ON SOME INVARIANTS OF A BILINEAR FORM

Jonathan Wild

(received September 1, 1960)

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every subspace V its right orthogonal subspace V^* and its left orthogonal subspace V^* . In general we cannot expect that dim V^* = dim V^* . However this relation will hold in some interesting special cases.

Define

(1)
$$E^{\circ} = {}^{\circ}E = E$$
; $E^{n+1} = (E^{n})^{*}$, ${}^{n+1}E = {}^{*}({}^{n}E)$; $n = 0, 1, \ldots$

In this note we prove

(2)
$$\dim^n E = \dim E^n; n = 0, 1, ...$$

and discuss some properties of the subspaces (1).

Let V and W be arbitrary subspaces. The following formulas are taken from the preceding paper:

(3)
$$\dim (V + W) = \dim V + \dim W - \dim (V \cap W),$$

(4)
$$\dim^* V = \dim E - \dim V + \dim (V \cap E^*),$$

(5)
$$*(V^*) = *E + V,$$

(6)
$$*(V \cap W) = *V + *W \text{ if } E^* \subset V.$$

We first verify

$$(7) E^* \subset E^3 \subset E^5 \subset \ldots \subset E^4 \subset E^2 \subset E.$$

If $V\subset W,$ then $W^*\subset V^*.$ Hence $E^*\subset E$ and (1) imply $E^*\subset E^2$ and thus

$$E^* \subset E^2 \subset E$$
.

This in turn yields $E^* \subset E^3 \subset E^2$ and therefore

Canad. Math. Bull. vol 4, no. 3, September 1961

$$E^* \subset E^3 \subset E^2 \subset E$$
, etc.

If we substitute $V = {n-1}E$ in (4), we obtain

(8)
$$\dim (^{n-1}E \cap E^*) = \dim ^n E + \dim ^{n-1}E - \dim E; n = 1, 2, 3,$$

This is the special case m = 0 of

(9)
$$\dim (^{n-m-1}E \cap E^{m+1}) = \dim (^{n-m}E \cap E^{m})$$

+ $\dim ^{n-m-1}E - \dim E^{m}; \quad n = 1, 2, ...; \quad m = 0, 1, ..., n-1.$

In order to prove (9), put

$$V = {n-m-1 \choose E \cap E}^{m+1}$$
; thus $V \cap E^* = {n-m-1 \choose E \cap E}^*$.

By (6) and (5),

$$V = {^{n-m}E} + {^*(E^{m+1})} = {^{n-m}E} + {^*E} + {^*E} = {^{n-m}E} + {^*E}.$$

Hence by (4), (8), and (3),

$$= \dim E + \dim (^{n-m-1}E \cap E^*) - \dim (^{n-m}E + E^m)$$

-
$$(\dim^{n-m}E + \dim E^m - \dim (^{n-m}E \cap E^m)).$$

This proves (9).

We now sum (9) over m. Let
$$0 \le k < \frac{n}{2}$$
. Then
$$\sum_{m=k}^{n-k-1} \dim \binom{n-m-1}{E \cap E} = \sum_{m=k}^{n-k-1} \dim \binom{n-m}{E \cap E} = \sum_{m=k}^{m-k-1} \dim E.$$

Hence

(10)
$$\dim ({}^{k}E \cap E^{n-k})$$

$$= \dim ({}^{n-k}E \cap E^{k}) + \sum_{m=k}^{n-k-1} (\dim {}^{m}E - \dim E^{m}).$$

In particular

dim
$$E^n = \dim^n E + \sum_{m=0}^{n-1} (\dim^m E - \dim^m E)$$
.

This formula yields (2) by induction.

Due to (2), the last sum of (10) will vanish and we can rewrite (10) in the following form

(11)
$$\dim (^{n}E \cap E^{m}) = \dim (^{m}E \cap E^{n}); m,n = 0,1,2,...$$

This generalizes (2).

(12)
$$\dim (^{n}E + E^{m}) = \dim (^{m}E + E^{n}); m, n = 1, 2, ...$$

The invariants (11) and (12) can readily be expressed through the numbers (2). Summing (9) over m from 0 to k-1 we obtain after a short computation

(13)
$$\dim \binom{n-k}{E} = \sum_{m=n-k}^{k} \dim m = \sum_{m=0}^{k-1} \dim m$$
;
 $n = 1, 2, ...; k = 1, 2, ..., n.$

Hence by (3)

(14) dim
$$\binom{n-k}{E} + E^k = \sum_{m=0}^{k} \dim E^m - \sum_{m=n-k+1}^{n} \dim^m E$$
;
 $n = 1, 2, ...; k = 1, 2, ..., n.$

Formula (7) contains a trivial restriction on the values of the invariants (2). The observation that the left hand terms of (8), (13), and (14) must be non-negative leads to additional conditions for these numbers. The following remark contains still another restriction:

There exists a number k with $0 \le k < dim E$ such that

$$E^{m} = E^{m+2}$$
, $E^{m} = E^{m+2}$ if $E^{m} \ge E$, $E^{m} \ne E^{m+2}$, $E^{m} \ne E^{m+2}$ if $E^{m} \le E$.

Ιf

$$(15) Em = Em+2,$$

then by (2)

$$\dim^{m} E = \dim E^{m} = \dim E^{m+2} = \dim^{m+2} E.$$

Since either $^{m}E \subset ^{m+2}E$ or $^{m+2}E \subset ^{m}E$, (15) therefore implies (16) $^{m}E = ^{m+2}E$.

Conversely, (15) follows from (16). Thus it suffices to consider the subspaces (7).

By (7) and the finiteness of dim E there are numbers $m < \dim E$ which satisfy (15). Since (15) implies $E^{m+1} = E^{m+3},$

the smallest m of this kind will have the required properties.

Collin's Bay, Ont.