REPRESENTABLE DIVISIBILITY SEMIGROUPS

by BRUNO BOSBACH

(Received 18th January 1989)

To B. H. Neumann on the occasion of his 80th birthday

By a divisibility semigroup we mean an algebra (S, \cdot, \wedge) satisfying (A1) (S, \cdot) is a semigroup; (A2) (S, \wedge) is a semilattice; (A3) $x(a \wedge b)y = xay \wedge xby$; (A4) $a \le b \Rightarrow \exists x, y : ax = b = ay$.

A divisibility semigroup is called representable if it admits a subdirect decomposition into totally ordered factors.

In this paper various types of representable divisibility semigroups are investigated and characterized, admitting a representation in general or even a special decomposition, like subdirect sums of archimedean factors, for instance.

1980 Mathematics subject classification (1985 Revision): 05.

Introduction

A lattice-ordered algebraic structure is called *representable* if it admits a subdirect decomposition into totally ordered factors of similar type. So, the question of representability is of central interest, and there is an abundance of contributions to this topic (cf. [4]). In particular one finds a dozen of criteria for lattice-ordered groups to be representable (cf. [1, 9, 10]), due to Lorenzen [15], Šik [18], Byrd [6], Fuchs (verbal remark, see [9]), and Conrad [9], none of which however works in the lattice-semigroup case.

As a matter of fact, a criterion for subdirect products of totally ordered factors has been missing for two decades since L. Fuchs stated his Problem 41 in [10], although it had been known for some twenty years (cf. [11]), that the subdirect products of totally ordered factors of a class of lattice-ordered algebras form a variety, see also [12].

Then, in 1984, an answer was given independently in [4] and [17] which even turned out to be of symptomatical character [4], telling that a lattice-ordered algebra is representable if and only if its linearily composed polynomials satisfy:

$$p(a) \land q(b) \le p(b) \lor q(a). \tag{0}$$

The proof has to be done via ideal-congruences, and this might be the reason for the solution being so late. A lattice-ordered group is considered as *l*-group, and not as lattice-g. So congruences are normal subgroups, and nothing else.

In this paper we study divisibility-semigroups, in order to simplify and to replace

condition (0) by further equational and also by structural properties. This will lead to several representation theorems, the most interesting seeming to be that a divisibility-semigroup is representable if and only if it satisfies:

$$eae \wedge faf = (e \wedge f)a(e \wedge f)$$

which was stated for lattice-groups by L. Fuchs (cf. [9]).

0. Preliminary notions

By a divisibility-semigroup we mean an algebra (S, \cdot, \wedge) of type (2,2) satisfying

- (A1) (S, \cdot) is a semigroup.
- (A2) (S, \land) is a semilattice.
- (A3) $x(a \wedge b)y = xay \wedge xby$.
- (A4) $a \le b \Rightarrow \exists x, y: ax = b = ya$.

Divisibility-semigroups are join-closed (with $(a \land b) a' = a \Rightarrow ba' = a \lor b$) and it turns out that the underlying lattice is distributive and that multiplication distributes over meet and join from the right and (by duality) from the left.

A divisibility-monoid is called (right) normal if it satisfies in addition:

$$\forall a, b \exists a', b' : a' \land b' = 1, (a \land b)a' = a, (a \land b)b' = b.$$

In what follows we shall sometimes be concerned with distributive lattice-semigroups, i.e. lattice-semigroups satisfying the distributive laws mentioned above. They are called dld-semigroups in [16].

Let S be a dld-semigroup. $a \in S$ is called positive if it satisfies $as \ge s \le sa$ for all $s \in S$. Obviously the set S^+ of all positive elements of S is closed w.r.t. \cdot , \wedge , and \vee . S itself is called positive if each of its elements is positive, i.e. if $S = S^+$. As usual S^+ is called the cone of S.

In a divisibility-semigroup the elements x, y of (A4) can always be taken from S^+ whence we tacitly shall suppose them to be positive whenever they are involved in calculations.

There is a most important rule of arithmetic.

Lemma 0.1. In a positive dld-semigroup we have:

$$a \wedge bc = a \wedge ac \wedge bc = a \wedge (a \wedge b)c = a \wedge b(a \wedge c).$$

Let S be a dld-semigroup and let ea = a = ae. Then e is called a unit of a. The set of all units of a is denoted by E(a). If S is even a divisibility-semigroup no E(a) is empty and in addition one has:

Lemma 0.2. [2]. Let S be a dld-semigroup. Then each pair a, e with $e \in E(a)$ satisfies

$$a=(e \land a)(e \lor a)=(e \lor a)(e \land a).$$

A divisibility-semigroup need not contain an identity element 1. But, every divisibility-semigroup S admits a canonical smallest divisibility-semigroup extension Σ formed by the set of all (S, \wedge) -endomorphisms of type fh^{-1} with f = id or $f = f_a : x \to ax$ or $f = \overline{f_a} : x \to x \wedge ax$, and $h = \overline{f_b}$ with suitable elements a, b. This leads in Σ to $\alpha = \beta \Leftrightarrow x \cdot \alpha = x \cdot \beta$ ($\forall x \in S^+$). Important elements are the idempotents. More precisely we have:

Proposition 0.3. [2]. In a divisibility-semigroup the idempotents are central and positive.

A semigroup is called 0-cancellative if it satisfies $ax = ay \neq 0 \Rightarrow x = y$ and $xa = ya \neq 0 \Rightarrow x = y$.

Lemma 0.4. A divisibility-semigroup S is 0-cancellative iff it satisfies

$$ae = a \neq 0 \Rightarrow e = 1$$
 and $ea = a \neq 0 \Rightarrow e = 1$,

since
$$ax = ay = a(x \land y) \Rightarrow ax = a(x \land y)x' = a(x \land y)y' = ay$$
.

A most important class of divisibility-semigroups is the class of archimedean divisibility-semigroups.

Definition 0.5. A divisibility-semigroup is called archimedean if it satisfies

$$t^n \le a(\forall n \in \mathbb{N}) \Rightarrow tat \le a$$
.

In order that a divisibility-semigroup be archimedean it suffices that its cone is archimedean. Furthermore a fundamental result tells:

Theorem 0.6 [3]. Archimedean divisibility-semigroups are commutative.

We now turn to properties closely connected with representability, also called the vector property. Here, as an application of (0), we get the criterion:

Proposition 0.7. [4] A lattice-semigroup is representable if and only if it is a dld-semigroup satisfying $xay \land ubv \leq xby \lor uav$ where x, y, u, v are taken from $S \cup \{1\}$.

For a divisibility-semigroup S there is no need for an additional element 1 since there are always enough private units. Furthermore a commutative divisibility-semigroup is always representable. However, this fails to be true for dld-semigroups in general, consult [16], whereas commutative dld-monoids do have the vector property.

Representability depends on the behaviour of certain substructures, the most important being lattice ideals.

Definition 0.8. Let S be a dld-semigroup. A nonempty subset A of S is called an ideal (filter) if it is an ideal (filter) of (S, \land, \lor) . An ideal (filter) A is called irreducible if it cannot be written as intersection of two ideals (filters) different from A. An ideal A is called m-ideal if it is multiplicatively closed. It is called invariant if it satisfies xA = Ax. A filter A is called Rees-filter if it satisfies $S \cdot A$, $A \cdot S \subseteq A$. Finally an ideal is called positive if it contains at least one positive element.

By definition A is an irreducible ideal if S-A is an irreducible filter. Furthermore it is folklore that an ideal (filter) P is irreducible if and only if

$$a \wedge b(a \vee b) \in P \Rightarrow a \in P \text{ or } b \in P$$
.

Proposition 0.9. Let S be a dld-semigroup. There are crucial congruences defined via ideals and filters, respectively.

(I) Let P be an irreducible ideal (filter). Then P generates a congruence via

$$a \equiv b(P) : \Leftrightarrow xay \in P \leftrightarrow xby \in P$$
,

where obviously $\equiv (P)$ is equal to $\equiv (S-P)$. Furthermore S/P is totally ordered if in addition S satisfies (0).

(F) Let R be a Rees-filter. Then R generates a congruence via

$$a \equiv b(R) \Leftrightarrow \exists x \in R : x \land a = x \land b.$$

This implies that in the positive case every $x \in S$ generates a congruence mod x by $a \equiv b(x) \Leftrightarrow x \land a = x \land b$ with $S/\equiv =: S_x$.

(M) Let M be an m-ideal of S^+ . Then M generates a left congruence via

$$a \equiv b(M)$$
: $\Leftrightarrow \exists e, f \in M$: $a \le be$ and $b \le af$.

For the sake of decomposition it is necessary to have enough congruences of a given type, in order to separate each pair a, b, and it is convenient that we may restrict ourselves to pairs a < b in arbitrary lattice-semigroups and even to positive pairs a < b in divisibility-semigroups. Furthermore, with respect to irreducible ideals, we may apply that there are enough regular ideals, i.e. ideals, maximal with respect to not containing a given element a, and that regular ideals are irreducible.

As a further important class of substructures we present:

Definition 0.10. Let S be a divisibility-monoid. By a solid submonoid of S we mean a submonoid A whose cone A^+ is an m-ideal of S^+ and whose elements are exactly all

 ab^{-1} with $a, b \in A^+$, b invertible. A solid submonoid P of S is called a prime monoid of S if it satisfies $A \cap B \subseteq P \Rightarrow A \subseteq P \vee B \subseteq P$ (A, B solid). P is called regular if it is maximal with respect to not containing some given element a.

Obviously S itself is solid and with a family A_i of solid submonoids also its intersection is solid. Hence, every subset M of S generates a smallest solid submonoid C(M), which in the case of a positive M turns out to be equal to the set of all $x \le m_1 \cdot \ldots \cdot m_n$ $(m_i \in M)$. Furthermore in analogy to the *l*-group case we have the propositions:

Proposition 0.11. Let S be a divisibility-monoid. Then the set of all solid submonoids forms a distributive lattice and in addition complex-multiplication distributes over meet and join. (For an idea consult [1]).

Proposition 0.12. Let S be a divisibility-monoid. Then every direct decomposition of S^+ induces a direct decomposition of the whole in such a way that the direct factors of S are the solid submonoids generated by the direct factors of S^+ . (For an idea consult [4]).

In some theorems of this paper we are concerned with direct factors. For this reason we remark $u \perp v \Leftrightarrow u \land v = 1$.

Definition 0.13. Let S be a divisibility-monoid, and let $A \subseteq S$. Then the polar A^{\perp} of A is defined by

$$A^{\perp} := \{x \mid \forall a \in A : (1 \vee a)(1 \wedge a)^{-1} \perp (1 \vee x)(1 \wedge x)^{-1} \}.$$

Furthermore the *bipolar* of A is defined by $A^{\perp\perp} := (A^{\perp})^{\perp}$, and the polar of a singleton $\{a\}$ is also written as a^{\perp} , (compare [4]).

Proposition 0.14. Let S be a divisibility-monoid. Then every polar is solid and moreover a solid submonoid A is a direct factor if and only if $A \cdot A^{\perp} = S$, and in this case A is equal to $A^{\perp \perp}$.

Finally we remark on some results which are proved straightforwardly—see also [1].

Lemma 0.15. Let S be a normal divisibility-monoid. $P \subseteq S$ is a prime submonoid iff P is solid and $a \land b = 1 \Rightarrow a \in P$ on $b \in P$.

Lemma 0.16. Let S be a normal divisibility-monoid. Then each prime submonoid of S contains a minimal prime submonoid.

Lemma 0.17. Let S be a normal divisibility-monoid. Then each minimal prime submonoid M is canonically associated with an ultrafilter of (S^+, \wedge, \vee) by $M \rightarrow S^+ \backslash M$ which implies that each minimal prime submonoid M of S is of type $M = \{x^{\perp} \mid x \notin M\}$.

Lemma 0.18. Let S be a normal divisibility-monoid. Then each regular submonoid is a prime submonoid.

1. Subdirectly irreducible divisibility semigroups

There is not too much known about subdirectly irreducible divisibility-semigroups in general. In the finite case however the situation is a bit better.

We start with a description of the subdirectly irreducible homomorphic images of arbitrary distributive lattice ordered semigroups.

Proposition 1.1. If S is a dld-semigroup and S/Θ is subdirectly irreducible, then Θ is generated by an irreducible ideal (filter).

Proof. Let a < b be a critical pair. We choose an \bar{a} containing, \bar{b} avoiding regular ideal \bar{M} of $\bar{S} := S/\Theta$ with inverse image M in S. Then \bar{M} is irreducible in \bar{S} whence M is irreducible in S.

Furthermore

$$\bar{x} \equiv \bar{v} \Leftrightarrow \bar{s}\bar{x}\bar{t} \in \bar{M} \Leftrightarrow \bar{s}\bar{v}\bar{t} \in \bar{M}(s, t \in S^1)$$

provides a congruence relation on \overline{S} , which according to the subdirect irreducibility of \overline{S} must be the equality relation.

On the other hand we have

$$\bar{s}\bar{x}\bar{t} \in \bar{M} \Leftrightarrow \bar{s}\bar{y}\bar{t} \in \bar{M} \Leftrightarrow sxt \in M \Leftrightarrow syt \in M \ (s,t \in S^1)$$

which yields

$$x\Theta y \Leftrightarrow x \equiv y(M)$$
.

The next result concerns idempotents in subdirectly irreducible divisibility-semigroups.

Proposition 1.2. Let S be a subdirectly irreducible divisibility-semigroup. Then S contains at most two idempotents.

Proof. Let S be subdirectly irreducible and let $u \in S$ be idempotent. We define

$$a\rho b \Leftrightarrow \exists s \in S: a \land su = b \land su.$$

and

$$a\sigma b \Leftrightarrow au = bu$$
.

It is easily seen that both definitions provide a congruence, and furthermore we get

$$au = by \Rightarrow su \lor a = u(su \lor a)$$

= $u(su \lor b) = su \lor b$.

But from this follows:

$$\frac{a\rho b}{\text{and } a\sigma b} \Rightarrow \frac{su \wedge a = su \wedge b}{\text{and } su \vee a = su \vee b} \Rightarrow a = b.$$

We now turn to the positive case, proving as a first general result:

Proposition 1.3. Let S be a positive subdirectly irreducible dld-semigroup. Then in S there exists a maximum 0 and a unique hyper-atom (co-atom) a which together form a critical pair.

Proof. Suppose that a < b is critical. Then x < b and $x \not\leq a$ implies $x \land a < x = x \land b$ whence a and b would be separated in S_x . Therefore we have b = 0 and $x < b \Rightarrow x \leq a$. \square

Applying 1.3 to the divisibility case we obtain in particular:

Proposition 1.4. Let S be a positive subdirectly irreducible divisibility-semigroup. Then S is a normal divisibility-monoid and hence totally ordered or containing an orthogonal pair u^*, v^* with $1 \neq u^* \perp v^* \neq 1$. Verifying these properties it will turn out furthermore that the subset L of all left cancellative elements and the subset R of all right cancellative elements both form an irreducible m-ideal.

Proof. We start by proving the second assertion. We see immediately that the right and the left units of the hyper-atom a form irreducible m-ideals because of ax = a or ax = 0. Furthermore we see that e is a right unit of a iff e is right cancellative, since each right cancellative c satisfies $ac \neq 0c$ and since each right unit e of a produces a congruence separating a and a0, namely a1, a2 a3.

Hence L and R form irreducible m-ideals and in addition every unit e of a is cancellative whence S is a monoid.

Suppose now u, $v \le a$ and $(u \land v)u' = u$, $(u \land v)v' = v$, $u^*(u' \land v') = u'$ and $v^*(u' \land v') = v'$. Then $u^* \land v^* = 1$ since $(u^* \land v^*)(u' \land v') = u' \land v'$ and $(u \land v)u^* = (u \land v)u^*(u' \land v') = u$ and $(u \land v)v^* = v$. Hence $u^* \land v^* \in R \cap L$ whence S is normal on the grounds of right-left-duality.

Definition 1.5. An ideal is called *co-regular* if it is a complement of a regular filter.

Obviously a co-regular ideal is irreducible and minimal within the set of all irreducible ideals containing a fixed element a.

Proposition 1.6. For a positive dld-semigroup the subdirectly irreducible homomorphic images correspond uniquely with the co-regular ideals; and thereby with the regular filters.

Proof. Let J be co-regular with respect to a and let J not contain b. Then \bar{a} is the uniquely determined hyper-atom in $\bar{S} := S/J$, since otherwise $S \setminus J$ would not be maximal w.r.t. not containing a. Consider now a subdirectly irreducible homomorphic image \bar{S} with $\bar{a} \neq \bar{0}$. Here $\{\bar{0}\}$ is the image of $\{\bar{0}\}$ and both $\{\bar{0}\}$ and $\{\bar{0}\}$ are regular filters with respect to the corresponding hyper-atoms. This means $\bar{S} \cong S/J \cong \bar{S}$. Hence S/J is subdirectly irreducible.

The rest follows by 1.1. since the inverse image of a filter regular with respect to \bar{a} is a regular filter with respect to a.

Proposition 1.7. Let S be a commutative subdirectly irreducible divisibility-semigroup. Then S is a totally ordered, 0-cancellative divisibility-monoid.

Proof. First of all S is totally ordered (cf. the remark following 0.7). Let now a < b be a positive critical pair. Then $S/E(a) \cong S$, whence E(a) is a singleton, say $\{e\}$. We consider $x \le a$ and xu = x. Then $u \in E(a)$, i.e. u = e. Therefore S is a monoid. It remains to verify that $a \le y = yu \ne 0$ implies u = e. But this follows since the set $F := \{x \mid E(x) \ne E(a)\}$ is empty or forms a Rees-filter with $S/F \cong S$.

2. Divisibility semigroups

In this paragraph we give some structure theorems on representation.

Theorem 2.1. For a divisibility-semigroup S the following are equivalent:

- (i) S is representable.
- (ii) $xay \wedge ubv \leq xby \vee uav$.
- (iii) S^+ is representable.
- (iv) Σ^+ is representable.
- (v) $ax \wedge vb \leq av \vee xb$.
- (vi) eae \wedge f a f = (e \wedge f)a(e \wedge f).

Proof. (i) \Leftrightarrow (ii) is valid on the grounds of 0.7.

(ii)⇔(iii) is evident in one direction.

Assume now (iii) to be true and S to be subdirectly irreducible. We consider

$$xay \wedge ubv, xby \vee uav.$$

Obviously (ii) is true, iff for suitable elements a'', b''

$$xa''(a \wedge b)y \wedge ub''(a \wedge b)v \leq xb''(a \wedge b)y \vee ua''(a \wedge b)v.$$

Therefore by 1.4, (ii) is already valid if it is valid for all orthogonal pairs a, b. Furthermore, choosing suitable elements x', u',

$$xay \wedge ubv \leq xby \vee uav$$

can be written as

$$(x \wedge u)x'ay \wedge (x \wedge u)u'bv \leq (x \wedge u)x'by \vee (x \wedge u)u'av$$

Hence (ii) is already valid if it is valid for all orthogonal pairs $a \perp b$, $x \perp u$ from which it follows that (ii) is already valid if it is valid for all orthogonal pairs $x \perp u$, $a \perp b$, $y \perp v$.

But this means a fortiori that (ii) holds in all of S if it satisfied in S^+ .

(iii) \Leftrightarrow (iv) is an immediate consequence of the fact that α and β of Σ are equal if and only if $x \cdot \alpha = x \cdot \beta$ for all $x \in S^+$. To verify this we apply the more general lemma which tells that any identity holding in S^+ is also valid in Σ^+ and which follows from the implication

$$xe = x \Rightarrow x \cdot f(\alpha_1, \dots, \alpha_n) = x \cdot f(\alpha_1 e, \dots, \alpha_n e).$$

We continue by considering (ii), (v), (vi).

- (ii)⇒(v) is evident.
- (v)⇒(vi) follows from

$$eae \land faf \leq eaf \land eaf = eaf$$
 and $faf \land eae \leq fae \land fae = fae$

since

$$(e \wedge f)a(e \wedge f) = eae \wedge eaf \wedge fae \wedge faf.$$

 $(vi)\Rightarrow(ii)$. First of all it suffices to consider the positive case. Hence we may start from a positive subdirectly irreducible S with hyper-atom a.

This leads to $L \subseteq R$ or $R \subseteq L$ and thereby to C = L or C = R. To see this assume $L \nsubseteq R \nsubseteq L$. Then there exist an $e \in L \setminus R$ and an $f \in R \setminus L$. But this means

$$ea = a = af$$
 and $ae = 0 = fa$

which leads to the contradiction

$$a = (e \wedge f)a(e \wedge f) = eae \wedge faf = 0.$$

So in any case C turns out to be an irreducible m-ideal. In particular this means that $p \perp q$ implies $p \in C$ or $q \in C$.

On the other hand, by the proof of (iii) \Rightarrow (i) we may confine ourselves to orthogonal pairs x, u; a, b; y, v. But this means that we may start from the special situation

$$x \perp u$$
, $a \perp b$, $y \perp v$ and $a \in C$.

To gain a further reduction we prove that we may assume in addition

$$(x \wedge a) \wedge y = 1.$$

This can be shown as follows:

$$x \wedge a \wedge y \wedge ybv = 1$$
, by (0.1.).

Suppose now $(x \wedge a \wedge y)x^* = x$ and $(x \wedge a \wedge y)a^* = a$ and $(x \wedge a \wedge y)y^* = y$. We get $x^* \wedge a^* \wedge y^* = 1$ by $(x \wedge a \wedge y)(x^* \wedge a^* \wedge y^*) = (x \wedge a \wedge y) \in C$ (recall $a \in C$), and moreover we have

$$x^*a^*y^* \wedge ubv = xay \wedge ubv$$

according to 0.1. (Observe $x \wedge a \wedge y \perp ubv$). Hence

$$x^*a^*y^* \wedge ubv \leq x^*by^* \vee ua^*v$$

$$\Rightarrow xay \land ubv = x^*a^*y^* \land ubv$$

$$\leq x^*by^* \lor ua^*v \leq xby \lor uav.$$

Summarizing, we have obtained that we may restrict ourselves to the case

$$x \perp u$$
, $a \perp b$, $y \perp v$, $a \wedge x \perp y$ and $a \in C$.

So by symmetry it is enough to consider the three cases

(1)
$$x, y \in C$$
 and (2) $x, v \in C$ and (3) $u, v \in C$.

Before treating these cases we remark as follows. Let d, g be orthogonal. Then

$$c \in C \Rightarrow cd \land gc \leq dcd \land gcg = c \Rightarrow c(d \land c * gc) = c \Rightarrow d \perp c * gc.$$

Observe that c*gc and cg:c are uniquely determined because c is cancellative. This leads, by duality, to the implication

$$c \in C \Rightarrow (d \perp g \Rightarrow d \perp c * gc \text{ and } d \perp cg:c)$$
 (L)

which means: if d and g are orthogonal and c is cancellative then gc is equal to cs for some $s \perp d$ and cg is equal to tc with some $t \perp d$.

Now we are in the position to treat the cases (1) through (3).

Case (1). Since $x, y \in C$ we get by (v) and (L):

$$xay \wedge ubv = a^*xy \wedge uvb^*$$
 (with $a^* \perp b^*$)
 $\leq a^*(xy \vee uv)a^* \wedge b^*(xy \vee uv)b^*$
 $= xy \vee uv$.

Case (2).

$$xay \wedge ubv = xay \wedge (u \wedge xay)b(v \wedge xay) \quad (0.1.)$$

$$= xya^* \wedge (u \wedge xay)(v \wedge xay)b^* \quad (\text{with } a^* \perp b^*)$$

$$\leq (xy \vee uv)a^* \wedge (xy \vee uv)b^*$$

$$= xy \vee uv.$$

Case (3). First of all (v) implies $a^2 \wedge x^2 = a \cdot 1 \cdot a \wedge x \cdot 1 \cdot x = (a \wedge x)^2$, which leads by cancellation to $(x * a)(a:x) \wedge (a*x)(x:a) = 1$. Hence a*x and a:x commute. Therefore we can calculate:

$$xay \wedge ubv = (x \wedge a)(a*x)(a*x)(a \wedge x)y \wedge ubv$$

$$= (x \wedge a)(a:x)(a*x)y(x \wedge a) \wedge uvb^* (x \wedge a \perp y, b^* \perp a)$$

$$\leq (x \wedge a)(a:x)(xy \vee uv)(x \wedge a)(a:x) \wedge b^*(xy \vee uv)b^*$$

$$= xy \vee uv,$$

thus completing Case (3) and finishing the proof of 2.1.

In the preceding theorem representable divisibility-semigroups were characterized by equations. In a further theorem we shall describe representable divisibility-semigroups by special substructure-properties which can be done adequately by studying the cone or more generally by considering the positive case of a divisibility-monoid, since in the positive case S is turned to a divisibility-monoid by merely adjoining an identity 1.

Theorem 2.2. For a positive divisibility-monoid S the following are equivalent:

- (i) S is representable.
- (ii) If J is a co-regular ideal then its kernel

$$\ker(J) := \{x \mid s \cdot t \in J \Rightarrow s \cdot x \cdot t \in J\}$$

is irreducible.

- (iii) If J is a co-regular ideal the set of all m-ideals between ker (J) and J forms a chain under inclusion.
- (iv) If J is a co-regular ideal and $x \in S$ then the subsets

$$X^{\perp} := \{ y \mid x \land y \in \ker(J) \}$$

and

$$X^{\perp\perp} := \{ z \mid \forall y \in X^{\perp} : y \land z \in \ker(J) \}$$

satisfy

$$X^{\perp} \cup X^{\perp \perp} = S$$
.

(v) If J is a co-regular ideal then the subsets X^{\perp} and $X^{\perp \perp}$ satisfy

$$X^{\perp} \cdot X^{\perp \perp} = S$$
.

Proof. (i) \Rightarrow (ii). If S is representable then S/J is totally ordered and thereby $\overline{1}$ is \wedge -irreducible. But ker (J) is the inverse image of $\overline{1}$. So ker (J) is irreducible, too.

(ii) \Rightarrow (i). If ker(J) is irreducible then $\overline{1}$ in S/J is \wedge -irreducible. Hence S/J is totally ordered on the grounds of 1.4.

(i) \Rightarrow (iii). Let J be a co-regular ideal. Then S/J is subdirectly irreducible and hence normal by 1.4.

Consider now two *m*-ideals A and B between $\ker(J)$ and J with $a \in A \setminus B$, $b \in B$. Since S/J is totally ordered $\ker(J)$ is irreducible. So, choosing orthogonal elements a', b' with $(a \wedge b)a' = a$ and $(a \wedge b)b' = b$ we get $a' \wedge b' \in \ker(J)$ which implies $b' \in \ker(J)$ and thereby $(a \wedge b)b' = b \in A \cap B$, whence B is contained in A.

(iii)⇒(i). On the grounds of (iii) the kernels of co-regular ideals are irreducible. Hence, all we have to show is that there are enough co-regular ideals. But this is evident since there are enough regular filters.

(i) \Rightarrow (iv). Let S be representable and let J be a co-regular ideal. Then $S/J =: \bar{S}$ is totally ordered and $\bar{x}^{\perp} \cup \bar{x}^{\perp \perp} = \bar{S}$ which yields condition (iv).

(iv) \Rightarrow (i). Let \overline{S} be as above. Then the hyper-atom \overline{a} belongs to \overline{x}^{\perp} or to $\overline{x}^{\perp \perp}$ for each $\overline{x} \in \overline{S}$. But this means $\overline{x} = \overline{1}$ or $\overline{x}^{\perp} = \{1\}$. Consequently there cannot exist an orthogonal pair in \overline{S} whence \overline{S} is totally ordered. Therefore condition (i) holds because S has enough co-regular ideals.

(i) \Rightarrow (v). Conclude similarly to (i) \Rightarrow (iv).

 $(v) \Rightarrow (i)$. Assume J to be a co-regular ideal of S and $S/J = :\overline{S}$ not to be totally ordered. Then by (v) the hyper-atom \overline{a} of \overline{S} is a product of an orthogonal pair $\overline{x}, \overline{y}$ which leads to $\overline{x}^2 \le \overline{a}, \overline{y}^2 \le \overline{a}$ and thereby to the contradiction

$$\bar{a} = \bar{x} \cdot \bar{y} = \bar{x} \lor \bar{y} = \bar{x}^2 \lor \bar{y}^2 = \bar{x}^2 \bar{y}^2 = \bar{a}^2 = \bar{0}.$$

This completes the final part and thereby the whole of the proof.

We continue our investigation by studying special representable divisibilitysemigroups. To this end we give

Definition 2.3. A divisibility-semigroup S is called *real* if it is embeddable in $\mathbf{R}^{\cdot} := (\mathbf{R}^{\infty}, +, \min)$ or $\mathbf{E} := \mathbf{R}^{\geq 0} / \{x \mid x \geq 1\}$ or $\mathbf{E}^{\cdot} := \mathbf{R}^{\geq 0} / \{x \mid x > 1\}$.

As is easily seen 1 is a maximum of E and a hyper-atom of E.

Definition 2.4. Let S be a divisibility-semigroup and J an ideal of S. J is called *really archimedean* if it satisfies the implication:

$$u \cdot t^n \cdot v \in J(\forall n \in \mathbb{N})$$
 and $a \cdot b \in J \Rightarrow a \cdot t \cdot b \in J$.

Let S be as above and let F be a filter. F is called really *primary* if it satisfies:

$$a \cdot t \cdot b \in F \Rightarrow a \cdot b \in F \text{ or } u \cdot t^n \cdot v \in F(\exists u, v \in S, n \in \mathbb{N}).$$

Obviously an irreducible ideal is really archimedean iff its complement S-J is a really primary filter.

Theorem 2.5. For a divisibility-semigroup S the following are equivalent:

- (i) S is a subdirect product of real divisibility-semigroups.
- (ii) S is a subdirect product of totally ordered archimedean divisibility-semigroups.
- (iii) Every principal ideal is the intersection of a family of really archimedean irreducible ideals.
- (iv) Every principle filter is the intersection of a family of really primary filtres.

Proof. (i)⇒(ii) is evident.

- (ii) \Rightarrow (i). Let \overline{S} be totally ordered and archimedean. Then it is easily checked that every homomorphic image of \overline{S} is totally ordered and archimedean, too. So \overline{S} can be decomposed into 0-cancellative totally ordered archimedean divisibility-semigroups, i.e. according to Hölder [13] and Clifford [7] into subsemigroups of R and E. Observe that subdirectly irreducible positive components have a hyper-atom.
- (i) or (ii) \Rightarrow (iii) and (iv). Let S be a subdirect product of real divisibility-semigroups. Then for every pair a < b there exists an index i with i(a) < i(b), and the ideal $P_i := \{x \mid i(x) \le i(a)\}$ is irreducible and really archimedean. Similarly we see that the filter $F_i := \{x \mid i(x) \ge i(b)\}$ is irreducible and really primary. But this means that there are enough ideals and enough filters to verify (iii) and (iv).
 - (iii)⇔(iv) is valid by Definition 2.4.
- (iii) or (iv) \Rightarrow (i) and (ii). We start from (iii). Then S is archimedean and hence commutative. Indeed, $t \in S^+$ and $t^n \leq a$ ($\forall n \in \mathbb{N}$) and a < at would imply the existence of a really archimedean ideal P with $a \in P$ and (thereby) $t^n \in P$ ($\forall n \in \mathbb{N}$), but $at \notin P$.

Let now P be an irreducible really archimedean ideal of S and suppose $\bar{t}^n \leq \bar{c}(\forall n \in \mathbb{N})$ in $\bar{S} := S/P$. Then we get

$$(c \cdot s \in P \Rightarrow t^n \cdot s \in P(\forall n \in \mathbb{N})) \Rightarrow (c \cdot s \in P \Rightarrow ct \cdot s \in P)$$

which means $\bar{c} \cdot \bar{t} = \bar{c}$. Thus we get (iii) \Rightarrow (ii) whence (iii) or (iv) \Rightarrow (i) and (ii).

3. Divisibility monoids

Up till now we have considered divisibility-semigroups in general. Henceforth we shall consider divisibility-monoids.

This will enable us to apply notions, well-known from lattice-group theory, due to pioneers like Jaffard and Conrad (cf. [14] and [8]), and well discussed above all by Bigard, Keimel and Wolfenstein in [1].

Let G be a lattice-group. Recall that a solid submonoid V of G is called a value of a if V is maximal with respect to not containing a. The set of all values of a is denoted by val(a). G is called *finite-valued* if each val(a) $(a \in G)$ is finite.

G is called ortho-finite if each bounded orthogonal subset $\{a_i | i \in I\}$ of $G(a_i = a_i \lor a_i \land a_i = 1)$ is finite.

G is called semi-projectable if it satisfies $(a \wedge b)^{\perp} = a^{\perp} \vee b^{\perp}$ $(\forall a, b \in G)$. G is called projectable if it satisfies $G = a^{\perp} \times a^{\perp \perp}$ $(\forall a \in G)$. G is called strongly projectable if it satisfies $G = C(a) \times C(a)^{\perp} (\forall a \in G)$. Observe: strongly projectable implies $C(a) = a^{\perp \perp}$.

Obviously each of these notions is based merely on the divisibility-monoid language. Hence we may adopt them once an identity is present.

Theorem 3.1. For a divisibility-monoid S the following are equivalent:

- (i) S is a direct sum of totally ordered divisibility-monoids.
- (ii) S is normal, finite-valued, and semi-projectable.
- (iii) S is ortho-finite and projectable.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii). First of all each prime submonoid contains exactly one minimal prime submonoid. To see this, assume P to be prime and A, B to be minimal prime and contained in P. Then there are elements $a \in A \setminus B$, $b \in B \setminus A$ which yield an orthogonal pair $a' \in A \setminus B$, $b' \in B \setminus A$ such that $a'^{\perp} \subseteq B$ and $b'^{\perp} \subseteq A$. But this would lead to

$$S = (a' \wedge b')^{\perp} = a'^{\perp} \vee b'^{\perp} = P.$$

So we get next that S is ortho-finite since $1 \le a_i \le a$ ($i \in I$) implies: I is finite or there exists at least one value M containing a_j^{\perp} and a_k^{\perp} ($j \ne k$), a contradiction which is seen as above.

Now we show that any regular $M \in \text{val}(a)$ is a unique value with respect to some c. To this end we start from the family $\{M_i | i \in I\}$ of all minimal prime submonoids of S,

not containing a. This set is finite since each M_i is uniquely associated with some $V_i \in \text{val}(a)$. So we have $\{M_i \mid i \in I\} = \{M_0, M_1, \dots, M_n\}$ with $M_0 \subseteq M$ and $M_i \nsubseteq M$ ($1 \le i \le n$). But this leads to some $a_i \in M_i \setminus M$ for each $i \in I$ whence M turns out to be the unique value of $c := a \land a_1 \land \dots \land a_n$.

Suppose finally $S \neq a^{\perp} \times a^{\perp \perp}$. Then $a^{\perp} \times a^{\perp \perp}$ is contained in some M with $\{M\} = \operatorname{val}(c)$, and since $a^{\perp \perp}$ is equal to $\bigcap h^{\perp} (h \in a^{\perp})$ there exists at least one h^{\perp} not containing c and hence contained in M. But this yields a contradiction, since by $h^{\perp} \supseteq a^{\perp \perp}$ we get $h \in h^{\perp \perp} \subseteq a^{\perp}$ which implies

$$S \neq M \supseteq a^{\perp} \lor h^{\perp} = (a \land h)^{\perp} = S.$$

So (ii)⇒(iii).

(iii) \Rightarrow (i). Suppose $a \in S^+$ and assume $a^{\perp \perp}$ not to be totally ordered. Then there exists an x in $a^{\perp \perp}$ with $\{1\} \neq x^{\perp \perp} \subseteq a^{\perp \perp}$, but $x^{\perp \perp} \neq a^{\perp \perp}$. This leads to

$$a^{\perp \perp} = x^{\perp \perp} \cdot (x^{\perp} \cap a^{\perp \perp})$$
 by (0.11)

and thereby to $a = a_1 \cdot a_2$ with $a_1 \in x^{\perp \perp}$ and $a_2 \in x^{\perp} \cap a^{\perp \perp}$.

We know already $a_1 \perp a_2$. Now we show $a_1 \neq a \neq a_2$. To this end suppose first $a_1 = a$. This implies $x^{\perp \perp} = a^{\perp \perp}$, a contradiction. Suppose next $a_2 = a$. This leads to the implication: $a \in x^{\perp} \Rightarrow a^{\perp} \supseteq x^{\perp \perp} \Rightarrow x \in a^{\perp} \cap a^{\perp \perp}$, once more a contradiction. Therefore the decomposition of a is proper. So, continuing the decomposition procedure, after finitely many steps we arrive at $a = a_1 \cdot a_2 \cdot \ldots \cdot a_n$ with pairwise orthogonal elements a_i , generating totally ordered bipolars $a_i^{\perp \perp}$. Consider now two totally ordered bipolars $x^{\perp \perp} \neq y^{\perp \perp}$. Then $z \in x^{\perp \perp} \cap y^{\perp \perp} \Rightarrow z^{\perp \perp} \subseteq x^{\perp \perp} \cap y^{\perp \perp} \Rightarrow z^{\perp \perp} = \{1\}$, whence z = 1. Therefore the family of all totally ordered $x^{\perp \perp}$ can be taken to realize a decomposition of x^{\perp} in the sense of (i).

For the sake of a further representation theorem we give next:

Definition 3.2. A divisibility-monoid is called *strongly archimedean* if it satisfies:

$$1 < t \Rightarrow \exists n \in \mathbb{N} : t^n \ge a$$
.

Strongly archimedean divisibility-semigroups are totally ordered [5], and according to Hölder's and Clifford's results a (totally ordered) divisibility-monoid is strongly archimedean iff it is embeddable in **R** or **E** or **E**'.

Now we are ready to present

Theorem 3.3. For a divisibility-monoid S the following are equivalent:

- (i) S is a direct sum of strongly archimedean totally ordered divisibility-monoids.
- (ii) The lattice of solid submonoids of S is boolean.

(iii) S is orthofinite and strongly projectable.

Proof. (i)⇒(ii) is nearly obvious.

- (ii) \Rightarrow (iii). If the lattice of solid submonoids is boolean then every solid submonoid is a direct factor. But furthermore S is also ortho-finite, since C(M) cannot be a direct factor if M is an infinite set of pairwise orthogonal elements with $a \in S$ as an upper bound.
- (iii) \Rightarrow (i). We could apply 3.1. but we wish to give some deeper information. Since every C(x) is a direct factor, S satisfies $a, t \in S^+ \Rightarrow \exists n \in \mathbb{N}: a \land t^n = a \land t^{n+1}$.

Furthermore S is normal. To see this we start from $(a \wedge b)a' = a$ and $(a \wedge b)b' = b$ with $a', b' \in S^+$. It follows $b' = b'_1b'_2$ with $b'_1 \in C(a')$ and $b'_2 \in C(a')^{\perp}$. This provides $b'_1 \leq a'^n$ for some suitable $n \in \mathbb{N}$ which leads to $b'_1 = b'_{11} \cdot b'_{12} \cdot \ldots \cdot b'_{1n}$ with $b'_{1i} \leq a' \wedge b'$ $(1 \leq i \leq n)$. Thus we get $(a \wedge b)b'_1 = a \wedge b$ and thereby $(a \wedge b)a' = a$ and $(a \wedge b)b'_2 = b$ with $a' \perp b'_2$.

Suppose now $1 < x, y < a^n$ and $x \le y \le x$. Then there are orthogonal elements $x', y' \notin \{1\}$ whence C(a) has a direct decomposition, say $C(x') \times D$. This leads to $C(a) = C(a_1) \times C(a_2)$ with $a_1 \perp a_2$, and, by continuing the procedure, after finitely many steps to a direct decomposition $C(a) = \times C(x_i)$ where the direct factors $C(x_i)$ are directly indecomposable and hence totally ordered. Recall now that the lattice of all solid submonoids is distributive. This yields uniqueness of $\times C(x_i)$ whence there are only finitely many totally ordered C(x) with $a \land x \ne 1$.

So, taking all totally ordered C(x) we get a family of strongly archimedean components in the sense of (i).

4. Hypernormal divisibility monoids

We continue our studies by considering a class of special normal divisibility-monoids.

Definition 4.1. A divisibility-monoid is called *hypernormal* if it satisfies:

$$x, y \in S^+$$
 and $ax \land ay = a \Rightarrow \exists z \perp x : ay = az$
 $x, y \in S^+$ and $xa \land ya = a \Rightarrow \exists z \perp x : ya = za$.

Lemma 4.2. A divisibility-monoid is already hypernormal iff it satisfies:

$$e \in S^+$$
 and $ae = a \le b \Rightarrow \exists x \perp e : b = ax$
 $e \in S^+$ and $ea = a \le b \Rightarrow \exists x \perp e : b = xa$.

Proof. Assume $ax \wedge ay = a$ and $(x \wedge y)y' = y$ $(y' \in S^+)$. Then y' can be replaced by an element $y^* \perp x \wedge y$. Hence $z := y^* \wedge y$ satisfies az = ay $(z \perp x)$.

The hypernormal divisibility-monoid might be something like an optimal common abstraction of boolean rings (distributive lattices with boolean intervals) and lattice-

П

groups. To have a natural example not boolean and not group-like, consider a Bezoutring R with identity. Here one has

$$ax \mid a \Rightarrow a = axy$$
 and $az = a(xy - 1 + xyz)$

whence the principal ideal semigroup of R is a hypernormal divisibility-monoid.

Lemma 4.3. Let S be a hypernormal divisibility-monoid and let J be an invariant m-ideal of S. Then J generates a congruence and S/J is hypernormal, too.

Proof. J generates a congruence. Assume now $\bar{a}\bar{u} = \bar{a} \le \bar{b}$ and $b = a \lor b$. Then $au \le ae$ whence $a(u \land e) = a(u \land e)u'$ ($u' \in S^+$) and thereby

$$b = a(u \land e)x$$

$$= a(u \land e)y'(y' \perp u').$$

Hence we get

$$\overline{b} = \overline{a}((u \wedge e)y') \ \overline{((u \wedge e)y')} = \overline{y} \perp \overline{u}.$$

The rest follows by duality.

Obviously 4.3. implies that S/J is 0-cancellative if it is totally ordered. Now we are in the position to prove:

Theorem 4.4. For a positive hypernormal divisibility-monoid S the following are equivalent:

- (i) S is representable.
- (ii) $xa \wedge bx \leq x(a \wedge b) \vee (a \wedge b)x$.
- (iii) $a \wedge b = 1 \Rightarrow xa \wedge bx = x$.
- (iv) $xa^{\perp} = a^{\perp}x$.
- (v) $a, b \in S$ and $xa \land bx = x \Rightarrow \exists c, d \in S$: $c \perp a$ and cx = bx $d \perp b$ and xd = xa.
- (vi) Each minimal prime submonoid of S is invariant (cf. [6]).
- (vii) Each regular invariant m-ideal J of S is prime (cf. [9]).

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) is obvious. (iii) \Rightarrow (iv). Suppose $a \perp b$. It follows

$$xa \wedge bx = x = xa \wedge xc = x(a \wedge c)$$
.

This implies $xc = xc^*$ with $c^* \perp c \wedge a$ whence $z = c^* \wedge c$ satisfies $z \perp a$ and bx = xz. Thus we get $a^{\perp}x \subseteq xa^{\perp}$ and, by duality, $xa^{\perp} \subseteq a^{\perp}x$.

(iv) \Leftrightarrow (v). Suppose $xa \wedge bx = x$. One gets bx = xu and thereby

$$xa \wedge bx = x \Rightarrow xa \wedge xu = x$$

 $\Rightarrow xu = xu^*(u^* \perp a)$
 $\Rightarrow bx = xu^* = cx (c \perp a).$

So (iv) implies (v).

Let now (v) be valid and suppose $a \perp b$ and xb = dx. Then we get $xa \wedge dx = x$, whence by (v) there exists an element c such that $a \perp c$ and cx = dx = xb. This means $xa^{\perp} \subseteq a^{\perp}x$, and, by duality, $a^{\perp}x \subseteq xa^{\perp}$.

(iv)⇔(vi). Since each minimal prime submonoid is a union of polars (0.17.) (iv) implies (vi).

On the other hand, if (vi) is valid, then each m-ideal of S separating a and b contains a minimal prime submonoid of S, invariant by (vi). Hence (vi) implies (i) and thereby (iv).

(iv) \Leftrightarrow (vii). Observe that for invariant *m*-ideals *J* condition (iv) is carried over from *S* to S/J. To see this, assume $(a \land b)a' = a$, $(a \land b)b' = b$, $a' \perp b'$, and $\bar{a} \perp \bar{b}$. One gets

$$a \wedge b \in J \Rightarrow xb = x(a \wedge b)b'$$

= $cx(a \wedge b)(c \perp a')$

and thereby $\bar{x}\bar{b} = \bar{c}\bar{x}(\bar{a} \perp \bar{c})$.

But this means that $\bar{x} \perp \bar{y} \Leftrightarrow \bar{x} = \bar{1}$ or $\bar{y} = \bar{1}$ and consequently that J is prime. Thus $(iv) \Rightarrow (vii)$.

On the other hand we have $(vii) \Rightarrow (i) \Rightarrow (iv)$.

The preceding theorem shows how strong hypernormal divisibility-monoids seem to be. This is confirmed also by the next result, a modification of [1, 14.1.2]:

Theorem 4.5. For a hypernormal divisibility-monoid S the following are equivalent:

- (i) Each $a \in S$ satisfies $S = C(a) \times C(a)^{\perp}$. (Actually any strongly projectable divisibility-semigroup is hypernormal, see above).
- (ii) S is a subdirect product $\prod S(i \in I)$ of strongly archimedean factors, satisfying: $\forall f$, $g \in S^+ \exists n \in \mathbb{N}$: $f(x)^n \ge g(x)$ ($\forall x \in \text{supp}(f)$).
- (iii) $\forall a, t \in S^+ \exists n \in \mathbb{N} : a \wedge t^n = a \wedge t^{n+1}$.
- (iv) Each prime m-ideal is minimal.

Proof. (i) \Rightarrow (ii). By (i) we have (iii), whence S is commutative. Therefore it suffices to

prove that the factors $\bar{S} = S/P$ are strongly archimedean. But this follows from $\bar{t}^n < \bar{a}(\forall n \in \mathbb{N}) \Rightarrow \exists m : (\bar{t}^m)^2 = \bar{t}^m$ since S/P is 0-cancellative for each prime submonoid P.

(ii)⇒(iii) is evident.

(iii) \Rightarrow (iv). Each prime submonoid P contains a minimal prime submonoid M. Suppose $M \neq P$. Then there exists an $x \in S^+ \setminus P$ satisfying in $S/M =: \overline{S}$ for every arbitrary $y \in P^+$

$$\bar{x} > \bar{y}^n \ge \bar{1} (\forall n \in \mathbb{N}).$$

But this leads to $\bar{y} = \bar{1}$ as above, which means $y \in M$, and thereby P = M.

(iv) \Rightarrow (i). Suppose $C(a) \times C(a)^{\perp} \neq S$. Then (iv) implies that $C(a) \times C(a)^{\perp}$ is contained in some minimal prime submonoid M. But by 0.17 each minimal prime submonoid P of S is of type $P = U\{x^{\perp} \mid x \notin P\}$ (cf. [1]). This completes the proof by contradiction.

5. A final remark

Two natural questions remain unsettled in this paper, namely how to characterize direct products of totally ordered divisibility-monoids and how to characterize irreducible representations of divisibility-monoids. So it should be remarked that a solution of these problems will be given elsewhere in a context which would have extended this paper unduly.

The clue to these results is the fact that the whole of Chapter 4 and nearly all of Chapter 7 of Bigard-Keimel-Wolfenstein carry over to normal divisibility-semigroups.

REFERENCES

- 1. A. BIGARD and K. KEIMEL, Groupes et Anneaux Réticulés (Springer, Berlin-Göttingen-Heidelberg-New York, 1977).
 - 2. B. Bosbach, Schwache Teilbarkeitshalbgruppen, Semigroup Forum 12 (1976), 119-135.
- 3. B. Bosbach, Archimedische Teilbarkeitshalbgruppen und Quader-Algebren, Semigroup Forum 20 (1980), 319-334.
 - 4. B. Bosbach, Lattice ordered binary systems, Acta. Sci. Math. 52 (1988), 257-289.
- 5. B. Bosbach, Teilbarkeitshalbgruppen mit vollständiger Erweiterung, J. Algebra 83 (1983), 237-255.
 - 6. R. D. Byrd, Lattice ordered groups (Thesis, Tulane University 1966).
- 7. A. H. CLIFFORD, Naturally totally ordered commutative semigroups, Amer. J. Math. 76 (1954), 631-646.
- 8. P. F. Conrad, Some structure theorems for lattice-ordered groups, *Trans. Amer. Math. Soc.* 99 (1961), 212–240.
 - 9. P. F. Conrad, Lattice ordered groups (Tulane University, Dpt. Math. 1970).
- 10. L. Fuchs, Teilweise geordnete algebraische Strukturen (Vandenhoeck und Ruprecht in Göttingen, 1966).

- 11. L. Fuchs, On partially ordered algebras I. Coll. Math. 13 (1966), 116-130.
- 12. L. Fuchs, A remark on lattice ordered semigroups, Semigroup Forum 7 (1974), 372-374.
- 13. O. HÖLDER, Die Axiome der Quantität und die Lehre vom Maß. Sächs. Ges. Wiss., Math. Phys. Cl. 53 (1901), 1-64.
- 14. P. JAFFARD, Contribution à l'étude des groupes ordonnés. J. Math. Pure Appl. 32 (1953), 203-280.
 - 15. P. LORENZEN, Über halbgeordnete Gruppen, Math. Z. 52 (1949), 483-526.
- 16. V. B. Repnitzkii, On subdirectly irreducible lattice-ordered semigroups. Semigroup Forum 29 (1984), 277-318.
- 17. V. B. REPNITZKII, Varieties of lattice ordered semigroups (Diss. Cand., Acad. of Sc. of Moldavia, Kichinew 1984).
- 18. F. Šiκ, Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400-424.

FACHBEREICH 17, MATHEMATIK GESAMTHOCHSCHULE/UNIVERSITÄT 3500 KASSEL WEST GERMANY