
Canad. Math. Bull. Vol. 61 (1), 2018 pp. 142–148
http://dx.doi.org/10.4153/CMB-2017-010-x
©Canadian Mathematical Society 2017

An Equivalent Form of Picard’s Theorem
and Beyond

Bao Qin Li

Abstract. _is paper gives an equivalent form of Picard’s theorem via entire solutions of the func-
tional equation f 2 + g2

= 1 and then its improvements and applications to certain nonlinear (ordi-
nary and partial) diòerential equations.

1 Equivalent Form of Picard’s Theorem

Picard’s theorem states that an entire function, i.e., a complex-valued function dif-
ferentiable in the complex plane C, omitting 0 and 1 must be constant. It also easily
implies, by a linear transform, themeromorphic version of the theorem that amero-
morphic function in C omitting three distinct values must be constant. Picard’s the-
orem is among themost striking results in complex analysis and plays a decisive role
in the development of the theory of entire andmeromorphic functions and other ap-
plications. Diòerent proofs of Picard’s theorem are known (see [1, 2, 4–6, 8, 11, 13],
etc.). In this article, we connect Picard’s theorem to entire solutions of the simple-
looking functional equation f 2 + g2 = 1 and give an equivalent form of Picard’s theo-
rem through the common zeros f ′ , g′ in an elementary way, which is partially moti-
vated by [9], where we characterized meromorphic solutions f (z1 , z2) and g(z1 , z2)
of the equation f 2+g2 = 1 inC2 with an application to certain nonlinear partial diòer-
ential equations. _e theoremwill lead to a further result on the equation in Section 2,
which improves Picard’s theorem and thus also contains another proof of Picard’s the-
orem (with the implications: _eorem 2.1⇒_eorem 1.1⇒ Picard’s _eorem, and
also _eorem 2.1⇒ Corollary 2.3⇒ Picard’s _eorem; see below). Applications to
nonlinear diòerential equations will be given in Section 3.

_eorem 1.1 Entire solutions f and g of the functional equation f 2 + g2 = 1 in C are
constant if and only if Z( f ′) = Z(g′) (counting multiplicities).

Here and in the sequel, Z(h) for a function h denotes the set of zeros of h (count-
ing or not counting multiplicities, speciûed in the question). _us, the condition in
_eorem 1.1 means that f ′ and g′ have the same zeros with counting multiplicities.

_eorem 1.1 is equivalent to Picard’s _eorem in the sense that one implies the
other.
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_eorem 1.1 implies Picard’s _eorem Assume that an entire function F omits 0
and 1. _en F = e p and 1 − F = eq for two entire functions p, q. _us, we can write
F = f 2 and 1 − F = g2, where f = e 1

2 p and g = e 1
2 q . Clearly, f 2 + g2 = 1, and then

f f ′ = −g g′, which clearly implies that f ′ and g′ have the same zeros (counting mul-
tiplicities), since f and g omit 0. By _eorem 1.1, f and g are constant, and thus F is
constant.

Picard’s _eorem implies _eorem 1.1 For suõciency of _eorem 1.1, write the
given equation to ( f + ig)( f − ig) = 1. Denote f + ig = h. Clearly, h /≡ 0. We
then have that f − ig = h−1. _us,

f = h + h−1

2
, g = h − h−1

2i
,

which implies that

f ′ = h′

2
h2 − 1
h2 , g′ = h′

2i
h2 + 1
h2 .

We claim that h omits ±1 (and also ±i). _is can be shown by the following argument,
which works also for meromorphic f and g (see Remark 1.2). In fact, if h2(z0) = 1
for some z0, then f ′(z0) = 0, and thus g′(z0) = 0 by the given condition. But then
the order of z0 as a zero of f ′ (equal to the sum of the order as a zero of h2 − 1 and
the order as a zero of h′) is higher than that of z0 as a zero of g′ (equal to the order
of z0 as a zero of h′), a contradiction to the assumption that f ′ and g′ have the same
zeros with counting multiplicities. _is shows that h2 omits 1; that is, h omits −1, 1.
(In the same way, by considering the zeros of h2 + 1, we see that h omits −i and i.)
_is proves the claim. By Picard’s theorem, h must be constant, which implies that f
and g are constant, i.e., the suõciency of_eorem 1.1. _e necessity of_eorem 1.1 is
obvious.

Remark 1.2 As Picard’s theorem extends tomeromorphic functions, it is natural to
ask if _eorem 1.1 holds also for meromorphic functions. _e above proof of _eo-
rem 1.1 can go through without any changes if f , g aremeromorphic functions, since
the function h in the proof actually omits four values and thus must be constant, if
h is meromorphic (see the above proof). _us, _eorem 1.1 does hold for meromor-
phic functions. We include entire solutions in the statement of _eorem 1.1 for the
equivalent form parallel to Picard’s theorem.

It is also natural to ask if the condition “counting multiplicities” may be improved
as “ignoringmultiplicities”,whichwill be answered in_eorem 2.1 of the next section.

2 Improvements

It turns out thatwhen themultiplicities are ignored,_eorem 1.1 still holds. However,
the proof there doesnot go through anymore. Wewilluse a diòerent argument,which
is independent of Picard’s theorem and actually yields a better result than_eorem 1.1
in two aspects: ignoring multiplicities and relaxing the set equality to set inclusion
(see _eorem 2.1). _e set inclusion condition turns out to be useful and makes it
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possible to apply to other questions, as seen in Corollary 2.3 and in applications to
(ordinary and partial) diòerential equations in Section 3.

_eorem 2.1 Entire solutions f and g of the functional equation f 2 + g2 = 1 in C are
constant if and only if Z( f ′) ⊆ Z(g′) (ignoring multiplicities).

We give a proof of_eorem 2.1, invoking only the following properties of

m(r, f ) ∶= ∫
2π

0
log+ ∣ f (re iθ)∣dθ ,

where log+ x = max{0, log x}, for a nonzero entire function f (see e.g., [6, pp. 4, 55]):
(i) m(r, 1

f ) ≤ m(r, f ) + O(1);
(ii) m(r, f

′

f ) =∶ S(r, f ) = o(m(r, f )) outside a union of intervals of ûnite total
length.

We note that Properties (i) and (ii) havemore general forms,which are not needed in
this paper.

Proof of_eorem 2.1 _e necessity is obvious. For the suõciency, write the given
equation to ( f + ig)( f − ig) = 1. Denote f + ig = h. _en h is an entire function
omitting 0. We then have that f − ig = h−1 . _us, we have that

f = h + h−1

2
, g = h − h−1

2i
,

which implies that

f ′ = h′

2
h2 − 1
h2 , g′ = h′

2i
h2 + 1
h2 .

Introduce the auxiliary function

(2.1) H(z) = (h′)2
(h − 1)(h + 1) .

If h2(z0) = 1 for some z0, then f ′(z0) = 0, and thus g′(z0) = 0 by the given condition,
which implies that h′(z0) = 0. _us, z0 is not a pole of H by considering the order of
a zero of (h − 1)(h + 1) = h2 − 1. Hence, H is entire. If H ≡ 0, then h is constant and
thus f , g are already constant. Assume that H /≡ 0. Applying property (ii), we have
that m(r,H) = S(r, h), and thus

m( r, 1
H
) ≤ m(r,H) + O(1) = S(r, h)

by property (i). From (2.1) it follows that h2 − 1 = 1
H (h

′)2 or

1 − 1
h2 = 1

H
(h′)2
h2 .

_us, we deduce, by property (ii) again, that

m(r, h) = 1
2
m(r, h2) ≤ 1

2
m( r, 1

h2 ) + O(1)

≤ 1
2
m(r, 1

H
) + 1

2
m( r, (h

′)2
h2 ) + O(1) = S(r, h),
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which implies that h is constant, and thus f , g are constant.

Remark 2.2 It is natural to ask if _eorem 2.1 could be pushed over to meromor-
phic solutions. _e answer is negative. _at is, there are nonconstant meromorphic
functions f , g that satisfy the equation f 2 + g2 = 1, and the zeros of f ′ are also ze-
ros of g′. Here is a counter-example: Take any nonconstant entire function p and set
q = (e p + 1)/(e p − 1). _en we have that

q − 1 = 2
e p − 1

, q + 1 = 2e p

e p − 1
.

_us, q does not assume 1 and −1. Now set

f = q + q−1

2
, g = q − q−1

2i
.

_en f and g are (non-entire) meromorphic functions. It is easy to verify that
f 2 + g2 = 1 and that

f ′ = q′

2
q2 − 1
q2 , g′ = q′

2i
q2 + 1
q2 .

Clearly, the zeros of f ′ are also zeros of g′ (even counting multiplicities), since q2

omits 1. But, f and g are not constant.

We include an improvement of Picard’s theorem in amore familiar form as a con-
sequence of_eorem 2.1.

Corollary 2.3 If f is an entire function that omits 0, and any zero of f − 1 is multiple,
then f is constant.

We note that Corollary 2.3 can be obtained from the Second Main _eorem of
Nevanlinna (see e.g., [6]), which is the core theorem of Nevanlinna theory and will
not be used in this paper. We present a proof that follows from _eorem 2.1 in an
elementary way.

Proof Make the linear transform f = 2g − 1. _en g /= 1
2 and the zeros of g − 1, if

there are any, are all multiple. From the identity (g − 1)2 = g2 − 2g + 1, we obtain an
entire function h such that (g − 1)2 − g2 = 1 − 2g = e2h , since 1 − 2g omits 0. _us,

( g − 1
eh
)

2
+ ( i g

eh
)

2
= 1;

that is, F2 +G2 = 1, where F = i g
eh and G = g−1

eh . Note that

(2.2) g′ = −e2hh′ = (2g − 1)h′ .
We deduce that

F′ = i g
′ − gh′

eh
= (g − 1)h′

eh
,(2.3)

G′ = g′ − (g − 1)h′
eh

= gh′

eh
.(2.4)

https://doi.org/10.4153/CMB-2017-010-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-010-x


146 B. Q. Li

If g(w) = 1 at a w, then f (w) = 1, and thus g′(w) = 0 by the given condition. _en
h′(w) = 0 by (2.2). _us, any zero of F′ must be a zero of h′ and thus a zero ofG′. _at
is, the condition of_eorem 2.1 is satisûed for F and G. Hence, F and G are constant,
and then, by (2.3) and (2.4), h or g is constant, which implies that f is constant.

3 Applications

Characterizing complex analytic solutions of diòerential equations is a topic of a long
history (see e.g., the monograph [7]). Given a nonlinear diòerential equation, there
is, in general, no systematicway to ûnd its solutions. A slight variation of an equation
may require a diòerent method. In fact, the consideration of the above new form of
Picard’s theorem and its improvementwas led by the desire to solve certain nonlinear
diòerential equations in complex variables. We include here two applications, one for
ordinary diòerential equations and the other for partial diòerential equations, where
the results of Section 2 can be applied to characterize their entire solutions. Herewe do
not intend to give themost general results, but rather to illustrate such applications to
certain nonlinear diòerential equations,which can otherwise be hard to handle using
availablemethods from diòerential equations.

Corollary 3.1 Entire solutions of f 2 + h2( f ′)2m = 1 are exactly f = ±1, where h is an
arbitrary entire function and m ≥ 2 is an integer.

It is an immediate consequence of _eorem 2.1, since f 2 + g2 = 1 and Z( f ′) ⊂
Z(g′), where g(z) = h(z)( f ′(z))m , which implies that f must be constant and then
f = ±1 from the given equation.

Remark 3.2 Corollary 3.1 fails to hold when m = 1. Here is a counterexample.
Consider f = sin ez and h = e−z . _en f 2 + h2( f ′)2 = 1. But f is a transcendental
entire solution of the equation. We refer the reader to [7] for related Briot–Bouquet
type equations.

Next consider the following partial diòerential equations:

(3.1) um(u2
x + u2

y + eh) = eh ,

(x , y) ∈ C2, where h is an arbitrary entire function C2 and m > 0 is any integer. We
refer the reader to [9, 10, 12] and references therein for related types of PDEs. When
h(z) ≡ 0 and m = 2, equation (3.1) becomes the well-known PDE of tubular surfaces
(see e.g., [3, p. 95]); the two parameter family of the surfaces (x−a)2+(y−b)2+u2 = 1
is a complete integral. _e two parameter family has an envelope consisting of the
planes u = 1 and u = −1, which are solutions of the equation. A diòerent family of
PDEs including the PDE of tubular surfaces was considered in [11] using relatively
more advanced tools from several complex variables, which, however, does not apply
to (3.1). We will characterize entire functions of (3.1) with a proof in an elementary
manner invoking only the improved Picard’s _eorem in Section 2.

_eorem 3.3 Entire solutions of (3.1) in C2 are exactly the m unitary complex roots
of um = 1.
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Remark 3.4 It is natural to ask if the function h on both sides of (3.1) can be relaxed
to diòerent entire functions, i.e., if the equation (3.1) can be generalized to

um(u2
x + u2

y + eh(x ,y)) = e g(x ,y)

with two arbitrary entire functions g , h. _e answer is negative. To see this, consider
the equation

u2((u2
x + u2

y) + e2(x+y)) = e4(x+y)+log 3

with h = 2(x+ y) and g = 4(x+ y)+ log 3. _en the equation admits a transcendental
entire solution u = ex+y .

Proof of_eorem 3.3 It is clear that each of the m unitary complex roots of zm = 1
is a solution of (3.1). _us, it suõces to show that each entire solution u of (3.1) in C2

satisûes that um = 1.
Let u be an entire solution of (3.1) in C2. Make the transformation x = z + w , y =

z−w
i . Denote v = v(z,w) = u(x , y). It is clear from (3.1) that u(x , y) /= 0 for any
(x , y) ∈ C2 and so that v(z,w) /= 0 for any (z,w) ∈ C2. For notational convenience,
we continue to use g and h to denote the functions a�er the transformation. _en
vz = ux + 1

i uy , vw = ux − 1
i uy , and equation (3.1) reduces to vm(vzvw + eh) = eh , or

(3.2) vzvw = ehv−m(1 − vm).
We show that (3.2) implies that vm ≡ 1 in C2. To this end, we discuss two cases: m > 1
and m = 1.

Case (i): m > 1. First, we assume that at any zero (a, b) of v(z,w) − 1, vw(a, b) = 0.
_en for any c ∈C, the one-variable function fc(w) ∶= v(c,w) does not assume 0 and
fc(w) − 1 has only multiple zeros. By Corollary 2.3, fc must be constant. We then
obtain that vw(c,w) = f ′c(w) ≡ 0 for any c and any w. _at is, vw ≡ 0 in C2, which
implies from (3.2) that vm ≡ 1 and thus um ≡ 1 in C2. _e theorem thus holds in this
case.

Next,we onlyneed to consider the casewhere there exists a zero (a, b) of v(z,w)−1
such that vw(a, b) /= 0. Let η be a unitary root of zm = 1. If v(z,w) − η ≡ 0 in C2,
we are done. Assume that v(z,w) − η /≡ 0 in C2 for each unitary root η of zm = 1.
Consider the one variable function fb(z) ∶= v(z, b) − 1. We then must have that

(3.3) fb(z) = v(z, b) − 1 = 0

for all z ∈ C; otherwise, the right-hand side of (3.2), restricted to the complex line
w = b, is a nonzero entire function of the variable z,which vanishes at a by the choice
of (a, b). But then the order of the zero a on the right-hand side of (3.2) is higher
than that of a on the le�-hand side of (3.2) noting that vw(a, b) /= 0, which is absurd.

Let η0 /= 1 be a unitary root of zm = 1. (Such an η0 exists sincem ≥ 2.) We claim that
for each zero (α, β) of v(z,w)−η0,wemust have that vz(α, β) = 0. Suppose that there
is a zero (α, β) of v(z,w)−η0 with vz(α, β) /= 0. _en, in the same argument for (3.3)
above,we can deduce that v(α,w)−η0 = 0 for allw ∈ C. In particular, v(α, b)−η0 = 0,
which contradicts (3.3). Using this proved claim, we see that for any β ∈ C, the one-
variable function vβ(z) ∶= v(z, β) − η0 has only multiple zeros. But, vβ(z) does not
assume −η0, since v does not assume 0. _us,we can applyCorollary 2.3 to vβ(z)+η0
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to obtain that vβ(z) is constant in C and thus vz(z, β) = v′β(z) ≡ 0 for any β and any
z in C. _at is, vz ≡ 0 in C2, which implies from (3.2) that vm ≡ 1 in C2.

Case (ii): m = 1. In this case, thenumber η0 in the aboveproof doesnot exist anymore.
Nevertheless, we can make the transformation v = 1

s2 to transform the equation (3.2)
to the equation

szsw = − 1
4
s6eh(1 − s2).

We observe that this equation is of the same form as equation (3.2) with m = 2, and
the “coeõcient” − 1

4 s
6eh of 1− s2 does not aòect the proof in Case (i). _us, the above

same argument yields that s2 ≡ 1, and thus v ≡ 1.
_erefore, in any case, we have that vm ≡ 1 and thus um ≡ 1. _is completes the

proof of the theorem.
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