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Heinrich-scale surge oscillations as an internal property of
ice sheets
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ABSTRACT. A dynamical model governing the variations of ice-sheet volume,
basal-water amount and ice-surge flux has been formulated in its simplest form, based
on fundamental thermomechanical properties of ice sheets governing the basal-melting
process. This model includes the effects of the geothermal flux. internal thermal
advection and basal friction, the latter two factors being particularly important in
regulating the bottom temperature and bringing it to the melting point, i.e. Lo a state
vulnerable to catastrophic ice surges. It is shown that, for certain values of the
unknown rate constants, such a model can exhibit oscillations on roughly the same
scale as observed Heinrich events, even when external climatic changes are neglected,
which would support the view that such events are an internal property of ice sheets.

1. INTRODUCTION

The occurrence of periodic surge events at roughly
10 kvear intervals during the last ice-age cycle has now
been clearly documented in the ice-rafted debris (IR1D)
layers of North Atlantic deep-sea cores (Heinrich, 1988;
Grousset and others, 1993). Here, as an extension ol our
previous studies (Verbitsky and Saltzman, 1994, 1995),
we present a simple horizontally averaged dynamical

model of ice-sheet behavior in which we determine a set of
the unknown rate constants required for the existence of

internal oscillations that may bear some relation to these
“Heinrich events™.

This dynamical model has some physical similarities
to a previous model for oscillatory ice-sheet behavior on
the scale of 100 kyear, developed by Qerlemans (1983),
that involves basal water-laver development due to
melting caused primarily by frictional heating. 'The
dominance of both advectional and [rictional effects over
geothermal effects in generating basal melting and surge
events was emphasized in our previous studies (Verbitsky
and Saltzman, 1994, 1995). Another model of Heinrich
oscillations, in which the geothermal heat flux plays a
more dominant role during the growth phase of the ice-
sheet oscillations, was presented by MacAyeal (1993).
Reviews of ecarlier discussions of basal sliding and
oscillatory glacial behavior as well as some ideas similar
to those discussed here and in Verbitsky and Saltzman
(1994, 1993) can be found in Paterson (1994) and Payne
(1995).

2. BASIC EQUATIONS

Let us consider the idealized two-dimensional ice sheet
shown in Figure 1, characterized by a horizontal length
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scale L, mean height H at which the mean temperature is
Ty and a constant net accumulation rate a. The base of
this ice sheet has a mean temperature T, which, if it
reaches the pressure-melting point Ty, may generate
liquid water of mean equivalent thickness W that is likely
to be distributed unevenly through some basal layer
mainly in channels. Such a mean water layer is assumed
to make the outer parts of the ice sheet vulnerable to a
surging discharge flux of ice. The flow of ice has
characteristic horizontal and downward velocity compo-
nents U(= al/H) and W (= a), respectively. The char-
acteristic area and volume of the ice sheet are A = L* and
= AH, respectively.

The bhasic internal dynamics of this two-dimensional
ice sheet is governed by the motion equations

dp 0 u\ "
_ —@==) =0, 1
dx L 0z (“ (')2:) (1)
dp )
—a:ﬂm:“ (2)
and the continuity equation
du  Ow
——— -_ = 0 3
Or ¥ dz (3)

where (2,z) and (u,w) are the horizontal and vertical
coordinates and velocity components, respectively, p is
pressure, g is the acceleration duc to gravity, 4 and pj are
the ice viscosity and density. respectively, and n is the
power degree of Glen's rheological law. From these
equations, we can show (Verbitsky, 1992) that to first-
order scaling

pia ]2
M= —— Lz, 4
[(Mg)”] (4)
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Fig. 1. Idealized cross-section of a tico-dimensional ice
sheet of characteristic horizontal size L. thickness H,
creeping veloetty components U and W, and surface and
basal temperature Ty and Tg.

The basic thermodynamics of the ice sheet is governed
by the equation
dr (')T c'}T = or /\ d* T i (
e— = — 4 wW— | =A== +4¢
pic ar = pic )f " 9= = 1t 5

i §
—

where t is time, ¢ is the specific heat capacity ol ice,
A(= pick) is the thermal conductivity of ice, k is the
thermal diffusivity of ice and gy is the heat added per unit
volume due to internal friction expressible in the form

I 0”- 1+% 1
o = p'| =~ : (6)

The lower boundary condition (z=0) depends on
whether the basal temperature T is below or at the

pressure-melting point (Shumskii, 1955)

Tw = [273.16 — (7.52 x 107°%) (pigH)] (K) (7)

in which latter case melting and basal sliding can occur.
Thus, at z = 0 we have two types of boundary conditions:
if Tz < Ty, i.e. no melting,

T
=A—=iQ, (8a)
Oz ‘
but, if melting occurs, the basal temperature is fixed at the
melting point

e
To =Ty and — AB—
Oz

= (JLH + D — L]'f}i Mp (8h)
where () is the geothermal heat flux, D (= a,.uy) is the
rate of heat addition per unit area due to basal sliding of
velocity ug, @, is the basal shear stress, Ly is the latent
heat of fusion and Ay is the rate of basal melting.

At the upper
assume here that the temperature is given hy

Ta =Ty —%H (9)

bhoundary of the ice sheet (z = H), we

where 75 is the annual mean sea-level air temperature
near the edge of the ice sheet, take o be a
constant, 273 K, and + is the atmospheric lapse rate.

which we

https://doi.org/10.3189/50260305500013628 Published online by Cambridge University Press

Th=TH(t-t*)

BET ”n{a‘]hln‘n
— ;" =

o Le Te L«

Fig. 2. Thermal balances in three main domains of an ice
sheel, the central (summit) region (L < L), the basal
boundary layer (z < z,) and the main domain above the
bottom boundary layer where thermal advection dominates.

In Figure 2, we show the special thermodynamic
balances [or the three main regions ol an ice sheet:

1) The summit (@
characteristic distance from the center hevond which

< L), where L. represents the

the horizontal flow becomes large enough to control
the advective heat flux and friction,

layer
the boundary

(2) The region above the bottom boundary
(2> 21, 2 = k/a is the thickness of
layer)
temperature at the upper surface (Tj) to the basal
layer with an advective time delay +* = H(t)/a, i.e.
the temperature at the top of the bottom boundary
lager(z= 2] s T, = Tt — 1)

where advection dominates, conveying the

(3) T'he bottom layer (2 < z,) where

vertical diffusion balances heat added due to internal

boundary
[riction.

In Verbitsky and Saltzman (1994, 1995), we

that the solution for the basal temperature, T, obtained

showed
by matching all the boundary conditions, is of the
following form (assuming the presence of ice of thickness
greater than 2z, Le. H > z,):

Ti(t) = Tx(geoth) + Ti(frict) + Ti(adv) (10)
where
Th(geoth) = i i (10a)
Aa
g g 144
T (frict) = 2L (A) i (10D)
Tp(adv) =Tyt —t") =T —qH{Et - ). (10¢)

To derive an equation for the melting rate, My, as

given by the boundary condition (8h),

Mp = 1 (/\()T
i 0z

+Q_._.+D). (11)

we use the thermal balance in the bottom boundary laver

g 12
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(z € z,) to evaluate

aT
0z |:=0 '
i T
.. B 57 - -’\_ ) 2
e pegp =ga TR {2}

where gp, is the frictional heating per unit volume in the
hottom houndary layer, given by Equation (6), which
from Verbitsky and Saltzman (1994, 1995) can be written
in the form

PR e
(Iﬂm»ﬂigﬂ() : (13)

b
The steady-state solution of Equation (12) (implying

that we arc considering processes longer than the

characteristic time-scale zj/k = k/a*), with boundary

conditions T = T3, = Ta(adv) = Ty(t — t*) at 2 = zp,, and

TZTB:TM at 2 =10, 18

i [T*__l“ ut

2" +‘*"hj|7&-’+TM~ (14)

= Z 2
2X 2y, 2X

from which

aT T,—Tua  am
= =P+ 15
0z 12=0 2 +2)\ I K

Since basal ice physics is as yet poorly understood and,
in view of the uncertainties regarding the basal buoyancy
process, a sliding law (i.e. a relationship between the basal
sliding velocity ug and the basal shear stress g,.) is very
uncertain. Therefore, to estimate the amount of heat
released due to the bottm sliding, we simply suppose that
the frictional heating per unit volume due to normal
creep in the lower boundary layer given by Equation (13)
-an be used in this sliding case also, so that

H\"
D = gpzp = pigaH (a—k—) . (16)

From Equation (16), we can write Equation (11) in a
final form in terms of the variable H ()

f (T < Tn)
AI[; = ﬁ <Qg+Pi('ﬂ‘[:Fn(f.*t*)—T.\l]

- 1.5p-lgr1H(%)’l’> (Tg = Twr) -

(17)

3. THE DYNAMICAL MODEL

We now postulate what we suppose is the simplest
dynamical system that may govern the variation of H
(on which T and Mp depend), coupled with the
variations of the basal-water amount W and the ice-
surge flux S (= ;AS, where A is the area of the ice sheet
(assumed constant) and S is the rate of ice-thickness loss
due to the surge flux). All of these variations are assumed
to represent relatively small fluctuations of a massive ice
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sheet such as the Laurentide ice sheet. This system has the

form
0 1
ﬁ:uf]lh;——HfS (18)
dt ™
(“’:rrW—lS (19)
dt Ty
1% 1
A (20)
dt ™

where 77 is the characteristic time-scale ol ice-flow creep,
and 7g and 7y are dissipative time constants. These latter
two time constants are only weakly constrained but
plausibility arguments have been made by MacAyeal
(1993) that 75 is of the order of 1 kyear and by Oerlemans
and Van der Veen (1984) that (in accordance with a
diffusive approximation for basal-water flow) 7w is also of
this same order (lkyear). The rate constant « in
Equation (19), relating the surge changes to the basal
liquid-water amount, is even more weakly constrained.
We consider 7g, Ty and @, which must appear in some
form in all models of ice-sheet surging, to be free
parameters to be determined as a (non-unique) set of
predicted values required to account for the observed
variations (in our case the Heinrich oscillations). To close
the system, we must add the formula for Mp embodied in
Equation (17), together with the formulas (7) and (10)
for Tyy and Ti. A schematic feed-back loop diagram
showing the cyclical coupling of the main variables of the
model is given in Figure 3.

It may be recognized that the ice volume V(H), the
surge loss (S) and basal-water amount (W) are also the

o Qg External
Forcing

Friction

Advection

Internal
Ice-Sheet
System

Heinrich Events

Fig. 3. Schematic feed-back loop diagram for the present
simplified model, showing the internal couplings between
the height of the ice sheet (H), basal water depth (W) and
surge loss (8) under the influence of sicady forcing due to
net snowe accumulation (a) and geothermal flux (Qg). A
wiggly arrow denotes a time-delayed ( inertial ) influence of
changes in one variable on another, in the direction of the
arrow.
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Fig. 4. Time-dependent solution of the dynamical system,
showing in the top panel the fluctuation of the upper surface
temperature (Ty) and the temperature at z = z,(T3,), in
the middle panel the pressure-melting point (‘I\1), the basal
temperature (Ig). the basal-melting rate (My) as black
bars, and tn the bottom panel the surge discharge in units of
tce thickness loss (S) and ice-sheet thickness H.

main variables of the more complex model described by
Oerlemans (1983) in which he demonstrated the possib-
ility for oscillatory behavior, albeit for a much longer
time-scale (100 kyear) than Heinrich events (10kyear).
To illustrate the possibility that our present much simpler
system can exhibit fluctuations of the Heinrich time-scale,
we take the following plausible values of physical constants
and parameters: p; = 917 kgm n=3, g=9.8ms Pe=
2 x 10°Jkg ' °C!, k= 1 % 10°%m?s*, Qp = 0.04 Wm 2,
y=10*"Cm ' and a = 14cm year '
tion rate characteristic of the central parts of an ice sheet,

(the low accumula-

where we presume ice trajectories, delivering the surface
temperature Ty to the originate), and

T = b0 kyear. For the more weakly constrained para-

bottom,

meters, we assign the set of values, 7¢ = ny = 1.5 kyear and
a = 10 ®year .

The solution is shown in Figure 4 starting from an
arbitrary initial condition. We note that an oscillation of
roughly a 14 kvear period occurs, characterized by lagged
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variations of Ty, Tj,, T, H and S, that go along with
episodes of melting (Mp > 0) when Ty; = Tyy. The results
are not qualitatively changed for small changes in the
parameters; more extensive calculations will be made to
determine the limits of applicability for larger parameter
changes and for different accumulation rates.

5. CONCLUSIONS

Using a dynamical model based on fundamental thermo-
mechanical properties of an ice sheet, we have shown that
such a model can exhibit periodic fluctuations of roughly
the same scale as observed Heinrich events, providing the
unknown rate constants are assigned certain values, This
model embodies in its simplest form the essential physical
processes governing the coupled variation of ice volume,
mean basal water amount and the surge of ice. The
system is influenced mainly by the internal thermody-
namic processes in ice sheets and the instability en-
gendered by basal friction heating, as regulated by both
cold advection from the upper ice surface and a much
weaker influence of geothermal heating. In this respect,
the mechanism involved is akin to that in Oerlemans’
1983) and Payne’s (1995) models but only to the
discharge phase of MacAyeal’s (1993) “binge purge”
maodel.
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