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1. Introduction

Let T be an irreducible and non-singular curve in [ri] (n ^ 3) which is the
complete intersection of n— 1 primals of order m (m ^ 2) with a common " self-
polar " simplex S: by this I mean that the rth polar of each vertex of S with
respect to any one of the defining primals is the opposite face of 5 counted m—r
times, for r = 1, 2, ..., m— 1. The various such F constitute the curves of the
title; they were encountered in (2). When m = 2, F is the intersection of n— 1
quadrics with a common self-polar simplex in the familiar classical sense.

A special feature of F, and one of its claims to interest, is the exceptionally
high order of contact of the osculating spaces at the points of hyperosculation:
points where the osculating prime has (» + l)-point contact (intersection) or
more. The points of hyperosculation on F are its intersections with the faces of
S; the osculating |Y| at these points have ms-point contact and so are hyperos-
culating (except when s = 1 and m = 2). All the other points on F are ordinary:
their osculating \_s] have the statutory minimal (s+l)-point contact. On a
general curve in [n] where, in contrast to F, there is no confluence of the points
of hyperosculation, the hyperosculating primes have precisely (« + l)-point
contact; while at the points of hyperosculation the osculating [5] for s ^ n—2
are not hyperosculating. The facts about F were established in (2, pp. 334, 335)
by a somewhat intricate discussion. It involved limiting position arguments for
osculating spaces—so our geometry was complex—a calculation of the genus of
F, an evaluation of the multiplicities of the points of hyperosculation, and the
use of a formula for their number, which in turn depends on correspondence
theory.

A major concern of (2) was to find the equation of the osculating prime at an
ordinary point on F. The discussion of (2, pp. 335, 336) for obtaining this equa-
tion is not valid at the points of hyperosculation. For one thing, equation (41)
of (2) is invalid since a denominator vanishes at these points; another, more
serious, reason is explained below. However, the equation of the osculating
prime at a point of hyperosculation has the same form as that at an ordinary
point, and one of our purposes here is to establish this. Our simple and uniform
treatment gives the osculating [«— 1] at all points of F; and simultaneously
exhibits the nature of the osculating [ J ] at each point, and thus in particular, of
the hyperosculating spaces. Only unsophisticated algebra is required, so our
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geometry is now, as it should be, over any algebraically closed field with
characteristic zero. Being direct, unlike the a posteriori verification of (2), our
present method yields a bonus: it gives equations for each osculating \js].

Our approach is by examination of the places or branches of F. At a simple
point P of a curve in [n] there is a single linear place (3, p. 193). Provided the
curve does not lie in a prime, coordinates y = (y0, yu ..., yn) may be chosen so
that a minimal parametrisation of the place in an indeterminate t has the form

yt = fo;*'' + higher powers of t; i = 0, 1, ..., n,
where bt # 0; /0 = 0, lx = 1 and 2 g /2</3<. . .</„. The centre " t = 0 "
of the place is P, and the osculating [s] to the curve at P is

ys+i = y*+i = ... = ytt = o

with/s+1-point contact (l,Vol. 5, p. 199), (3, pp. 182,183). We obtain explicitly
each place of F in the given coordinate system, find new coordinates so that the
place is in canonical form, and then translate back. The canonical form for a
place leads us to the second reason for the failure at the points of hyperosculation
of F of the method of (2) for obtaining the equations of osculating primes.
Let £, d^, d2Z, ... be the values of y, dy, d2y, ... at the centre P(t = 0) of a place,
taken as above, of a curve. If the osculating [n - 2] at P is hyperosculating then
/„_! g: n. On writing down the ^, dt,, ...,dn~x£, explicitly one sees immediately
that they all lie in the \n — 2]: yn _ t = yn = 0, and so do not span the osculating
prime. On the other hand, if the osculating \n — 2] is ordinary then /„ _ j = n — 1.
Hence /( = 1 for / < n, and so, whatever the value of /„, f, d£,..., d" ~1 £ are linearly
independent and do span the osculating prime. This fact for the ordinary points
of F was crucial in the proof of (2, p. 336).

The equation for the osculating prime at a point on the curve of intersection
of n — 1 general primals in [«] only appears in the literature for n = 3 and n = 4,
and then only for simple points whose osculating [« — 2] are not hyperosculating.
So it is interesting to have the equation at all points on special curves in [«].
The general case for n = 4 was discussed in (2, p. 331); the equation becomes
vacuous at points with hyperosculating planes. Indeed, this was explicitly
noticed on page 333 for the points of hyperosculation of the T with m = 2 and
n — 4. The general case for n = 3 is classical. Careful writers, for example
(1, Vol. 5, p. 206), observe that they are obtaining the equation at ordinary
points; it is implicit in Baker's discussion (1, Vol. 5, pp. 206, 207, 208) that the
equation is vacuous at inflexions, and this can quickly be verified explicitly.
When m = 2 and n = 3, F is the famous elliptic quartic which has no inflexions;
the equations of the osculating planes at all points, obtained from the general
result for n = 3, have been known and used for more than a century. We refer
the reader to the bibliography of (2) for a detailed list of appearances and pro-
perties of the F with m = 2 and n ^ 5.

In the final paragraphs of this note we make some mention of the group of F
and its relevance to osculating and other tangential matters.
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2. The places on T

2.1. Suppose that coordinates x' = (x0) xu ..., xn) are taken so that S is
the simplex of reference with vertices Xo, Xu ..., Xn. Summations will always
run over 0,1, ..., n unless the contrary is explicitly indicated. Y may be taken as

5>/*T = 0, J = 0, l , . . . , n - 2 , (1)
i

where the ax are distinct. This canonical form for Y is established by the dis-
cussion of (2, p. 334) which, involving only simple geometry and algebra, may
be presumed here. The primals appearing in (1) are linear combinations of the
original w-ics defining Y. If X is fixed then we may replace each a-, by a, + A,
since this is equivalent to taking n— 1 independent linear combinations of the
primals in (1). Hence we may take all the a, to be non-zero, and then the equa-
tions of (1) represent non-singular w-ics.

2.2. We define

/(0) = (8-a0W-a1)...(e-aJ; sr = £ -g-
' /(a.)

where dashes here denote derivatives. Then

sP = 0, r = 0, 1, ..., n-l; sn = 1; sn+l = £ a, = <r, say. (2)

We may regard (1) as n — 1 independent linear equations in the xf. From (2)
two independent solutions are given by

) and x? = ajf'(at).

Hence for any point P on Y with coordinate vector E, we have

«*/'(««) = P+«i«, i = 0,1, . . . ,«, (3)

for some p, q. If q i= 0 then xf = £? and x™ = l//'(a.) are independent
solutions of (1), while if q = 0 then x" = £? and xj" = aJ/Xad are. Hence, if
we take the appropriate one by scalar multiplication, the coordinate vector x
of a generic point of Y satisfies

x7 = Z7 + tlf'(ad, ifq^O; x7 = Z? + o,t//'(aO. if « = 0; (4)

where t is some indeterminate.
2.3. The points ofF in the face of 5 opposite ZQ are given by/>: q = a0: — 1 .

Since the at are distinct only the first coordinate of any of these points is zero.
On extracting the various wth roots in (3) we obtain m""1 distinct points of Y
in the face. Suppose that P is one of these, so that £0 = 0, but f, # 0 for i ^ 1.
In this case (4) becomes, in view of (3),

— \ i-= 1, 2, .... n. (5)
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The extraction of mth roots produces, in accordance with general theory,
fractional power series in tl/m. So we must write u for this, and then we obtain
the Puiseux expansion

+ * + 2" + + g s ^ +

of a place. Here # f is the coefficient of if in the binomial expansion of (1 +v)llm

and so is non-zero. This place has centre P and so is the place at P. The other
solutions of (5) give the places at the other points of T in the face x0 = 0.

Let A be the n x n matrix whose ith row is, for / = 1, 2, ..., n,

If we remove a factor £, from the ith row and Kj-t from theyth column for all
relevant / and j , then we see that the determinant of A is a non-zero multiple of
the Vandermonde determinant in the (/»+aIg

r)~1. These are distinct since
q ^ 0 and the at are, so the Vandermonde determinant is non-zero and A is
nonsingular. Let B be the n x n matrix whose /th row is, for / = 1, 2, 3, ..., n,

(p+aiqy-2zr\ (p+a2qy-2tr1,.... (P+«„«)•-^r1.
5 is nonsingular: its determinant is a non-zero multiple of the non-zero
Vandermonde determinant in the distinct p + atq. If i>j then the (y)th entry of
BA is, to within a factor Kj-± if_/>l,

' = i / (a,) i / (a,)

where we have used in succession (3), the fact that p + aoq = 0,*andJ(2) as
n — 1 ^ i—j ^ 1. So 5/4 is upper-triangular; let Lt denote its non-zero /th
diagonal entry.

In the coordinate system given by

, y2, - , yny = B(XU X2, ..., x /
the equations of our place become

yo = u; yt = Liu
<-'~1*m+higher powers of u, i ^ 1.

Apart from an interchange of the suffices 0, 1 this is the canonical form of
Section 1. Hence the osculating [j] at P has ms-point contact, and is given by
ys+1 = ys+2 — ••• = yn = 0. Thus in the original coordinates the osculating
[5] is given by

. . ,« ; (6)

we have again used the fact that <̂ 0 = 0. A similar argument gives the same
equations for the osculating [5] at a point of T in any face of S, and proves that
such an [s] has ww-point contact.
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We may quickly explain the motivation for the construction of this B. To
obtain the place in canonical form we need a B so that BA is upper-triangular,
and to obtain simple equations for the osculating \s~\ we need a simple such B.
Having already encountered Vandermonde matrices, and knowing that it is the
with powers of £,- that can be expeditiously handled in conjunction with p-\-aiq>

one is compelled to seek a B whose ith row is, for some h independent of i,

Use of (2) forces one to take h = - 2 .
2.4. Suppose, now, that P is in no face of S, so 5, ^ 0 for all /. We apply

the techniques of Section 2.3; the detail now runs more smoothly. We suppose,
first, that q ¥= 0. Then from (3) and (4) we have

x? = ff(l + f/(P+atf)). '" = 0, 1, 2, ..., n.

Hence, the place at P is given by

i = 0, 1, 2, .... n.

If, next, q = 0, then the second alternative of (4) must be used with (3), and we
find, now, that the place at P is given by

^ ^ + . A , . 0 . 1 , 2 n.
P P P J

In either case let C be the (M + 1)X(M + 1) matrix whose (*"+l)th row,
/ = 0, 1, ..., n, has for its entries the coefficients, in order, of 1, t, t1, ..., t" in
the expansion of xt. Motivated as in Section 2.3 we take D to be the
(n+1)x (« +1) matrix whose (/+ l)th row, for i = 0, 1, ..., n, is

(p 0 q ) ^ \ (p i q y Q r \ , iP ^)2^-1, if « * 0,
and

nn-iem-l n-icm-1 ^n-iem-1 :c _ (\

If the weaker form of the canonical form (1) of T is used, so that some at may
be zero then, if q = 0, af is here taken to be 1. Arguments similar to those used
for A and B in Section 2.3 show that C and D are nonsingular. If O g i, j ^ n
and i>j, then if q # 0 the (i+1, / + l)th entry of DC is, to within a factor K} if

by (3) and (2) since 0 ^ i—./— 1 <«; while if ? = 0 the entry is, to within the
non-zero factor Kip~i ifj ^ 1,
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by (3) and (2) since 0 ^ n — i+j<n. Thus DC is upper-triangular; let M, be its
non-zero (/+ l)th diagonal entry. In the coordinate system given by

(y0, yu •••> y n ) ' = D ( X 0 , * l 5 . . . , xny

the place at P is given by

yt — MJ+higher powers, i = 0, 1, ..., n.

Thus the osculating [s] at P is ordinary and is given by

y*+i = y*+2 = ••• = yn = o.
Hence it is given by

" 2 1 . . . ,», ifg/O, (7)
and

E «"" '«""^ i^O, i = s + l, . . . , « , if 9 = 0. (8)

2.5. Before eliminating/? and q from (6) and (7) we summarise the results for
the hyperosculating spaces in

Theorem 1. The points of hyperosculation ofT are its (n+ l)m"~l intersections
with the faces of S. At such a point the osculating [s~\ has ms-point contact. All
the other points on T are ordinary.

3. The equations of the osculating spaces
3.1. It is immediate from (6), (7) and (8) that the equation of the osculating

prime to T at any point ^ is

E(P+a^)"-2<?r1x/ = 0. (9)
i

From (2) and (3) we have

, . > i

so we pbtain
Theorem 2. The equation of the osculating prime at £ on T is

L\Li^i~ya~al'hai €i S
( i i

This equation, for an ordinary point I;, was given in (2, p. 336). An alternative
expression is found by substituting (3) in (9) to obtain for the equation of the
osculating prime

3.2. From (6), (7) and (8) we also obtain

Theorem 3. Ifs<n—\ then the osculating [s~\ at ^ on Y is given by

I i
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EXCEPT for the points where £™ = [/'(^i)]"1 for all i, when it is given by

At a point where £™ = [/'(a,-)]" * f°r a'l'» e a c n equation of the first set is that of
the osculating prime: this is perhaps most clearly seen by putting q = 0 in (7).
Symmetry is, however, restored if we consider the Grassmann coordinates of
the \s\. Elementary determinant theory gives from the above equations, or
perhaps more obviously from (6), (7) and (8) directly,

Theorem 4. The dual Grassmann coordinates of the osculating [ J ] to F at any
point f are given by

where Vti is the (n—s)x(n—s) Vandermonde determinant in ah a}, ....

In (2, pp. 336, 337) the dual coordinates of the osculating planes and solids
to a curve of intersection of n — 1 general primals were given, but, again, these
are only valid at the ordinary points of F.

4. The group of F
4.1. It follows from Theorem 3 that the tangent lines to F at its points in

one face of S concur at the opposite vertex, and are the only tangents to F
through this vertex. Further, the tangents at two points of hyperosculation in
distinct faces of S do not meet. We may prove this as follows. A point P of F
in the face xt = 0 may be taken as £ with £,? = (a,— at)lf'(a,) for all /, and a
point Q in x} = 0 (f ^ j) as r\ with rf? = (a,—a7)//'(a,), by (3). Were the tangents
PX{, QXj to meet then PQ would meet XtXj. Hence there would exist X, fi, not
both 0, such that A£,—fint = 0 for all / ^ i,j, and consequently

r (a, - a,) = nm(a, - as) for all / # i, j .

Since n ^ 3 and the a, are distinct this is impossible.
The group of projectivities fixing F permutes the points of hyperosculation.

Any of its elements takes one pair of points with concurrent tangents to another.
Hence the group fixes S, and has a normal subgroup, G say, fixing each vertex of
5. The existence of particular relationships among the at will imply that the
full group of F is bigger than G.

Suppose that an element of G has for a matrix, which must be diagonal,
diag (a0, a,, ..., an). This takes the point P in xt = 0 considered above to the
point on F with coordinates (ao^o, a^u ..., an^n). Since all points of F in
xt = 0 are given by p : q = — at: 1 we see from (3) that there is a non-zero X so
that a,m Ĵ" = Xg? for all /. Since £, alone of the £, is zero we see that the aj" for
I ^ i are all equal. Since i can vary we conclude that the aj" are all equal, and
hence that an element of G has for a matrix diag (Ao, Xu ..., Xn), where each X,
is an mth root of unity. Conversely, such a matrix gives a projectivity fixing
each of the defining primals (1) of F and so in G. There are mn+1 such com-
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muting matrices, of which m are scalar. Hence G is an abelian group of order m"
and exponent m. It is clear from (1) that these matrices do give a subgroup of the
group of F, but it is not obvious ab initio that any projectivity fixing F and each
vertex of S must fix each of the defining m-ics.

From (3) and the matrix form above we see that the orbit of a point of F
under G consists of those points with the same p : q. Hence, on extraction of
mih roots in (3), we see that the orbits have sizes m" and m""1 for ordinary and
hyperosculation points respectively. Hence the points of hyperosculation are
those points ofT which have non-trivial stabilisers in G.

4.2. Let P be a point of hyperosculation of F in the face JC, = 0 of S. Since
P lies in no [n — 2] spanned by vertices of S, each element of the stabiliser in G
ofP must, by the fundamental theorem of projective geometry, fix the face xt = 0
pointwise. Hence the stabiliser consists of those homologies in G with vertex Xt

and axis x, = 0, together with the identity. Any such homology has a matrix of
the form diag (1, 1, ..., 1, kh 1, 1, ..., 1) where only the (/+l)th diagonal entry
is not 1. By Section 4.1 Xt must be an /wth root of unity. A particular such
homology is ht given by Xt = p, where p is a primitive with root of 1. The
stabiliser of P is (h,y, a cyclic group of order m. Thus the stabiliser of a point
of hyperosculation ofT is a cyclic group of order m consisting, apart from the
identity, of homologies.

From the matrix form of G we see that G = (h0, hu ..., hn~). The image
under ht of any point lies on the join of that point to Xt. Further the orbit
under <A,> of any point not at X, nor in xt = 0 has size m. Hence the points of
hyperosculation in a face of S lie by m's on lines through each vertex of S in the
face. Another consequence is that all members of the orbit of a subspace L
under the group generated by some of the ht lie in the join of L to the vertices of
these homologies.

The tangent to T at ^ meets the [» —2]: xn.t = xn = 0 if and only if its
dual Grassmann coordinates satisfy 7T012...n_2 = 0. By Theorem 4 this is
impossible at an ordinary point. Take, then, an ordinary point P' on F. Its
tangent line Mo F does not meet the [n—3] spanned by Xo, Xu ..., Xn_3.
The action of </i0, hu ..., An_3> gives an orbit of m"~2 tangents to F lying in the
prime joining t to the [« —3] spanned by Xo, Xu ..., Xn_3, and whose distinct
contacts lie in the join of/" to the [n — 3]. For the m and n under consideration
m"~2 ~^.n except when m = 2 and n = 3. Hence, apart from the elliptic quartic
in [3], F has an infinity of n-ritangent primes. A general curve in [n] has only a
finite number of such primes; their number is given by a formula of Castel-
nuovo (see 1, Vol. 6, p. 45). In fact, apart from the quartic, F has ("j1)
families of «-ritangent primes, one of each family joining t to an [« — 3]
spanned by n — 2 vertices of S.

If n ^ 4, and we consider the action of (Ji0, hu ... An_4> on the osculating
plane at P', then we see that there is an infinity of primes having 3-point contact
at m"~3 distinct points. And so on.
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