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Summary

A population genetic model with a single locus at which balancing selection acts and many linked
loci at which neutral mutations can occur is analysed using the coalescent approach. The model
incorporates geographic subdivision with migration, as well as mutation, recombination, and
genetic drift of neutral variation. It is found that geographic subdivision can affect genetic
variation even with high rates of migration, providing that selection is strong enough to maintain
different allele frequencies at the selected locus. Published sequence data from the alcohol
dehydrogenase locus of Drosophila melanogaster are found to fit the proposed model slightly better
than a similar model without subdivision.

1. Introduction

As DNA sequence data become available for samples
of genes from populations, it becomes more important
to understand what patterns of nucleotide variation
are expected under a variety of population genetics
models. As a step in that direction, Kaplan, Darden &
Hudson (1988) and Hudson & Kaplan (1988) studied
the distribution of the number of polymorphic
nucleotide sites in a sample of genes at selectively
neutral sites linked to a selected site at which a
polymorphism is maintained in a single panmictic
population. Since many natural populations are
geographically subdivided, it is desirable to generalize
the analysis of Kaplan et al. (1988) and Hudson &
Kaplan (1988) to a model with geographic structure.
In this paper we show how to analyse such a model,
focusing on the coalescent process of samples of genes
from a subdivided population.

The behaviour of models with geographic sub-
division is of immediate interest for the analysis of
sequence data from the alcohol dehydrogenase {Adh)
region of Drosophila melanogaster (Kreitman, 1983).
Recent studies of variation at this locus have suggested
the presence of a balanced polymorphism (Hudson,
Kreitman & Aguade, 1987; Kreitman & Aguade,
1986; Oakeshott et al. 1982), and it is well known that
there are latitudinal clines in the frequencies of
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electrophoretic variants at the Adh locus of D.
melanogaster (Oakeshott et al. 1982; Simmons et al.
1989; Vigue & Johnson, 1973). Hudson & Kaplan
(1988) compared the observed pattern of nucleotide
variation in the Adh region to that predicted by a
model in which the protein polymorphism at the Adh
locus is maintained by balancing selection in a single
panmictic population. The observed patterns were
largely consistent with the balancing selection model
without geographic subdivision. The purpose of this
paper is to investigate the effects of geographic
subdivision on the predictions of a balancing selection
model. We will only consider the simplest case of a
population with two subpopulations.

The theoretical approach is based on the coalescent
process which is related to the genealogical history of
a sample of genes (see review of Tavare, 1984). The
motivation for this approach stems from the work of
Watterson (1975) who showed the connection between
the coalescent process and the distribution of the
number of selectively neutral polymorphic sites in a
random sample of genes, assuming an infinite-sites
model (Kimura, 1969). Recently, Kaplan et al. (1988)
considered the coalescent process for a sample of
selectively neutral genes at a locus which is tightly
linked to a selected locus. Hudson & Kaplan (1988)
extended this work and studied the coalescent process
for a random sample of genes at a selectively neutral
locus that is not tightly linked to a locus at which
balancing selection maintains two alleles in the
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population. In this paper the analysis of Hudson and
Kaplan is generalized to allow for geographic sub-
division, as well as recombination, mutation and
balancing selection. We focus on the case where the
migration rate between the subpopulations is high,
but selection is sufficiently strong and different in the
two subpopulations to maintain substantially different
allele frequencies in the two subpopulations. The
results of this analysis are used to assess the effects of
migration on the predicted variation in the Adh region
of Drosophila melanogaster.

2. Theory

We begin by reviewing the connection between the
coalescent process and S, the number of polymorphic
sites in a random sample of size n, (n ^ 2) at a small
region of the genome containing L nucleotide sites.
Suppose we have a randomly mating diploid popu-
lation of size N. If /i, the expected number of
selectively neutral mutations per nucleotide site per
chromosome per generation is sufficiently small, then
with high probability, at most one selectively neutral
mutation will have occurred at each nucleotide site
since the most recent common ancestor. In this case
the distribution of S can be approximated by

P(S = k) =

where

'^«m

(2)

and t( is the sum of the lengths (measured in
generations) of all the branches of the ancestral tree
describing the genealogical history of the jth nucleotide
site, 1 ^ i < L (Watterson, 1975). If the L nucleotides
are completely linked, then there is only one ancestral
tree and so 2f_j /, = LT, where T is the sum of the
lengths of the branches of the ancestral tree of a single
nucleotide site. Unless otherwise stated, we will assume
that the region is completely linked. In this case it is
appropriate to think of the region as a single locus. If
fi is sufficiently small, then the probability of more
than one mutation at a single site in the genealogy of
the sample is negligible, and the representation in (1)
is a reasonable approximation even if L = 1. The case
L = 1 is important in the next section.

It follows from (1) that quantities describing the
distribution of S can be calculated from quantities
describing the distribution of T. For example

E(S) = LfiE{T), Var (S) = L/iE{T) + (L/i)2 var (T)
(3 a)

The distribution of T is determined from the
coalescent process. If the region is selectively neutral
and isolated, i.e. not linked to a selected locus, then
Watterson (1975) showed that T can be written as

(4)

where the {Y(J)} are independent random variables.
Furthermore, if time is measured in units of 2N
generations, then for large A', the distribution of Y(j)
can be approximated by an exponential distribution
with parameter j(J— l)/2, 2 ^j^n.

Hudson & Kaplan (1988) used the coalescent
process to study the distribution of T, assuming that
the selectively neutral region is linked to a locus at
which natural selection operates. There is no simple
representation for the distribution of T in this case.
However, if the allelic frequencies at the selected locus
are tightly regulated, i.e. mutation and selection act in
such a way that the frequencies of the alleles are
essentially constant for long periods of time, then the
Markov property of the coalescent process can be
exploited to calculate quantities describing the dis-
tribution of T such as those in (3). Our goal is to
generalize the analysis of Hudson and Kaplan for the
tightly regulated case so as to include geographic
subdivision.

Suppose a randomly mating diploid population of
size N has two subpopulations, subpopulation 1 of
size JN diploids and subpopulation 2 of size (1 —f)N,
0 ^/=* 1. At the selected locus A, it is assumed that
there are two alleles, Al and A2 and that their
frequencies are tightly regulated. The frequency of the
A1 allele in the yth subpopulation is denoted by xp

7 = 1 , 2 .
Each generation the daughter population is ob-

tained by random sampling with replacement after
mutation, recombination, selection and migration
have occurred. Since selection, migration, recom-
bination and mutation are all effects of order \/N, the
order of these processes in the life cycle makes no
significant difference in our approximations (Hudson
& Kaplan, 1988). The fitnesses of the three genotypes
AXAV AXA2 and A2A2 are wn, w12 and w22, respectively.
The rates of mutation per gamete per generation at
the selected locus are u(Al->A2) and v(A2^-A1). Mi-
gration is such that in each generation, a proportion
m12 of subpopulation 1 is made up of migrants from
subpopulation 2, and a proportion m21 of subpopu-
lation 2 is made up of migrants from subpopulation 1.
Finally, the average number of crossovers per gen-
eration between the selectively neutral region and the
selected locus is r. It is assumed that

and

P(S = 0) = E(e-L"T). (3 b)
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and

r =

where fi > 0, v > 0, A12 > 0, A21 > 0 and R > 0.
The generation from which the sample is taken is

referred to as the Oth ancestral generation and the
population / generations back in time as the /th
ancestral generation. Each ancestor of each sampled
gene (referred to as an ancestral gene) is in subpopu-
lation 1 or 2 and is linked to either an Ax or A2 allele.
We therefore define Q{t) = (/x j ^ , i2j2) if in the tth

ancestral generation, t > 0, ik of the ancestral genes of
the sample are in subpopulation k and are linked to
the A1 allele and jk of the ancestral genes are in
subpopulation k and linked to the A2 allele, k = 1,2.
The value of Q(0) depends on how the genes were
sampled, e.g., if the sample is of size 2 and both genes
are linked to an A1 allele, but one is from subpopu-
lation 1 and the other from subpopulation 2, then
g(0) = (1,0,1,0). The total number of ancestral genes
in the rth ancestral generation is denoted by \Q(t)\ =

The number of ancestral genes does not increase as
one goes back in time and so the Q process eventually
reaches a state where \Q(i)\ = 1, i.e. there is a single
ancestor of the sample. The ancestral generation when

Table 1. The conditional distribution of Q{t) given Q(t — 1) {up to order
1/N)

Transition Probability (qk(ivjx,ivj,

1. Transitions resulting from coalescence
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this first occurs, 7̂ , is that generation which has the
most recent common ancestor of the sample.

The Q process is a jump process and so we define
Tx, T2,...to be the number of generations between
successive jumps and Z15 Z2,... the successive states to
which the process moves. The forces of mutation,
recombination and migration change the state of the
Q process without changing the number of ancestral
genes. A common ancestor event, on the other hand,
decreases the number of ancestral genes by 1. The
conditional distribution of Q(t) given Q(t— 1) can be
calculated up to order \/N using the arguments in
Kaplan et al. (1988) and Hudson & Kaplan (1988).
There are twelve transitions whose probabilities are of
order 1 /N. Each of the twelve transitions corresponds
to state changes where i^j^ i2, andj2 either increase by
1, decrease by 1 or remain the same. To simplify the
notation only those components that change will be
indicated. For each (i^, i2j2) the 12 transitions are
labelled from 1 to 12 in some specified order and the
conditional probability of the kth transition is denoted
by

where 8 = 4N/i. It follows from (6) that

The {qk(i1,j1,i2J2)/2N} are given in Table 1.
If time is measured in units of 2N generations, then

the Q process can be approximated by a continuous
time finite state Markov process whose parameters
can be obtained from Table 1. Indeed, let

12

and

It follows by standard arguments that the holding
time in state (i^j^ i2j2) has an exponential distribution
with parameter q( 11} and when a jump does occur,
the probability that it is the kxh transition is

Let T denote the sum of the lengths (measured in
units of 2N generations) of the branches of the
ancestral tree for the region in question. It is not hard
to show that

(6)T= \Q(u)\du,

where To is the time (measured in units of 2N
generations) of the most recent common ancestor of
the sample. Using the representation of T in (6)
together with the Markov property of the Q process,
it is not difficult to derive equations to calculate the
quantities in (3). As an example we will show how to
calculate P(S = 0) for a sample of size 2, a quantity
which we will need in the next section.

For any {i^j^ i2j2) such that ix +jl + i2+j2 = 2, we
define

Using the Markov structure of the Q process, we
obtain

where the distribution of Zx given Q(0) — (ix,jx, i2j2)
is given by the {pWt)(Jc), 1 sj k ^ 12}. Equation (7)
defines a system of ten equations that can be solved
numerically for any choice of the parameters.

We next consider the case of high migration. More
specifically suppose that

A12 = MS12 and A21 = MS2X,

where #12 > 0, 82X > 0, and M is large. To simplify the
discussion we assume that the sample is of size 2. For
t > 0, (measured in units of 2N generations) let
W{i) = (/t + i2j\ +j2) whenever Q(t) = {ix,jx, i2j2).
This process keeps track of how many ancestral genes
are linked to the Ax and A2 alleles and ignores which
subpopulation the genes are in. The W process moves
between the states (2,0), (1,1) and (0,2) until a
common ancestor event occurs and then the process
moves to either of the absorbing states (1,0) or (0,1).
Whenever a mutation event, recombination event or a
common ancestor event occurs, the Wprocess changes
state, but it does not change state when a migration
event occurs.

We now show how to calculate the infinitesimal
probabilities of the W process. Let t > 0. To dem-
onstrate the argument, we assume for definiteness that
W(t) = (2,0). In the next small interval of time the
process can remain at (2,0), jump to (1,1) if a
mutation or recombination event occurs or jump to
(1,0) because of a common ancestor event. Suppose
for example, that a mutation or recombination event
occurs in {t, t + A), A > 0. It follows from the dynamics
of the Q process that

P(W(t+A) = (1,1)| W(0 = (2,0))
= P(W(t+A) = (1,1)12(0 = (2,0,0,0))i>(0

= 0.1)16(0 = 0,0, l,0))P8(0
= (1,1)16(0 = (0,0,2,0))P,(0,

(8)

where

= P(Q(t) = (2,0,0,0)1 W{t) = (2,0)),
= P{Q{i) = (1,0, l,0)| W{i) = (2,0))

and

= P(QC) = (0,0,2,0) I W{i) = (2,0)).
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(a) W(t) = (2, 0)

87
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Fig. 1. The transition rates of the migration process for different states of W(t).

Using the transition probabilities of the Q process in
Table 1, we obtain

= (2,0))

^)JWO]
+ O(A2). (9)

To complete the calculation of P(W(t + A) = (1,1)
| W(t) = (2,0)) we must evaluate the {P((t)}, and to do
this we use the assumption of high migration. Let T
denote the time of the change in state of the W process
that is closest to t, as one approaches / from the
present (i.e. T < t). If Mis sufficiently large, then with
high probability a large number of migration events
will occur in the interval (T, i). Thus the {P{(i)} can be
approximated by the stationary distribution of the
three state Markov process describing the dynamics of
the migration process of the lineages of two genes,
each linked to an A l allele. The transition rates of this

Markov process are given in Fig. 1 a. The stationary
probabilities can be obtained using standard argu-
ments (Karlin, 1969) and are

and

where

The quantity £2j can be interpreted as the proportion
of the time that the lineage of an A1 allele spends in
subpopulation 1. If we substitute these values of /\(0.
Pt(t) and P3(i) in (9), then we obtain

where
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(10)

The other five infinitesimal probabilities are calculated
in the same way as (10) and these quantities are given
in Table 2. It should be noted that the stochastic
process describing the dynamics of the migration
process depends on the state of W(t). In Fig. 1 (b, c)
the transition rates of the Markov processes describing
the dynamics of the migration processes are given for
the cases W(i) = (1,1) and W(t) = (0,2) respectively.
The stationary probabilities for the Markov process in
Fig. 1 c are the same as those for the process described
in Fig. 1 a except that Qt is replaced by Q2 where

x n _ v v

a = 821(i-Xly+812(\-x2y

Then,

and

l, 1],

i . o ] , g[i,i][0,2]g[B.11[0,
+ 9

gt i .nP .01WU] g[..i1[2,0]gra.01[Ur

(11)

where

The quantity Q2 can be interpreted as the proportion
of the time that the lineage of an A2 allele spends in
subpopulation 1. The stationary probabilities for the
process described in Fig. 1 b are

Q^a, QjO-Q,,), n^l-Qj) and

The advantage of the high migration case is that
only three equations are needed to calculate each
quantity in (3). For example, let

and

For a population with two subpopulations, the
coalescent process for a sample of size 2 at a selectively
neutral locus, not linked to any selected locus, behaves,
in the high migration case, as if the sample was taken
from a panmictic population with an effective popu-
lation size equal to

W(0) = = 2).
where 2Nf and 2N(l-f) are the sizes of the
subpopulations and Q and 1— fi are the stationary

Table 2. The infinitesimal probabilities of the W process

| ^ + Jfcc1)(l-x1)|

x.
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probabilities of the associated migration process. In
this case Q = rn21/(m21 + m12). If the selectively neutral
locus is linked to a selected locus, then the probabilities
in Table 2 show that the high migration limit does not,
in general, behave as if the sample was taken from a
panmictic population with a different effective popu-
lation size. The case where JCX = x2 is the one case
where samples do behave like samples from a single
panmictic population.

3. An Application

Hudson & Kaplan (1988) recently examined the
spatial distribution of nucleotide variation in the Adh
region of D. melanogaster. The data analysed was that
of Kreitman (1983) which consists of the sequences of
eleven cloned alleles from flies collected from widely
separated localities around the world, including
localities in Japan, the United States and France. Six
of the sequences coded for a slow electromorph of
Adh, and five coded for a fast electromorph. These
will be referred to as the Slow and Fast sequences,
respectively. Hudson and Kaplan compared the
observed distribution of variation in the Adh region to
predictions based on a model with balancing selection
acting on a single nucleotide polymorphism in a single
panmictic population. In their model, the Slow allele
is maintained at a frequency of x0 = 0-7. The
assumption of panmixis with a single allele frequency
is unrealistic given the well documented latitudinal
cline of frequencies of Adh electromorphs (Oakeshott
et al. 1982). The observation of similar latitudinal
clines in the frequency of the Adh electromorphs on
three continents is one of the strongest lines of
evidence for the importance of selection in the
maintenance of the Adh polymorphism. With the
theory presented in the previous section, we can
examine a more realistic model than that considered
by Hudson and Kaplan, namely a model in which
there are two subpopulations, each with a different
frequency of the Slow electromorph.

The predictions of the high-migration model
analysed in the previous section will be compared to
the observed variation. The use of the high migration
model is motivated by the observation of Simmons
et al. (1989) (see also Slatkin, 1987) that, other than
the electromorph frequency differences between popu-
lations, there is little apparent differentiation between
populations, at least in the USA. This pattern of
variation suggests that migration rates are high, but
that selection is sufficiently strong to maintain the
allele frequency cline despite the migration.

To compare the predictions of the single panmictic
population model and the geographic subdivision
model to the observed pattern of variation, the' sliding
window' method employed by Hudson and Kaplan
will be used. In this method, one calculates for each
nucleotide site, a measure n (defined below) of the

observed variation in a small window centred on that
nucleotide site. If one numbers the nucleotide sites in
the sequence consecutively, then n(k), the value of n
for the kth nucleotide site, can be plotted as a function
of k. As Hudson and Kaplan demonstrate, this
graphical presentation is very effective in displaying
regions of excessively high or low variation. Since the
region sequenced by Kreitman contained both coding
and noncoding sequences, Hudson and Kaplan varied
the size of the window around each nucleotide site so
as to keep the number of possible silent changes in the
window constant. In Fig. 2, the window size is
adjusted so that there are always 150 possible silent
nucleotide changes in the window.

For Kreitman's Adh data, Hudson and Kaplan
considered three definitions of n(k): nFS(k), nFF(k) and
nss(k), which are, respectively, the average number of
pairwise differences in a window centred on nucleotide
k between Fast and Slow sequences, the average
number between only Fast sequences and the average
number between only Slow sequences. The plot of the
observed values of nFS(k) in Fig. 2 shows a very large
peak in a small region containing the Fast/Slow
polymorphism at codon 192.

Assuming a balanced polymorphism at the Fast/
Slow locus and a uniform rate of recombination
throughout the region (i.e. the average number of
crossovers between nucleotide site i and j is
\i—j\R0/2N), Hudson and Kaplan calculated the
expectation of nFS(k), nss(k) and nFF(k) assuming a
single panmictic population with the frequency of the
slow allele maintained at a frequency of x0 = 0-7, and
assuming /3=v = 0-001, 0 = 0-006 and Ro = 0012.
(Hudson & Kaplan denoted /? and v by /?j and fi2,
respectively.) The value of x0 was chosen rather
arbitrarily as an approximate average frequency of
the slow allele in many populations. The other
parameter values were rough estimates obtained from
prior analyses. The predicted values of nFS(k) under
this model are shown in Fig. 2 by the lower hatched
curve, labelled 'One population (R = 0012)'. With
these parameter values the predicted level of variation
is considerably smaller than the observed variation in
the vicinity of the Fast/Slow polymorphism. A much
better fit was obtained with a much lower level of
recombination, namely when Ro = 0002, as shown by
the upper hatched curve in Fig. 2, labelled 'One
population (/? = 0-002)'.

Using the results of the previous section, we can
investigate the consequences of geographic subdivision
on the expected level of variation in the neighbourhood
of a balanced polymorphism. Indeed, all that has to
be done is replace #(1,1), #(2,0) and #(0,2) by
#[1,1], #[2,0] and H[0,2] respectively, in the
equations given by Hudson and Kaplan for E(nFS(k)),
E(nFF(k)) and E(nss(k)). Thus

E{nFS(k))= 2 0-#m[l,l]),
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Subdivided (/% = 0002)

One population (F^ = 0-002)

Subdivided (f\, =0012)

One population (ffc = 0-012)

1000 2000
Position

Fig. 2. The observed and predicted nucleotide variation in
the Adh region of D. melanogaster. The observed
variation, shown by the thin solid line, is the average
pairwise number of differences between a Slow and Fast
allele in a small sliding window (see text). The horizontal
axis is the nucleotide position of the centre of the
window. The predicted pairwise numbers of differences
for the subdivided population models are shown by the
thick grey lines labelled ' Subdivided'. The predictions of
the single panmictic population model are shown by the

30O0

thick hatched lines, labelled 'One population'. The hatch
bars below the position axis show the coding exons of the
Adh locus and of another apparent coding region 3' to
Adh. The triangle marks the position of the Fast/Slow
protein polymorphism of Adh. The parameter values of
the predicted curves of the single panmictic population
model are /? = 0-001, 00 = 0006, x0 = 0-7, and Ro equal to
either 0-002 or 0-012. For the subdivided population
model, the parameters are the same except x1 = 0-95,

0/ dx2 = 0-5,/= 0-5, and = 10.

where Wk is the set of sites in the window centred at k
and Hm[\, 1] is the value of H[l, 1] for nucleotide m.
Similarly,

E{nPF(k))= 2 ( l-#m[2,0]) ,
m<-Wh

and

E(nss(k))= 2 (l-Hm[0,2]).
msWk

To evaluate Hm[\, 1], HJ2,0] and Hm[0,2] we need,
in addition to the values of fi, v, 6 and Ro given by
Hudson and Kaplan, estimates of xv *2, /and Sl2/d2l.
If xt denotes the frequency of Slow in subpopulation
1 (a southern population, say) and x2, the frequency
of Slow in subpopulation 2 (a northern population),
then reasonable estimates are xt = 0-95 and x2 = 0-5
(Oakeshott et al. 1982; Simmons et al. 1989; Vigue &
Johnson 1973). In Fig. 2, E(jrFS{k)) is plotted for x1 =
0-95, x2 = 0-5, / = 0-5, <W<?21 = 10 and Ro = 0012
(lower thick grey curve) and Ro = 0002 (upper thick
grey curve). The subdivision model provides a slightly
better fit with the a priori estimate of Ro = 0-012, but
still does not predict a peak as high as the observed
peak. At Ro = 0002, the subdivision model predicts a
considerably higher peak than the one panmictic
population model. A curve like that predicted under
the panmictic model with Ro = 0002, can be obtained
under the subdivision model with Ro = 0003, a value

of Ro somewhat closer to the a priori estimate of this
parameter.

The above values of / and 312/S21 were chosen
rather arbitrarily due to the lack of information
concerning these parameters. One might surmise that
the southern population of D. melanogaster has a
larger effective population size and that migration
rates to the north might be higher than in the other
direction. Indeed, / = S12/S2l = 0-6, gives a slightly
higher predicted peak than when these parameters are
0-5, the values used above. With/= S12/S21 = 0-6, the
best fit to the observed variation is obtained with
Ro = 00035, rather than 0003, slightly closer to the
prior estimate of Ro. However, no further improve-
ment of the fit was obtained with larger values of/
or smaller values of S12/S21. For the parameter values
examined, the effect of subdivision on E(nss(k)) and
E(nFF{k)) is relatively minor and is not shown.

We conclude that the subdivision model gives only
a slightly better fit to the observed variation in the Adh
region than the single panmictic population model.
More precisely, under the subdivision model, the
value of the recombination parameter which gives the
best fit is slightly closer to our prior estimate of this
parameter.

The effects of migration can be much larger when
the frequencies of the selected alleles are much more
different in the two subpopulations. For example, if
the frequencies of the Slow allele were 0-95 and 01 in
the two subpopulations (instead of 0-95 and 0-5), then
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the effect of subdivision on recombination would be
much greater, with the best fit to the data obtained
with Ro approximately equal to 0006, approximately
three times the best fitting value found by Hudson and
Kaplan. Subdivision reduces the effective recom-
bination rate. This is because with subdivided popu-
lations, a higher proportion of the total population is
homozygous at the selected locus due to the Wahlund
effect (Hartl & Clark, 1989). Since only recombination
in heterozygous individuals is effective in reducing the
divergence between selected alleles, effective recom-
bination is reduced in the subdivided populations.

4. Conclusion

The preceding analysis indicates how the coalescent
process can be studied in models with both selection
and migration, as well as with recombination and
mutation. Each of these forces introduces parameters
into the model, and assigning them values can be
problematic in any application. Some simplification is
possible if the migration rates are high, and so we have
limited our attention to this case.

The analysis shows that the predicted patterns of
variation in the Adh region of Drosophila melanogaster
are not greatly changed by incorporating subdivision
into the model of Hudson and Kaplan. Under the
single panmictic population model of Hudson and
Kaplan, the best fit of the model to the data was
obtained with Ro = 0-002, a factor of six smaller than
the a priori estimate of this parameter. Under the
subdivision model, an equally good fit to the data is
obtained with a recombination rate, Ro = 0003, which
is somewhat closer to the a priori estimate of this
recombination parameter. The small difference be-
tween the two values of Ro suggests that geographic
subdivision does not account for the difference
between the a priori estimate of Ro and the value
predicted by Hudson and Kaplan using a single
panmictic population model.

Subdivision has the effect of reducing the effective
recombination rate when the frequencies of the
selectively maintained alleles are very different in the
different subpopulations. This is because, in this
context, recombination has an effect only when it
occurs between gametes with different alleles at the
selected locus. When the population is subdivided

with different frequencies of the selected allele, a
higher proportion of individuals are homozygous at
the selected locus (Wahlund effect), and thus effective
recombination occurs less frequently than it would in
a single population with average allele frequencies at
the selected locus.
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Genetics, will be held at the Washington, DC Convention Center. The program will include 9 plenary
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