. (6.7a–c)

From (6.7c), λ is a measure of the strength of evaporation from the contact ring.
As θ̂ → ∞, the condition p → 0 requires that

d2ĥ

dθ̂2
→ 2. (6.7d)

Within the overlap domain defined by −e1/λ � θ̂ � −1, matching conditions are
imposed, i.e. h is matched to (5.8); and q to (5.9):

ĥ = −χ̂ θ̂ + O(δ); (6.7e)

q̂
sinβ

= 1
χ̂

{[
1 − λ log |θ̂ |

]
+ λ log tan

(
1
2
β

)}
+ O(λδ). (6.7f )

The term 1 − λ log |θ̂ | corresponds to − log(β − θ) in the parent equation (5.9).
Evaporation within the overlap region is represented by the term −λ log |θ̂ |. As is to be
expected from this interpretation, the derivative of this term is positive because θ < 0
within the overlap region. Provided that λ| log tan(1

2β)| � 1, the entire term in braces is
positive because λ log |θ̂ | � 1 within the overlap domain.

The mechanisms by which the contact region affect the total evaporation are made
explicit as follows. Let A > 0 be a fixed value such that θ = −A lies within the overlap
domain. By integrating (6.7c) between θ = −A and infinity, then using (6.7f ) to evaluate
q̂(−A),

q̂(∞) = sinβ
χ̂

{
1 + λ log tan

(
1
2
β

)}
+ λ sinβ lim

A→∞

{∫ ∞

−A

dθ̂

ĥ
− 1
χ̂

log A

}
. (6.8)

The first term on the right-hand side represents the flow rate which would be obtained
by extrapolating (5.9) to θ = β − δ. (This value of θ is, of course, outside the range of
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validity of (5.9).) The second term in (6.8) is the difference between the total evaporation
q̂(∞) and that arbitrary measure of the evaporation from the bubble cap; it provides a
measure of the evaporation from the contact region. Though these measures are arbitrary,
(6.8) at least shows that the contact region contributes to the total evaporation in two ways:
it adds to the volume flow rate locally (second term); and, by reducing χ̂ , it increases the
evaporation from the entire bubble cap.

6.3. Discussion of approximations
Because the bubble cap has an apparent contact circle, this analysis is only self-consistent
if the angular dimension of the cap is large compared with that of its contact region. This
is satisfied if β � δ, i.e. if F � δ2. This condition is satisfied in the limit as Ja Cr → 0
with F fixed; this limit describes the behaviour on the right-hand side of the maximum in
p0 in figure 3.

For β /= 1
2π, the relative error made in approximating the full problem (3.3) by (6.7)

is O(δ), e.g. substituting the matching condition (6.7e) on the slope into (6.7) shows
that as θ → −∞, d2ĥ/dθ2 → 2 − p0 = O(δ) by (5.2b). For β = 1

2π, the relative error
is instead O(δ2), for the reasons given below the underlying approximations (5.8), (5.9)
and (6.1); in particular, the discussion of the linear approximation (5.1) shows that for
β = 1

2π, d2ĥ/dθ̂2 = O(δ2) where the contact region merges with the bubble cap.
The relative error made in assuming the pressure to be uniform within the bubble cap

is O(λδ), even for β = 1
2π (within the cap, the left-hand side of the Laplace relation (5.1)

is O(δ), and p0 − p = O(λ δ2), by (5.8) and (6.5c)). For β = 1
2π, the overall relative error

is determined by the assumption of uniform pressure within the bubble cap; it is O(λδ).
For β /= 1

2π, the overall error is determined by the approximations made in obtaining in
(6.7); it is O(δ). These properties are taken into account in discussing the relation between
the numerical solution of (3.3) and this asymptotic analysis.

7. The inner problem simplified without approximation

If (6.7) is viewed as a problem determining ĥ, p̂ and q̂/ sinβ (rather than q̂), β affects the
solution only through the term λ log(1

2β) in (6.7f ). For λ = 0, the solution is therefore
independent of β. In particular, χ̂ is then an absolute constant:

lim
λ→0

χ̂ = C. (7.1)

This constant is determined in § 7.1.
Let

θ̂ = 3Θ/C5, ĥ = 3H/C4, q̂ = (Q sinβ)/C. (7.2a–c)

This substitution is independent of λ. In (7.2c), Q/C represents the flow rate per unit length
of contact circle. The various powers of C ensure that for λ = 0, the inner problem reduces
to the standard form (7.7).

Also let

τ = log
[

1
3 C5 tan(1

2β)
]
. (7.3)

As β is increased from zero to π, the contact circle advances from the lower pole of the
sphere to the upper pole and τ increases monotonically from −∞ to ∞.
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With this change of variables, (6.7) becomes identically

H3 d3H
dΘ3 = Q, H

dQ
dΘ

= λ. (7.4a,b)

The boundary conditions are

as Θ → −∞, H + χ̂

C
Θ → 0, Q + λ C

χ̂
log |Θ| → C

χ̂
{1 + λτ } ; (7.4c,d)

as Θ → ∞,
d2H
dΘ2 → 6

C6 . (7.4e)

Problem (7.4) determines H, Q, χ̂ and C. The solution depends on two parameters λ and
β, i.e. F, in the form of τ . In (6.7), β appears in four places, it enters (7.4) in only one term
on the right-hand side of (7.4d). This simplification results from (7.2) when the flow rate
per unit length of contact line is introduced in place of the total flow rate q̂.

Starting the numerical integration of (7.4) requires the asymptotic series for H as
Θ → −∞. By writing (7.4a) in the form d3H/dΘ3 = Q/H3, then using (7.4c,d) to
evaluate the right-hand side and integrating,

H = − χ̂
C
Θ − C4

2χ̂4 log |Θ| + λ C4

4χ̂4 G(τ,Θ)+ o (1) ; (7.5a)

G(τ,Θ) = (log |Θ|)2 + {3 − 2τ } log |Θ|. (7.5b)

In (7.5a), the first term describes the wedge defined by the apparent contact angle; the
second, the perturbation to this wedge by the pressure needed to drive that part of the flow
rate which arrives from the bubble cap with its contact circle excluded; the third, the
perturbation to the wedge by the additional pressure needed to drive the flow created by
evaporation within the wedge. Both perturbation terms are positive. (An additive constant
of integration has been set to zero in (7.5a), because translation of the origin for Θ
generates terms O(Θ−1 logΘ), algebraically smaller than those displayed.)

The accuracy of even a direct numerical solution of (6.6) would be limited in practice
because the overlap domain is not large. (For Ja Cr = 10−6, δ−1 is about 9.) Similarly,
though expressing the solution as a power series in λ is suggested because λ→ 0 in the
limit as Ja Cr → 0, the accuracy is still limited by the size of the overlap domain, i.e. by
terms which are formally exponentially small (see Olver 1974, p. 76).

Let

{Q,H} ∼
λ→0

N∑
k=0

{Qk,Hk} λk, (7.6a,b)

χ̂ ∼
λ→0

C

{
1 −

N∑
k=1

akλ
k

}
, (7.6c)

so that the asymptotic series is truncated at O(λN).
Because λ is a measure of the strength of evaporation within the contact region, these

series represent a method of successive approximations about a first approximation in
which evaporation is confined to the bubble cap alone. Sobac et al. (2014, equation (37))
also express the solution of their problem as a power series. As explained below (6.2) their
expansion parameter differs from the present λ, and only the base states are readily related.
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7.1. Base state: k = 0. Leakage problem of Frankel and Mysels
By (7.4b,d), Q0(Θ) = 1. The remaining equations require that for −∞ < Θ < ∞,

H3
0

d3H0

dΘ3 = 1, (7.7a)

dH0

dΘ

∣∣∣∣−∞
= −1,

d2H0

dΘ2

∣∣∣∣∞ = 6
C6 . (7.7b,c)

Because (7.7) contains no parameters, H0 depends only onΘ and C is an absolute constant.
This boundary value problem appears to have been first posed and solved by Frankel

& Mysels (1962) who thus showed that short-range forces are not essential to the
formation of a dimple during drop settling. The solution is obtained without iteration by
integrating from −∞ to ∞. The solution of (7.7a) subject to (7.7b) determines the value
of d2H0/dΘ2|∞ and (7.7c) then determines C. As given in Wong, Radke & Morris (1995,
p. 93), d2H0/dΘ2|∞ = 1.20985, whence

C = 1.30588. (7.8)
Though the problem for the base state can be solved without first reducing it to canonical
form, iteration (i.e. ‘shooting’) is then necessary. See, for example, Sobac et al. (2014,
p. 9); their numerical values can be obtained from existing solutions by rescaling.

At this order of approximation, the contact angle is independent of β: χ = Cδ.
The first approximation to the film thickness at the bottom of the sphere is

lim
λ→0

h̃0 = C tan(1
2β), (7.9)

where (6.6) has been used. The bubble cap inflates as the contact circle advances over the
particle from θ = 0 to π. This effect is apparent in figure 4.

Substituting for C in (7.2) gives

τ = 0.23577 + log tan(1
2β). (7.10)

In each of the following boundary value problems, the same linear differential operator
occurs. It is defined by

D[Hk] = H4
0

d3Hk

dΘ3 + 3Hk, k = 1, 2, . . . . (7.11)

Boundary value problems at each order were first obtained manually, and then verified
using computer algebra.

7.2. First correction: k = 1
For −∞ < Θ < ∞,

H0
dQ1

dΘ
= 1, D[H1] = H0Q1; (7.12a,b)

dH1

dΘ

∣∣∣∣−∞
= a1, {Q1 + log |Θ|}|−∞ = a1 + τ ; (7.12c,d)

d2H1

dΘ2

∣∣∣∣∞ = 0. (7.12e)

Because the system (7.12) is linear in H1 and Q1, and its statement contains only the first
power of τ , the unknowns H1, Q1 and a1 are linear functions of τ . The structure of each
subsequent correction problem requires Hk, Qk and ak to be polynomials in τ of degree k.
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The solution of (7.12) was calculated using the fourth-order Runge–Kutta method to
integrate fromΘ = − sinh 20 to sinh 10; there (7.12e) was imposed to determine a1. Initial
values were obtained from (7.12d) and the asymptote as Θ → −∞, namely

H1 = a1Θ + 1
4(log |Θ|)2 + D1 log |Θ| + o(1), (7.13)

D1 = 3
4 − 2a1 − 1

2τ, as obtained from (7.5).
In Sobac et al. (2014) the unnumbered differential equation governing the first correction

can be transformed into (7.12a,b) by rescaling. Because the expansion parameters are
different, (7.13) differs from the corresponding expansion given by them. In particular,
their problem for the first correction contains no parameter. Drop weight enters (7.13) in
the form of the parameter τ .

The solution can be interpreted by expressing (7.12b) as

Q1 = −H3
0P′

1 + 3H1/H0. (7.14)

The perturbation Q1 is the sum of the flow rate driven in a channel of thickness H0
by the perturbation pressure, P1 = −H′′

1 , and that driven by the base pressure gradient
−P′

0 = H′′′
0 within the addition H1 to the gap thickness. According to the boundary

conditions in (7.12), there is no overall difference in perturbation pressure across the
contact region. Rather, the perturbation flow is driven by evaporation and P1 adjusts to
conserve mass.

Figure 7 is used to explain the consequences of this pressure distribution. As shown
by the solid curve, the perturbation pressure P1 is everywhere negative. This is a result
of the boundary conditions P1(±∞) = 0 and the behaviour of the gradient −P′

1. For,
from the boundary condition (7.12d), Q1 < 0 at −∞. Evaporation causes Q1 to become
positive (dotted curve). Though the right-hand side of (7.14) describes two mechanisms to
accommodate Q1, the term 3H1/H0 is initially negative (broken curve): the gap thickness
is initially decreased by the perturbation rather than increased. To accommodate Q1, P1
must therefore decrease with increasing Θ , as seen on the left-hand side of the figure.
But, because P1 → 0 at ∞, P′

1 must become positive on the right-hand side of the
figure. As a result P1 < 0 throughout the contact region, and H′

1 increases from −∞ to
+∞: H′

1(∞) > H′
1(−∞) = a1. Because computation shows that a1 < 0 for β < 3.039,

H′
1(−∞) is positive within this range. Because H′

0(−∞) and H′
1(−∞) are of opposite

sign, evaporation within the contact region reduces the contact angle χ for the bubble
cap. (As shown by an unnumbered equation in Sobac et al. (2014), the same is true of the
Leidenfrost phenomenon on a plane substrate. Sobac et al. do not comment on the effect.)

7.3. Second correction: k = 2
For −∞ < Θ < ∞,

H2
0

dQ2

dΘ
= −H1, (7.15a)

D[H2] = H0Q2 + 6H2
1H−1

0 − 3H1Q1, (7.15b)

dH2

dΘ

∣∣∣∣−∞
= a2, {Q2 + a1 log |Θ|}|−∞ = a1(a1 + τ)+ a2, (7.15c,d)

d2H2

dΘ2

∣∣∣∣∞ = 0. (7.15e)

The operator D is defined by (7.11).
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Θ

–P1

1.5

1.0

0.5

0

–2–4 –3 –1 0 1 2 3

Figure 7. Solid curve, −P1 = H′′
1 for β = 1

2 π (τ = 0.23577). Contributions to the gradient −P′
1 in

perturbation pressure (not to −P1 itself) are also shown: Q1/H3
0 (dotted curve); 3H1/H4

0 (dashed curve).
Vertical line, location at which Q1 = 3H1/H0 and −P′

1 = 0.

This problem admits a solution such that as Θ → −∞,

H2 = a2Θ + a1(log |Θ|)2 + D2 log |Θ| + o (log |Θ|) , (7.16)

D2 = a1{3 − 5a1 − 2τ } − 2a2.

7.4. Third correction, k = 3
For −∞ < Θ < ∞,

H3
0

dQ3

dΘ
= H2

1 − H0H2, (7.17a)

D[H3] = H0Q3 − 3 (H1Q2 + H2Q1)+ 6 (Q1H1 + 2H2)H1H−1
0 − 10H3

1H−2
0 , (7.17b){

Q3 + (a2
1 + a2) log |Θ|

}∣∣∣−∞
= a3

1 + 2a1a2 + a3 + (a2
1 + a2)τ, (7.17c)

dH3

dΘ

∣∣∣∣−∞
= a3,

d2H3

dΘ2

∣∣∣∣∞ = 0. (7.17d,e)

This problem admits a solution such that as Θ → −∞,

H3 = a3Θ +
(

5
2 a2

1 + a2

)
(log |Θ|)2 + D3 log |Θ| + o (log |Θ|) , (7.18)

D3 = (5
2 a2

1 + a2)(3 − 2τ)− 2a3 − 10a1(a2 + a2
1).

7.5. The coefficients ak

As explained below (7.12), ak is a polynomial of degree k in τ . As such, it is determined
by numerical solutions for k values of τ of the problem posed above. Thus,

a1 = 0.5348 − 1
6τ, a2 = 0.3291 − 0.4179τ + 5

72τ
2, (7.19a,b)

a3 = 1.0024 − 0.5336τ + 0.3715τ 2 − 55
1296τ

3. (7.19c)

As given by (7.10), τ = 0.23577 + log tan(1
2β). Coefficients given as decimals were

obtained by fitting to values of ak obtained numerically. Coefficients given as fractions
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0
–0.5

0

0.5

1.0

1.5

2.0

π2π/3π/3

β

a2

a1

a3

Figure 8. Coefficients ak as functions of β as given by (7.19) and (7.10).

are derived in Appendix D. The explicit solution given there was found only after
corresponding values had already been obtained numerically. Agreement between the
values obtained by the two methods provides one check on the numerical work. That the
coefficients exhibit the correct polynomial dependence on τ provides a further check.

Figure 8 shows the relations (7.19). Though, over much of the interval 0 < β < π,
|a2| < |a1|, a3 is larger than either. This suggests (but does not prove) that the asymptotic
series (7.6) diverges as N → ∞. The coefficients are smallest in magnitude near β = 1

2π;
this suggests the series will be simplest to use computationally near the state of maximum
F, where the approximations made to derive the inner problem (6.7) are most accurate.
This is discussed in detail in § 9.2. All three coefficients are positive, except near β = π.
The result obtained in § 7.2 is thus confirmed by the higher approximations: evaporation
from the contact region acts to reduce the contact angle for the bubble cap, and through it,
the thickness of the entire film upstream.

8. Total evaporation from the film

At the outer edge of the contact region where Θ → ∞, Qk(Θ, τ) → Qk(∞, τ ) and

Q → Q∞(τ, λ) ∼
λ→0

∞∑
k=0

Qk(∞, τ )λk. (8.1)

As stated previously, the solution of (3.3) depends on two parameters Ja Cr and F:
specifically, τ = 0.23577 + log tan(1

2β) (7.10) where F = sin2 β (5.4); and λ−1 = − log δ
(6.3), where δ is given in terms of Ja Cr by (6.2).

As already noted below (7.12), Hk, Qk and ak are polynomials in τ of degree k. By fitting
values of Qk(∞, τ ) obtained from the numerical solutions of (7.12), (7.15) and (7.17),

Q1(∞, τ ) = 3.3178 + 5
6τ, Q2(∞, τ ) = −1.5991 − 0.6919τ − 5

72τ
2, (8.2a,b)

Q3(∞, τ ) = 1.0830 + 1.9809τ + 0.41522τ 2 + 35
1296τ

3. (8.2c)

Coefficients given as fractions are obtained as follows. Inspection of the differential
equations shows the right-hand side of the differential equation for Qk to be a polynomial
in τ of degree k − 1. The kth partial derivative of Qk with respect to τ is therefore
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independent of Θ . Because it is also independent of τ , it is an absolute constant:

∂k

∂τ k Qk(Θ, τ) = const. (8.3)

(The superscript k denotes the kth partial derivative with respect to τ .)
These absolute constants are determined by the boundary conditions on Q1 . . . ,Qk . . .

at −∞. Let a subscript τ on Qk denote a partial derivative with respect to τ . Then

Q1τ = a′
1 + 1, Q2ττ = a′′

2 + 2a′
1(1 + a′

1), (8.4a,b)

Q3τττ = a′′′
3 + 3a′′

2 + 6(a′
1

3 + a′
1

2 + a′′
2a′

1). (8.4c)

Coefficients given as fractions in (8.2) follow by substituting the values of a′
1, . . . given

by (7.19). Because the resulting values agree with those obtained by fitting polynomials to
values of Qk(∞, τ ) obtained numerically, they provide a further check on the numerical
work.

9. Comparison of the analysis with numerical solutions

9.1. Film thickness
By (5.2b), (6.6) and (7.6c),

p0 − 2
Cδ

∼
λ→0

2 cotβ

{
1 −

∞∑
k=1

akλ
k

}
, (9.1a)

h0

Cδ
∼
λ→0

tan
(

1
2
β

) {
1 −

∞∑
k=1

akλ
k

}
, (9.1b)

in the limit as Ja Cr → 0 (fixed F). Together with (5.4), namely F = sin2 β, these
expressions determine p0 and h0 as functions of F and λ. In particular, for λ = 0,

p0 − 2
Cδ

= 2 cotβ = ±2

√
1 − F

F
; h0

Cδ
= tan

(
1
2
β

)
= 1 ∓ √

1 − F√
F

. (9.2a,b)

The upper sign corresponds to β ≤ 1
2π and to stable equilibrium of a freely floating sphere;

the lower, to β ≥ 1
2π and to unstable equilibrium. According to (9.2), when evaporation

from the contact region is negligible, ( p0 − 2)/(Cδ) and h0/(Cδ) should be functions of F
only. The effect of the contact region can be shown by comparing the results of numerical
solutions of (3.3) with this idealized case.

In figure 9, broken curves show the numerical results, now graphed using the dependent
variables suggested by (9.2). Solid curves show the relations (9.2) holding for λ = 0. Using
these variables accentuates the region around the branch point where the tangent to a
response curve becomes vertical. The maximum in the pressure response (figure 3a) is
less evident here. In the limit as Ja Cr → 0, the corresponding value of ( p0 − 2)/(Cδ) =
0.3363/δ; it is outside the range shown, except for the largest value Ja Cr = 10−8.

Though the overall behaviour of h0/(Cδ) is largely determined by the value of F,
h0/(Cδ) clearly decreases as Ja Cr is increased (fixed F). Because, from (9.2b) h0/(Cδ) is
independent of Ja Cr when evaporation from the contact region is negligible, the behaviour
of these curves shows that evaporation within the contact region reduces the maximum
film thickness: it does so by decreasing the value of χ/(Cδ), since χ = h0 cot(1

2β).
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Figure 9. Broken curves, numerical solutions of (3.3) for the value of − log10(Cr Ja) indicated by the label
on each curve. Solid curve, (9.2). Constant C is defined by (7.8) and δ by (6.2). The upper branch of the curve
for h0 corresponds to the lower branch of that for p0; for these states, equilibrium of a freely floating sphere is
stable. In (b), only the solid curve is concave down as F → 0.

9.2. Effect of truncating the series solution
In figure 10, results from the numerical solution of (3.3) are shown as solid curves. The
broken curves showing the series solution agree adequately with the numerical results, but
their behaviour requires explanation. For the larger value of Ja Cr = 10−8 (figure 10a),
the closest approximation to the lower branch occurs at O(λ); for the smaller value of
Ja Cr = 10−12 (figure 10b), it occurs at O(λ2), and the curves for O(λ) and O(λ3) straddle
the solid curve showing the numerical results. This behaviour is consistent with the series
being divergent as the number of terms N → ∞. As described in § 6.3, the error in the
inner problem (6.1) is O(δ) for β /= 1

2π. With this in mind, figure 10 can be interpreted
using the details given as table 1.

As shown in table 1, for β = 1
3π and Ja Cr = 10−8, only a1λ = 0.20291 significantly

exceeds the corresponding value of δ = 0.05540; including terms of higher order in the
partial sum amounts to over-interpreting (6.1). Comparing the entries in columns 4 and 5
in table 1 verifies that truncating at O(λ) gives the closest approximation to the numerical
solution of (3.3). For the smaller value Ja Cr = 10−12, the same argument suggests that the
next term a2λ

2 is significant, and should be included; comparing the appropriate entries in
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0
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h0/(Cδ)
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(b)
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Figure 10. Result of evaluating the asymptotic series (9.1b) to various orders for Ja Cr = 10−8 (a) and
10−12 (b): to O(λ), long-dashed curve; to O(λ2), short-dashed curve; to O(λ3), dotted curve. Solid curves:
corresponding values obtained from numerical solutions of (3.3).

table 1 verifies that this gives a (slightly) closer approximation. Figure 6 is consistent with
this conclusion.

According to the discussion in § 6.3, the error in (6.1) is smaller for β = 1
2π; it is then

O(λδ), i.e. about 0.02 and 0.003 for the two values of Ja Cr used in table 1. This suggests
that truncating at higher order should improve the approximation. For Ja Cr = 10−8, the
smallest value of akλ

2 occurs for k = 2 and truncating the series there indeed improves
the approximation slightly. But the same argument suggests truncating at O(λ3) at
Ja Cr = 10−12, there it worsens the approximation. This behaviour is consistent with the
statement by Olver (1974, p. 519) that ‘an upper bound for the error term of an asymptotic
expansion can not be safely inferred simply by inspection of the rate of numerical decrease
of the terms in the series at the point of truncation’.

For representative values of Ja Cr, the term O(λ3) is chiefly useful for demonstrating
that the series (9.1) is unlikely to be convergent. It was, however, useful when (9.1) was
used to provide starting values for numerical solutions of (3.3) for the smallest values of
Ja Cr included in figure 9.
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Ja Cr β akλ
k Partial sum Numerical (3.3)

10−8 1
2 π 0.17127 0.82873 0.81243

0.02800 0.80073
0.03703 0.76370

10−12 0.11365 0.88635 0.87179
0.01233 0.87402
0.01082 0.86320

10−8 1
3 π 0.20291 0.46020 0.45990

0.05578 0.42799
0.04987 0.39920

10−12 0.13465 0.49961 0.49043
0.02456 0.48543
0.01457 0.47702

Table 1. Values of h0/(Cδ) obtained by two methods. In a given row of column 4, the partial sum of
(9.1b) is evaluated using entries up to, and including, the same row in column 3. The error in the problem
(6.1) underlying (9.1b) is O(δ) for β /= 1

2 π, but smaller O(λδ) for β = 1
2 π (§ 6.3). For Ja Cr = 10−8,

{λ, δ} = {0.34565, 0.05540}; for 10−12, corresponding values are {0.22937, 0.01278}. As previously defined
λ−1 = − log δ; F = sin2 β; δ is given by (6.2).

9.3. Effect on χ of evaporation from the contact region
Two limiting cases have been identified in this paper, according as F/(Ja Cr)1/3 or F is
held fixed in the limit as Ja Cr → 0. Consistency of the scales corresponding to these
limiting case requires χ to be decreased by evaporation from the contact region.

For, when F/(Ja Cr)1/3 is held fixed (Appendix E), h/(Ja Cr)1/3 is a function of
θ/(Ja Cr)1/3, and the slope dh/dθ = O([Ja Cr]1/6), i.e. logarithmically smaller than its
value O(δ) given by (6.5). In a sequence of numerical calculations in which F is reduced
from a value O(1), and the apparent contact circle retreats from the equator towards the
bottom of the sphere, h0/(Cδ) must therefore vary continuously with β from a value O(1)
(appropriate for fixed F) to the smaller value occurring when F/(Ja Cr)1/3 is fixed. As
β is reduced, |τ | increases without bound, and the higher terms in the series expansion
(7.6c) increase in magnitude. The decrease in slope can only result if the coefficients ak
are positive for small β, as in figure 8. Because the coefficients are indeed then positive,
χ/(Cδ) necessarily decreases with increasing λ, i.e. with increasing evaporation from the
contact region.

9.4. Nusselt number
From equations (6.5 f ) and (7.2c) of the asymptotic analysis

− Cδ
log δ

Nu = F1/2 Q∞(τ, λ), (9.3)

C = 1.30588 (equation (7.8)) and Q∞(τ, λ) is given by the series (8.1). The solution
depends on only two parameters Ja Cr and F = sin2 β: in (9.3), τ = 0.23577 +
log tan(1

2β) (7.10) and δ is defined in terms of Ja Cr by (6.2). The solution depends on
superheat �T through the Jakob number Ja.

The Nusselt number varies as F1/2 because the area of a spherical cap increases as
sin2(1

2β), but heat is conducted over a distance of the order of h0 ∝ tan(1
2β). In particular,
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Nusselt number of a hot sphere levitated by a volatile pool

Nu

Ja Cr

10−10 10−510−9 10−8 10−7 10−6

102

101

Figure 11. Nusselt number for p0 = 2 as a function of Ja Cr. Symbols, numerical solution of (4.4). Lines show
the effect of truncating the series (8.1) at various orders: O(λ), dashed line; O(λ2), solid line; O(λ3), dotted
line.

for λ→ 0, Q∞(τ, λ) → 1 and
Nu

Cλδ
= F1/2. (9.4)

Figure 11 shows Nu as a function of Ja Cr for p0 = 2, approximating the state of
maximum force. Symbols show values obtained from the numerical solution of (3.3).
Lines show the result obtained by truncating the series in (9.3) at various orders. For the
entire range of values of Ja Cr included in the figure, truncating the series at O(λ2) gives
the closest approximation.

10. Conclusion

This work contains the first treatment allowing computation of the Nusselt number for the
title problem using only the Laplace relation and the thin-film equations for the vapour
motion and heat transfer. The problem of computing the volume flow rate q of the vapour,
pressure p within the vapour and the shape of the entire interface is reduced to one of
solving a system of coupled ordinary differential equations. Because it is shown that
in the limit as Ja Cr → 0 (fixed F), both the total evaporation and the entire pressure
variation are determined within the region where the thin-film approximation holds, this
new method does not require patching of the numerical solution for the thin-film equations
to a numerical solution of the full equations describing the outer thick film. Though the
calculations are given here for the case in which the motion of the vapour is driven solely
by the gradient in capillary pressure, the method should apply equally when the gradient in
pressure imposed by the underlying liquid is equally important, or dominant. The method
gives the Nusselt number Nu with a relative error vanishing as Nu−1.

By contrast, in van Limbeek et al. (2019), the total evaporation is not calculated. Film
thickness and p are determined by integrating the thin-film equations up to a patching point
chosen so that the angle between the interface and the drop surface has attained a given
value (van Limbeek et al. 2019, pp. 1184–1186). Thereafter, p is set to zero in the Laplace
relation. With the method developed here, the equations are simply integrated until h has
become sufficiently large that p and q have ceased to change.

That evaporation from the contact region decreases the apparent contact angle for the
bubble cap is explained by comparing the magnitudes of the interface slope according
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as F/(Ja Cr)1/3 or F is fixed in the limit as Ja Cr → 0. There is no doubt as to the
existence of the effect: asymptotic analysis shows it, the numerical solutions confirm it
and logical consistency (§ 9.3) requires it. Because the reduction in contact angle thins
the film for the entire bubble cap, it has a large effect on the Nusselt number. For realistic
values of the parameters, Nu is more than double the value it would have in the absence of
this effect (figure 6). For the inverse Leidenfrost phenomenon this effect must weaken as
Bo is increased and surface tension becomes negligible except within the contact region.
Numerical solutions to evaluate the effect on the total evaporation rate for Bo of the order
of unity are in progress.
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Appendix A. Equivalent forms of the Laplace relation

By balancing forces on the ring formed when line element ds (figure 1) is rotated about
the z axis,

d
ds
(σ sinα) = {p + Bo z} σ dσ

ds
; dσ

ds
= cosα,

dz
ds

= sinα, (A1a–c)

from the geometry of figure 1.
From (A1a) and (A1b)

dα
ds

+ sinα
σ

= p + Bo z. (A2)

The first term on the left-hand side represents the curvature of the meridional cross-section
(figure 1); the second term represents the corresponding second principal curvature.

Let rθ = dr/dθ . By expressing (A2) in spherical coordinates,

r2 − rrθθ + 2r2
θ

(r2 + r2
θ )

3/2
+ 1 − (rθ /r) cot θ

(r2
θ + r2)1/2

= ( p + Bo z) sgn
(

dθ
ds

)
. (A3)

The signum function enters because θ is not a monotonic function of arc length s in general
(Appendix C). Terms on the left-hand side of the equality correspond to the principal
curvatures identified above. In particular, the identity dα/ds = (r2 − rrθθ + 2r2

θ )/(r
2 +

r2
θ )

3/2 is equivalent to that for curvature of a plane curve in polar coordinates.

Appendix B. Similarity solution for the vapour film

This solution of the boundary-layer equations includes convective transport of heat, but
not that of momentum. Units for pressure, velocity, length and temperature are those
introduced in § 2. As in the text, r = 1 on the surface of the sphere and 1 + h on the
liquid–vapour interface.
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Nusselt number of a hot sphere levitated by a volatile pool

In spherical coordinates, the boundary-layer form of the continuity equation is

∂

∂r
(vr sin θ)+ ∂

∂θ
(vθ sin θ) = 0. (B1)

This is satisfied by introducing the Stokes stream function ψ :

vr sin θ = −∂ψ
∂θ
, vθ sin θ = ∂ψ

∂r
. (B2a,b)

With ψ = 0 on the surface of the sphere, the total flow rate is given by

2πq = 2πψ(1 + h, θ) = 2π

∫ 1+h

1
vθ sin θ dr. (B3)

The dimensional volume flow rate is given by 2πbκJa q(θ); the heat flow into the
liquid–vapour interface is given by Q∗ = 2π bk�T q (conductivity of the vapour, k).

Let

ξ = (r − 1)/h(θ), ψ = q(θ) f (ξ), T = g(ξ). (B4a–c)

By the definition of q(θ), f (1) = 1.
Also let

Γ = −h
∂T
∂r

∣∣∣∣
1+h

. (B4d)

As part of the solution, Γ is obtained as a function of Ja.
Equations (B2a,b) satisfy the boundary-layer forms of the energy balances (2.2c), (2.2g)

and the lubrication form of (2.2b) if

h
sin θ

dq
dθ

= Γ,
h3 sin θ
Ja Crq

dp
dθ

= −c = f ′′′(ξ) (B5a–c)

(separation constant c) and

0 = JaΓ fg′ + g′′, 0 < ξ < 1. (B5d)

The boundary conditions are

f (0) = f ′(0) = 0, g(0) = 1; (B6a–c)

f ′′(1) = 0 = g(1), f (1) = 1. (B6d–f )

In the reduced heat equation (B5a), the effect of convective heat transport is described by
the quantity Γ (Ja).
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The solution of (B5c) satisfying all boundary conditions on f (ξ) is

f = 3
2ξ

2 − 1
2ξ

3, c = 3. (B7a,b)

The solution of (B5d) satisfying (B6e) is

g(ξ) = Γ

∫ 1

ξ

eJaΓ ϕ(ξ) dξ, ϕ(ξ) =
∫ 1

ξ

f (τ ) dτ. (B8a,b)

The function Γ (Ja) is determined by imposing the remaining condition (B6c):

1 = Γ

∫ 1

0
eJaΓ ϕ(ξ) dξ. (B9)

By expanding (B9) about Ja = 0, Γ = 1 + JaΓ ′
0 + 1

2 Ja2 Γ ′′
0 + · · · , where

Γ ′
0 = −

∫ 1

0
ϕ(ξ) dξ, Γ ′′

0 = 4

(∫ 1

0
ϕ(ξ) dξ

)2

−
∫ 1

0
ϕ2(ξ) dξ. (B10a,b)

In particular, for the conditions (B6b,d), ϕ(ξ) = 1
8 (ξ

4 − 4ξ3 + 3). The corresponding flux
into the liquid–vapour interface is

−h
∂T
∂r

∣∣∣∣
1+h

= Γ = 1 − 11
40

Ja + 21 677
201 600

Ja2 + · · · ; (B11a)

that from the sphere into the vapour is

−h
∂T
∂r

∣∣∣∣
r=1

= Γ eJaΓ ϕ(0) = 1 + 1
10

Ja − 179
6300

Ja2 + · · · . (B11b)

Vapour flows from the interface towards the sphere, thereby decreasing the flux from
vapour into the liquid, but increasing that from the sphere into the vapour. The difference
is transported downstream. Equations (B9) and (B11) are shown as figure 2 in the text.

Appendix C. Extended system (3.3)

C.1. Proof of the geometric identities (3.3d) and (3.3e)
In figure 12, C denotes the centre of the sphere; P and Q represent arbitrary points on the
interface with position vectors CP = r and CQ = r +�r. The limit as �θ → 0 is taken
only at the end of the argument following (C2).

By applying the sine rule to �CPQ without approximation,

|r +�r|
cos(θ − α)

= |r|
cos(θ − α +�θ)

= |�r|
sin�θ

(C1a,b)

(sin(1
2π + A) ≡ cos A). By using (C1b), (C1a) can be expressed equivalently as

|r +�r| − |r|
|�r| = −cos(θ − α +�θ)− cos(θ − α)

sin�θ
. (C2)

By taking the limit as �θ → 0, identity (3.3e) follows from (C1b); and identity (3.3d)
follows from (C2). (The relations |CP| = r = 1 + h and |�r|/�s → 1 have been used.
Identities (3.3d) and (3.3e) can be also obtained using the expressions r2 = σ 2 + z2,
tan θ = −σ/z, dσ/ds = cosα and dz/ds = cosα following from the geometry of figure 1.)
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Nusselt number of a hot sphere levitated by a volatile pool

z
Q

Pr

2
–θ

�θ

�r
r + �r

π

C σ

α

Figure 12. Geometry used to prove the identities (3.3d,e): position vectors CP and CQ of two arbitrary points
on the interface; �θ = ∠PCQ is of arbitrary magnitude.

C.2. Example illustrating the method used to compute Nu
In § 3, it is argued that in the limit as Ja Cr → 0, the film has an inner-and-outer structure,
and that the outer region then contributes a vanishingly small fraction of the value of Nu
obtained by solving (3.3) numerically. The following example is given to demonstrate that
this argument is not invalidated by the presence of the contact singularity in the outer
solution for q.

The outer limit is Ja Cr → 0 (fixed h); in this limit, the pressure p = 0, as given by
(3.6b). The corresponding solution of the Laplace relation is (Princen 1969, p. 6)

σ

c1
= cosh

(
z − c2

c1

)
, (C3)

with constants of integration c1 and c2. This equation describes the surface of revolution
generated by rotating a catenary about the z axis: z is a double-valued function of σ , on
the catenary, the branch point is at z = c2; there σ = c1 and the tangent in the {σ, z} plane
is vertical. Only part of the surface of revolution is physically relevant.

In the outer limit, film thickness vanishes at the apparent contact circle; by setting h = 0
in (3.5), i.e. σ = (1 + h) sin θ and z = −(1 + h) cos θ , the catenary touches the sphere
at σ = sinβ and z = − cosβ; because the apparent contact angle measured through the
liquid is equal to π, dz/dσ = tanβ at the apparent contact line.

Imposing these conditions on (C3) provides two equations determining c1 and c2:

1
c1

sinβ = cosh
(

cosβ + c2

c1

)
, cotβ = − sinh

(
cosβ + c2

c1

)
. (C4a,b)

By eliminating c2 between (C4a) and (C4b), then noting that (C4b) can be written
equivalently as c2 + cosβ = c1 log(tan 1

2β),

c1 = sin2 β, c2 = (sin2 β) log tan(1
2β)− cosβ. (C5a,b)

By comparing (C5a) with (5.4), c1 = F. (Because σ ≥ c1, and the tangent to the catenary
is vertical at the minimum value of σ , the vertical component of force exerted by surface
tension on the interface is 2πc1, whence c1 = F.)
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Using this solution of the Laplace relation, the outer solution for q is obtained in explicit
form. By eliminating dθ/ds between (3.3b) and (3.3e),

dq
ds

= sin θ cos(θ − α)

h(1 + h)
= σ

cos(θ − α)

h(1 + h)2
, (C6a,b)

where (3.5a) has been used to obtain (C6b). Further, by (A1b) and (A1c),

cos(θ − α) =
(
σ

dz
ds

− z
dσ
ds

)/
(1 + h) . (C7)

Thus,
dq
dz

=
(
σ − z

dσ
dz

)
σ

h(1 + h)3
, (C8)

where z has been introduced as the independent variable. Because h = (σ 2 + z2)1/2 − 1,
the right-hand side of (C8) is a known function of z.

C.3. Solution of (C8) for β = 1
2π

For this case, the apparent contact circle is at the equator of the sphere, and by (C5), c1 = 1
and c2 = 0. Thus (1 + h)2 = cosh2 z + z2 and

dq
dz

= cosh2 z − 1
2 z sinh 2z(

[cosh2 z + z2]1/2 − 1
) [

cosh2 z + z2
]3/2 . (C9)

Let ω be an arbitrary function of Ja Cr. Also let c3 be an arbitrary constant independent
of Ja Cr. Then, by integrating (C9) from ∞ to z,

q = ω c3 −
∫ ∞

z

(
cosh2 v − 1

2v sinh 2v
)

dv(
[cosh2 v + v2]1/2 − 1

) [
cosh2 v + v2

]3/2 (C10)

(dummy variable of integration v). The constant of integration ω c3 is to be determined by
matching to the solution for the thin film. The contribution of the outer region to the total
evaporation is given by the integral term in (C10). This term is independent of Ja Cr; in
this sense, it is O(1), even though the integral diverges as z → 0, as is shown next.

Matching requires the asymptotic expansion of (C10) as z → 0. It was obtained by
splitting the interval of integration into subintervals: z < v < ε and ε < v < ∞ (ε � 1,
to be chosen). The contribution from the second interval was obtained numerically; that
from the first, by termwise integration of the series

dq
dz

= z−2 − 8
3

+ 244
45

z2 + · · · . (C11)

For 0 < z � 1, therefore,

q = ωc3 − z−1 + c4 + O(z), (C12a)

where

c4 = lim
ε→0

⎧⎨
⎩ε−1 + 8

3
ε − 244

135
ε3 −

∫ ∞

ε

(
cosh2 v − 1

2v sinh 2v
)

dv(
[cosh2 v + v2]1/2 − 1

) (
cosh2 v + v2

)3/2

⎫⎬
⎭ .

(C12b)

Using either ε = 0.01 or 0.001 gives c4 = 2.87120.
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At the outer edge of the contact region, the outer solution overlaps with that for
the thin film. By introducing the inner variables defined by (6.5) for the thin film, the
expression z = −(1 + h) cos θ becomes z = θ̂ δ + O(δ2). With this substitution, and the
corresponding substitution q = q̂/(λδ) given by (6.5 f ), the inner limit (C12a) of the outer
solution is found to be

q̂outer ∼ λδ ωc3 − λθ̂−1 + λδ c4. (C13)

The outer limit of the inner solution describing the film is obtained in two steps:
by integrating (6.7d), ĥ ∼ θ̂2 + O(θ̂), then substituting that expression into (6.7c) and
integrating to show that

q̂inner ∼ c5 − λθ̂−1 + O(θ̂−2). (C14)

The constant c5 is a property of the solution of problem (6.7). Consequently, it depends on
λ but is independent of δ; in the limit as λ→ 0, c5 approaches a non-zero constant.

Matching of the leading terms in (C13) and (C14) requires that

λδ ωc3 = c5, ω = (λδ)−1, c5 = c3. (C15a–c)

In (C13) and (C14), the terms in θ̂−1 are matched. The remaining term containing c4 is
o(1). It is not matched because for β = 1

2π, the error in the solution for the thin film is also
O(λδ), as noted in § 6.3. For β = 1

2π, the numerical solution of (3.3) therefore determines
Nu with relative error vanishing as λδ, i.e. as Nu−1. This is consistent with the discussion
in § 3.

Appendix D. Derivation of certain coefficients in (7.19)

The derivative of a function of a single variable is denoted by a prime: H′
0 = dH0/dΘ and

a′
1 = da1/dτ . A partial derivative of a function of two or more variables is denoted by a

subscript: H1τ = ∂H1/∂τ .

D.1. First correction
Because H0τ = 0, equation (7.12a) requires Q1τ to be independent ofΘ . Imposing (7.12d)
gives Q1τ = a′

1 + 1. The remaining members of (7.12) require that

DH1τ = (a′
1 + 1)H0, −∞ < Θ < ∞; (D1a)

dH1τ

dΘ

∣∣∣∣−∞
= a′

1,
d2H1τ

dΘ2

∣∣∣∣∞ = 0. (D1b,c)

The operator D is defined by (7.11). A solution of (D1) is

H1τ = 1
3 H0 − 1

6ΘH′
0(Θ), a′

1(τ ) = −1
6 . (D2a,b)

Because F = H′
0(Θ) satisfies the homogeneous problem DF = 0, F′(−∞) = 0 =

F′′(∞), any multiple of H′
0 could be added to (D2) without changing a′

1(τ ). Because
H′

1τ (∞) would change, it cannot be determined from (D2), but only by solving the
complete problem (7.12).
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D.2. Second correction
From (7.15), Q2ττ = a′′

2 − 5
18 and

D[H2ττ ] =
(

a′′
2 − 11

18

)
H0 − 1

2
ΘH′

0 + 1
3
Θ2 H′2

0
H0
, −∞ < Θ < ∞; (D3a)

dH2ττ

dΘ

∣∣∣∣−∞
= a′′

2,
d2H2ττ

dΘ2

∣∣∣∣∞ = 0. (D3b,c)

A solution is

H2ττ = −2
9 H0 + 1

12ΘH′
0(Θ)+ 1

36 Θ
2H′′

0 (Θ), a′′
2(τ ) = 5

36 . (D4a,b)

D.3. Third correction
From (7.17), Q3τττ = a′′′

3 + 5
12 and

D[H3τττ ] =
(

a′′′
3 + 17

18

)
H0 + 3

2
ΘH′

0 − 4
3
Θ2 H′2

0
H0

+ 1
8
Θ2H′′

0 + 1
18
Θ3 H′

0
H0

{
5

H′2
0

H0
− 3H′′

0

}
;

(D5a)

dH3ττ

dΘ

∣∣∣∣−∞
= a′′′

3 ,
d2H3ττ

dΘ2

∣∣∣∣∞ = 0. (D5b,c)

A solution is

H3τττ = 10
27 H0 − 25

216ΘH′
0(Θ)− 5

72Θ
2H′′

0 (Θ)− 1
216Θ

3H′′′
0 (Θ), a′′′

3 (τ ) = − 55
216 .

(D6a,b)

Appendix E. Boundary-value problem cited in the discussion of figure 3

Solid curves in figure 3 were obtained by solving the simplified system obtained from (3.3)
by assuming p, q and h to vary with respect to θ on a single scale θs � 1.

Let

p = psp′, q = qsq′, h = hsh′, θ = θsθ
′, σ = θsσ

′, r = 1 + hsr′, (E1)

so that on the sphere r′ = 0 (and a prime does not denote a derivative). By balancing
terms in (3.3) and in (A3), the scales are found to be hs = (Ja Cr)1/3, θs = (Ja Cr)1/6 and
ps = 1 = qs. Hence,

p = p′, q = q′, h = (Ja Cr)1/3h′, θ = (Ja Cr)1/6θ ′, (E2a–d)

z − (c − 1) = (Ja Cr)1/3(1
2θ

′2 − r′), σ ′ = θ ′. (E2e, f )

Variables with primes describe a small region near θ = 0. Within it, the radius σ in
cylindrical coordinates is equivalent to the polar angle θ in spherical coordinates, and the
sphere r′ = 0 is approximated by a paraboloid. The same approximation underlies Taylor’s
solution for the squeeze flow driven by the mutual approach of two rigid spheres (Horn
et al. 2000, note 38).
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Nusselt number of a hot sphere levitated by a volatile pool

By substituting (E2) into (3.3), then taking the limit as Ja Cr → 0 (fixed θ ′),

− h′3θ ′ dp′

dθ ′ = 3q′,
h′

θ ′
dq′

dθ ′ = 1,
1
θ ′

d
dθ ′

[
θ ′ dh′

dθ ′

]
= 2 − p′, (E3a–c)

for 0 < θ ′ < ∞. The boundary conditions are

at θ ′ = 0, p′ = p′
0, h′ = h′

0; as θ ′ → ∞, p′ → 0. (E3d–f )

The equilibrium condition (3.6) requires that

F
(Ja Cr)1/3

=
∫ ∞

0
p′ θ ′dθ ′. (E3g)

The method of solution is identical to that used for (3.3): with p′
0 assigned, h′

0 is chosen to
satisfy (E3 f ), and the corresponding value of F/(Ja Cr)1/3 is obtained from (E3g).

To derive (E3), p, q and h were assumed to vary with respect to θ on a single scale. The
assumption is self-consistent provided F/(Ja Cr)1/3 is fixed in the limit as Ja Cr → 0.
With the limit thus defined, (E3) contains no large parameter and all dependent variables
are O(1). Viewed at the scale of the sphere, the liquid–vapour interface and the sphere
appear to touch at a single point θ = 0: there is an apparent contact point rather than
an apparent contact circle. Now, according to figure 3(a), as F/(Ja Cr)1/3 is increased, p′
remains of the order of unity. Consequently, the force balance (E3g) can only be satisfied if
p′ acts over an increasing area. A separation of scales develops as a result, and the apparent
contact point becomes the apparent contact circle of a bubble cap (Brandão & Schnitzer
2022, p. 1130).

Once this bubble cap is present in the solution of (E3), p′
0 > 2 because from (E3c),

d2h′

dθ ′2

∣∣∣∣
0

= 1
2
(2 − p′

0), (E4)

and this must be negative in order for the two paraboloids to intersect. Numerical solutions
of (E3) show that as F/(Ja Cr)1/3 → ∞, p′

0 → 2 from above. In figure 3(a), the asymptote
p′

0 = 2 is shown by the broken line. The corresponding response curves are single-valued.
(The argument leading to (E4) does not hold when F = O(1) because both principal
curvatures are then of comparable size, as can be seen from (5.1) and (5.2).)

For the small values of F described by this limit, the numerical method described in
Appendix C ceases to be useful because the contribution of the thick film is no longer
small. Specifically, in the solution of (E3), there is no separation of scales in general.
As a result, q′ grows as log θ ′ as θ ′ → ∞, rather than approaching a limit as it does for
the solution of (6.7). The Nusselt number is consequently only logarithmically large in
Ja Cr because the singularity in the solution for the outer region where film thickness is
comparable with the sphere is logarithmic for small F rather than being algebraic, as it is
for fixed F = O(1).
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