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Abstract. The paper presents the existence result for positive solutions of
the differential equation (g(x))” = f(¢, x, (g(x))’) satisfying the nonlocal boundary
conditions x(0) = x(7T'), min{x(¢) : t € J} = 0. Here the positive function f satisfies
local Carathéodory conditions on [0, T x (0, co) x (R\{0}) and f may be singular at
the value 0 of both its phase variables. Existence results are proved by Leray-Schauder

degree theory and Vitali’s convergence theorem.

2000 Mathematics Subject Classification. 34B16, 34B15.

1. Introduction. Let T be a positive number, J = [0, 7] and Ry = R\{0}. We

shall discuss the singular differential equation

(g(x())" = f(z, x(1), (g(x(1)),

where g € C%([0,00)) and the positive function f satisfies local Carathéodory
conditions on J x (0, 00) x Ry (f € Car(J x (0, 00) x Ry)) and f may be singular

at the value 0 of both its phase variables.
Furthermore we shall deal with the nonlocal boundary conditions

x(0) = x(T), min{x(?):t€J}=0.

We say that x € C°(J) is a solution of the boundary value problem (BVP for short)
(1.1),(1.2) if g(x) € AC'(J) (functions having absolutely continuous derivative on J),

x satisfies the boundary conditions (1.2) and (1.1) holds a.e. on J.

In this paper we are interested in finding conditions on the functions g and f in
(1.1) that guarantee the existence of positive solutions to BVP (1.1), (1.2). The existence
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result is proved by regularization and sequential techniques. Any positive solution x
and (g(x)) for BVP (1.1), (1.2) ‘go through’ singularities of f somewhere inside of J.

We show that our existence result for BVP (1.1),(1.2) can be applied to obtain
solutions of BVP (1.3), (1.2), where

(g(x(D)x'(1)" = f (1, x(1), g(x(1)X'(1)). (1.3)

By a solution of BVP (1.3),(1.2) we understand a function x € C!(J) satisfying
(1.2), g(x)x’ € AC(J) and (1.3) is true almost everywhere on J.

We note that only a few papers in the literature are devoted to the study of BVPs
for differential equations of the form (1.1) (see [1], [7] and references therein). In
[1] the authors consider via the method of lower and upper functions the Dirichlet
problem with the differential equation (P(x))” + f1(¢, x) = 0 where P(z) = f(; r(x) dx,
r is a continuous function and f; satisfies local Carathéodory conditions. Existence
results for solutions of (P(x))’ = q(t)f>(¢, x, x') with continuous f, satisfying the
Dirichlet boundary conditions are given in [7]. Differential equations of the form
(g(x)x') = f3(t, x, x') and two-point boundary conditions were considered (in the
regular case also) in [7]. The Dirichlet problem for differential equations of the form
(r(x)x") = nq(t)fa(t, x) where f; is singular at the value 0 of its phase variable x was
studied in [8]-[10]. In [2] the authors give conditions for the existence of positive
solutions of a more general equation (g(x)(x)*) = uq()fs(t, x)(x')? with o € (0, 00)
and B € {0, 1} satisfying the Dirichlet boundary conditions. Existence results for a
functional differential equation with a nonlinear functional left hand side and nonlocal
boundary conditions are presented in [4]. In all the papers above, BVPs are considered
only for local boundary conditions and, in the case that differential equations are
singular at their phase variables solutions ‘start’ and/or ‘finish’, at singular points
(with the exception of [4] and [9]).

In this paper the following assumptions will be used.

(H)) g € C°([0, 00)) is increasing, g(0) = 0 and lim,,_, o, g(1) = 00.

(H,) g € C°(J0, 00)) is positive and lim,_, o, G(1) = 0o, where

G(u) = /Oug(s) ds, uel0,00). (1.4)

(H») f € Car(J x (0,00) x Ry) and there exists a positive constant a < 1/2
such that

a <f(t,x,y) fora. te Jandeach (x,y) e (0,c0) x R,.
(Hy) For a.e. t € J and each (x, y) € (0, 00) x Ry,

S x,y) = (hi(x) + () @i(1y]) + o2(1y]),

where Ay, w; € C°([0, 00)) are non-negative and non-decreasing, /,, w, € C°((0, 00))
are positive and non-increasing.

1
(Hs) /0 hn(g ™ ()ws(s) ds < 00 and

lim /u ! d T
——ds > —,
o Jo KTI(H () 7 2
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where

u s
K(u) = /0 m ds, u€]0,00), (1.5)

Hy(u) = /Ou[hl(g_l(S) + 1)+ g (5)Ids, uel0,00).  (1.6)

1
(Hs) /0 7y (G (5%))wa(s) ds < oo and

lim /u ! d T
i —ds > —,
u=o0 Jo  K=1(Ho(s)) 2

where

Hy(u) = /Ou[hl(Gl(S) + 1)+ (G (5)]ds,  u €0, 00). (1.7)

REMARK 1.1. Let assumptions (Hy) and (Hs) be satisfied. We show that the integral
Jo (1/K~'(H\(s))) ds is convergent for all u > 0. Since h1(g™"(u) + 1) + ha(g™' () =
ha(g~ (1)) and w;(u + 1) + wr(u) > wy(1) for u € [0, 1], we have Hy(u) > hy(g~'(1))u
and K(u) < u?/(2wy(1)) for these u. Hence K~'(H;(u)) > \/2h2(g—1(1))w2(1)u for
uel0,7] with a T > 0 and since K~!(H) is positive and continuous on (0, co),
we see that fO"(l JK~'(H\(s)))ds < oo for all u > 0. Analogously we can verify that
f0"(1 /K~ (Hy(s)))ds < oo for u > 0 if assumptions (Hy) and (Hy) are satisfied.

The paper is organized as follows. In Section 2 we prove that the solvability of
BVP (1.1),(1.2) is equivalent to that of BVP (2.1),(1.2) (Lemma 2.1). Section 3 deals
with a sequence of auxiliary regular BVPs to BVP (2.1), (1.2) where the nonlinearities
/» in the differential equations are regular functions on J x R". We give a priori
bounds for their solutions x, (Lemma 3.3) and prove their existence (Lemma 3.4)
using Leray-Schauder degree theory (see, for example, [5]). In addition, we show that the
sequence {f,(2, g1 (x,(2)), x,(1))} is uniformly absolutely continuous on J (Lemma 3.5).
In Section 4 we present our main results: the existence of a positive solution to BVP
(1.1),(1.2) (Theorem 4.1) and to BVP (1.3), (1.2) (Corollary 4.2). In limiting processes
we use the Vitali’s convergence theorem (see, for example, [3], [6]) since it is impossible to
find a Lebesgue integrable majorant function for the sequence {f,,(t, g~ (x,(1), X, (1))}
which is necessary for applying the Lebesgue dominated convergence theorem. We
include also two examples (Examples 4.3 and 4.4) to illustrate our theory.

2. Lemma. Let assumptions (H;) and (H3;) be satisfied. Together with the
differential equation (1.1) we consider the differential equation

xX'(1) = f(1, g7 (x(0), X'(1)). 2.1

We say that x is a solution of equation (2.1) if x € AC!(J) and x satisfies (2.1) a.e.
onJ.
In the next lemma we give relations between solutions of BVP (1.1), (1.2) and BVP

2.1),(1.2).
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LEMMA 2.1. Let assumptions (Hy) and (H3) be satisfied. If x(t) is a solution of BVP
(1.1), (1.2), then the function u(t) = g(x(¢)), t € J, is a solution of BVP (2.1), (1.2) and
also conversely, if x(t) is a solution of BVP (2.1), (1.2), then the function u(t) = g~ (x(f)),
t € J, is a solution of BVP (1.1), (1.2).

Proof. Let x be a solution of BVP (1.1), (1.2). Then x € C°(J), g(x) € AC!(J) and
x satisfies (1.2). Set u(t) = g(x(¢)) for ¢t € J. Then u(0) = u(7T), min{u(?) : t € J} =0,
ue AC'(J) and u'(r) = (g(x(1))" = f(z, x(1), (g(x(1))) = f(t, g~ (w(2)), /(1)) a.e. on J.
Hence u is a solution of BVP (2.1), (1.2).

Let x be a solution of BVP (2.1), (1.2). Then x satisfies (1.2) and x € AC'(J).
Let u(t) = g~'(x(#)), t € J. Then (1.2) holds with u instead of x, u € C°(J), g(u) =

x € AC'(J) and (g(u(1)))" = x"(1) = (1, g (x(1)), X'(0)) = f (¢, u(t), (g(u(1))') a.e. on J.
Thus u is a solution of BVP (1.1), (1.2). O

REMARK 2.2. From Lemma 2.1 we see that solving BVP (1.1), (1.2) is equivalent
to solving BVP (2.1), (1.2).

3. Auxiliary regular BVPs. For each n € N, define f,, € Car(J x RZ) by

flt,x,y) forteld x=1 |y =1

f(t.dy) foried, x<1i jy =1
fn(tv xay): I’l( ) | | .

S x, )0+ 3) =St x, =) 0 = 3)]

1
fortet, xeR, ye(-11).
Then (H3) and (H,) yield (for n € N)

a < fu(t,x,y) fora.e teJandeach(x,y)e R* 3.1

and

St x,y) < (hi(x + 1) + () @i (Iy| + 1) + @2(1y1) (3.2)

for a.e. t € J and each (x, y) € (0, 00) x Ry.
Also define ¢ € C°(R) by

g(u) for u € [0, 00),
g(u) =
—g(—u) +2g(0) foru e (—o0,0).

If g satisfies assumption (H), then g is increasing on IR, which is the domain of the
inverse function g~! to g.
Consider the family of regular differential equations

X'(1) = fult, &7 (x(0), X' () + (1 = A)a (E),
depending on the parameters A € [0, 1] and n € N, where a appears in (H3).

LEMMA 3.1. Let assumptions (H\) and (H3) be satisfied and let x be a solution of
BVP (E)., (1.2). Then there exists a unique & € (0, T) such that

(@) x(§) =0and x(t) > 0 fort €0, &)U (&, T,
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(b) X' is increasing on J, X'(§) = 0 and |X'(£)| > al§ —t| fort € J,
(©x()) = S(t—& fort e J.
Proof. By (3.1),

X'(ty>a foraetel. (3.3)

From (3.3) it follows that x’ is increasing on J and then x(0) = x(7") implies that
x" vanishes at a unique point £ € (0, T') and x is decreasing on [0, £] and increasing
on [£, T]. Hence the condition min{x(z): t € J} = 0 yields x(§) =0 and x > 0 on
[0, &) U (&, T]. The validity of the inequalities in (b) and (c) follows immediately by
integration of (3.3) and using x(§) = x'(§) = 0. ]

REMARK 3.2. Lemma 3.1 shows that any solution x of BVP (E)}, (1.2) with A €
[0, 1] and n € N satisfies the inequality x(7) > 0 for t € [0, &) U (&, T] where & € (0, T')
is the unique zero of x. Hence ¢~ !(x(¢)) = g~ ! (x(¢)) for t € J.

LEMMA 3.3. Let assumptions (H) and (H3) — (Hs) be satisfied. Let x be a solution
of BVP (E)%, (1.2). Then there exists a positive constant P independent of ) € [0, 1] and
n € N such that

x|l = su}) x()| <P, |IX|| <P. (3.4)
te

Proof. By Lemma 3.1, there exists a unique & € (0, 7) such that x(§) = x'(§) = 0,
x(f) > 0on [0, &) U (&, T] and X’ is increasing on J. Hence

Xl = x(0) (= (7)), X'l = max{|x'(0)], x'(T)}. (3.5)
In addition (see (3.2) and Remark 3.2)
X'(1) < (g™ (x(0) + 1) + ha(g™ (x(O))[w1 (1X' ()] + 1) + wr(1x' ()])] (3.6)

for a.e. ¢t € J. Integrating the inequality (for a.e. ¢ € [0, &))

X"(t)x' (1) - 1 —1 /
O ED T ey 2 e )+ ) e ()

from ¢ € [0, &) to &, we get

/O_xm m ds < ‘/O'X(t)[hl (€ ')+ 1) + ha(g'(5))] ds.
Hence K(—x'(¢)) < H{(x(?)), where K and H| are defined by (1.5) and (1.6), respectively.
Then
—X() < K\ (H\(x(1)))  for t € [0, 8], e
and integrating
x'(1)

_m <1 (where0<t<§),
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over [0, £], we have
x(0) 1
o K C
Arguing as above on the inequality (for a.c. 1 € [£, T])

xX"()x' (1)
w1(X'(1) + 1) + wx(X'(1)

y = (@™ (x()) + 1) + ha(g™ (x())]X (1)
now on the interval [&, T, we get

X(0) < KT (Hi(x(1)) forte[§, T]

and

x(T) 1 J
o v =T

Then (3.5), (3.8) and (3.10) imply

(Bl 1

T
_14 dS < —.
o K7(Hi(5) 2
By (Hs), there is a positive constant V" such that

[ =gt
o K © T

(3.8)

(3.9)

(3.10)

(3.11)

for all u > V. Hence (3.11) yields ||x|| < V. Letting t = 0 in (3.7), t = T in (3.9) and
using the last inequality, we get —x’(0) < K~ '(H(V)) and x'(T) < K~'(H,(V)). Then
(see (3.9)) |IX'|| < K~'(H,(V)) and so (3.4) is true with P = max{V, K~'(H;(V))}. O

LEMMA 3.4, Let assumptions (H;) and (H3) — (Hs) be satisfied. Then BVP
(B)L, (1.2) has a solution x for each n € N and (3.4) is true with a positive constant

P given by Lemma 3.3.
Proof. Fix ne N. Let

O — {(x, A):(x,A) e C{) xR, x| < maX{P, aTTZ}

T T2
IX'|| < max {P, %}, |A| < max {P, %”

and the operator S : @ — C'(J) x R be defined by the formula

T
S(x, A)= (A + f S(t, 8)fu(s, g_l(x(s)), X'(s))ds, A+ min{x(z) : t € J}),
0

where
s(£—=1) for0<s<t<T,
S(t,5) = (? )
($—1) for0<t<s<T.
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We see that S € C%(J x J) and
S(t,s) <0 for(t,s) € (0, T)x (0, 7).

Assume that (xo, 4g) € Q is a fixed point of S; that is S(xo, 4g) = (xo, 4o). Then

T
xo(t) = Ao + /0 S(t, 8)fu(s, g_l(xo(s)), xy(s)ds, teld, (3.14)

min{xy(?):t € J} = 0. (3.15)

From (3.14) we deduce that x¢(0) = xo(T) (= 4g), xo € AC'(J) and xp(1) =
Ju(t, 871 (x0(2)), x; (1)) for a.e. 1 € J. Hence x is a solution of BVP (E)}, (1.2). Therefore,
to prove the existence of a solution of BVP (E)!, (1.2) it is sufficient to verify that

D(T —S,9,0) 0, (3.16)

where “D” stands for the Leray-Schauder degree and 7 is the identity operator on
C'(J) x R. The validity of (3.16) will be proved by the homotopy property. We first
define the operator £ : Q x [0, 1]— C'(J) x R by

L0x, A, 3) = <A + gt(t —~T), A+(1— x)x@) T omin{x(r): t € J}). (3.17)

Then £ is a continuous operator and also £(Q x [0, 1]) is relatively compact in
C'(J)yxR.SetV =7 — L(,-,0). Then V(x, 4) = (x(1) — A — at(t — T)/2, —x(T/2))
for (x, A) € Q. We claim that V(—x, —A4) # vV(x, 4), for all (x, 4) € 3Q and v €
[1, 00), so that

by Theorem 8.3 in [5]. If not, there exist (x,, A,) € 92 and v, €[1, co) such that
V(—xy, —Ay) = v V(x4, Ay), we then have

—xu(t) + A, — gt(r —T)= v*<x*(t) A, - ;t(t - T)), red,  (3.19)

x*<§> = —v*x*<§>. (3.20)

From (3.20) we obtain that x,(7/2) = 0 and then (3.19) with ¢t = T/2 gives A, =

3:;}‘” Hence 0 < A, < aT?/8, and so (see (3.19))

a(*_)

a(V*_)
T @r=1) <

aT?>
EYEET U T)‘ < xOI= 20,5 1) 2

x4 (1) =

We Ilave proved that (x., 4x) & ds2and so (3.18) is true. Assume now that £(%, 4, 1) =
(x, A), for some (x, 4) € Q and A € [0, 1]. Then

=4+ gt(z —-T), el (3.21)

(1- i)&(%) +Amin{k() :teJ} =0. (3.22)
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From (3.21) we conclude that £ is a solution of equation (E)}, £(0) = X(7T) (= A)
and min{x(¢) : t € J} = X(T'/2). Then (3.22) gives min{x(¢) : t € J} =0, and so X is a
solution of BVP (E)Y, (1.2). By Lemma 3.3, ||X| < P, |IX'|| < Pand then |A| = |%(0)] <
P. Hence (%, A) ¢ Q. Thus (3.18) and the homotopy property yield

D(T — L(-, -, 1),2,0) = D(Z — L(-, -, 0), 2, 0) # 0. (3.23)

Finally, define K : Q x [0, 1]— C'(J) x R by

T
K(x, 4, %) = (A + / S, $)(fuls, &' (x(9)), X' () + (1 = A)a) ds,
0

A+ min{x(?) : t € J}).

Then K(-, -, 0) = L(-, -, 1) and K(-, -, 1) = S. If we verify that

(1) K is a compact operator and

(i1) K(x, A, A) # (x, A) for (x, A) € 9Q and A € [0, 1],
then (3.23) guarantees the validity of (3.16). Since f, € Car(J x Rz), standard
arguments show that X is a compact operator. To verify (ii), assume that
K(xy, Ay, Ay = (x4, A,), for some (x,, A,) € Q and A, € [0, 1]. Then x, is a solution of
BVP (E)}+, (1.2) and x,(0) = A4,. According to Lemma 3.3, ||x,|| < P, ||x,|| < P and
then |4,| = |x4(0)| < P. Therefore (x,, 4,) & 32 and K has property (ii). O

LEMMA 3.5. Let assumptions (Hy) and (H3) — (Hs) be satisfied and let x, be a
solution of BVP (E)}, (1.2). Then the sequence

(e, g Cen(0)), X, (1)) C Li(J) (3.24)

is uniformly absolutely continuous (UAC) on J; that is for each ¢ > 0 there exists § > 0
such that

/ana, & o) XY ds <& (neN),

whenever M C J is measurable and w(M) < 8, where u(M) denotes the Lebesgue
measure of M.

Proof. By Lemmas 3.1 and 3.3,
a 2 ’
X(1) > E@n — 1), |xX,(0) > alg, —1t| forteJandneN, (3.25)
where &, € (0, T), x,(§,) = x,(§,) = 0 and
Ixll < P, X, <P forneN, (3.26)

where P is a positive constant. Then g~ (x,(f)) < g~ '(P) fort € J,n € N and (see (3.1)
and (3.2))

a < fu(t, g 1 (xu(0)), x,(1))

(3.27)
<[ '(P)+ 1) + ha(g  (xu(O)[@1 (P + 1) + wa(|x,(1))],
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fora.e. t € J and for n € N. Now, from (3.27) and the inequalities

ha(g™ (n(D)wa(Ix7, (D) = halg™ (P))ea(|x,, (D)),

ha(g™" Cea()n(1x7, (D) = ha(g™" (xu(1))w(P),
we see that the sequence (3.24) is UAC on J if {h(g~'(xu())wn(|x,(D)])} is.
From the structure of the measurable set on J we deduce that the sequence
{ha(g~ ' (xu(D))wa(|X,(1)])} is UAC on J if for each & > 0 there exists § > 0 such that

for any at most countable set {(a;, bj)};cj of mutually disjoint intervals (;, b;) C J,
> jeJ(bj — aj) < 8, we have

b;
Z ha(g™ Cen()an(IX (D)) dt <& (neN).
jel ° Y

Therefore, let {(a;, b))};cj be an at most countable set of mutually disjoint intervals
(a;, b)) C J and set

To=jed (@.b)c©&) I, =1{:jel. (a.b)C . D).

Then fori e J:, andj € Ji we have (see (3.25))

/ ol Cen(O)won(1, (D)) ds < f h2< —‘( & — 12 ) Jontat, — 1) dr

ai

1 a(&,—a;) S2
=il G
/ (g™ G0 ds < /

| hz( -1< (& — z>2))wz(a(r _edi
1 a(b &) S2
- ; /\a(a,'é ) ( <2a))w2(S) ds

If a;, <&, < b;, for some j, € J, then

wy(s) ds,

by, 3 4
/ e (I o) dr < / | hz(g-‘(i(sn—z)z))wz(a(sn—z»dr

by,
+ /g i (g—‘ (g@n - l)2>>w2(a(f &)
1 a(&,—aj,) 2
=L (e (5) Jereoas
a( —&,) 2
A (g-1 (j—a))wxs) ds}.
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Set
My =ebu|J(ae — by, ag — a)), ME=EU | J(alg - &), alb; — &),
ieq]],i jeJi
where
? itJ =J,ul,
(‘::l =
(0. a(ts — ;) if U} = I\(J, UT3).
9 itJ =J,ul,
€ =
(0. a(by, — &) if (i} = I\(J, UT5).
Then

bj
S g a)wa(Ix(0) dt

jed 4

! 2
< /M}, hy (g—l (%))wz(ﬂ ds + /Mi hy (g—l (;_a>>a)2(S) ds.

By (Hs), hy(g™"(s*/(2@)))wnr(s) € Li([0, aT]) and, since u(My) < a Y j(b; — @) for
neNand k = 1,2, we see that {/(g7!(x,(1)))w2(]X,(1)])} is UAC on J which finishes
the proof. O

4. Existence results and examples.

THEOREM 4.1. Let assumptions (H;) and (Hz) — (Hs) be satisfied. Then BVP
(1.1), (1.2) has a solution.

Proof. By Lemma 2.1 (see also Remark 2.2), the solvability of BVP (1.1),(1.2) is
equivalent to that of BVP (2.1), (1.2). Theorem 4.1 will be proved if BVP (2.1),(1.2)
has a solution.

By Lemma 3.4, BVP (E)!, (1.2) has a solution x,, for each n € N. Also Lemmas 3.1
and 3.3 guarantee the validity of inequalities (3.25) and (3.26), where P is a
positive constant and &, € (0, T), x,(§,) = x,,(§,) = 0. In addition (see Lemma 3.5),
{u(t, g7 (xa(2)), X, (1))} is UAC on J and therefore {x/(7)} is equicontinuous on J.
Going if necessary to a subsequence, we can assume, by the Arzela-Ascoli theorem
and the compactness principle, that {x,} is convergent in C!(J) and {£,} in R. Let
lim,,_, » X, = xand lim, _, », &, = &. Then x satisfies the boundary conditions (1.2) and
(see(3.25)) x(¢) > (a/2)(& — 1)>,|X'(¢)| > alé — t|fort € J. Thus x(¢) > 0and |X'(1)| > 0
for t € J\{&}, and f(¢, g~ ' (x(?)), X'(¢)) is defined almost everywhere. Also

Tim £,(t, g™ (xa(0), x,(0) = /(1,87 (x(1)). ¥'(1) forae.re.

Now, by the Vitali’s convergence theorem, f(¢, g~ (x(¢)), x'(1)) € Li(J) and

lim | (s, 7 (xn(9)), X,(5)) ds = /O fGs. g7 (x(s)), X' (s)ds (1 € ).

n—oo
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Letting n — oo in the equalities

x, (1) = x,(0) + /Otfn(s, g 1 (xn(s)), xX.(s))ds (teJ, neN),

we get
X'(1)=x'(0) + /0 S, g7 (x(9), X' (s)ds (1€ ).

Hence x € AC'(J) and x is a solution of BVP (2.1), (1.2). |

COROLLARY 4.2. Let assumptions (H,) — (Hy) and (Hg) be satisfied. Then BVP
(1.3), (1.2) has a solution.

Proof. Using the function G defined in (1.4) we can write equation (1.3) in the
form

(G(x(1))" = f(1, x(1), (G(x(1))), 4.1

which is equation (1.1) with G instead of g. Since assumption (Hg) is obtained from
assumption (Hs) with G instead of g, we see that BVP (4.1),(1.2) has a solution x,
by Theorem 4.1, such that x € C°J) and G(x) € AC'(J). Set y(f) = G(x(1)) for t € J.
Then y € AC'(J) and from x(r) = G~(y(f)) we see that x € C'(J) by (H), and so
g(x)x’ = (G(x)) € AC(J). Consequently, x is a solution of BVP (1.3), (1.2). O

ExAMPLE 4.3. Consider the differential equation

) = Co<1 Fax t x—;) (1 el + |(xf,“),|5)’ 42)

where p € (0, 00), ¢, ¢z, cq € (0,00), c1,c3 €[0,00), a, B,y € (0,00), § € (0,1) and
28 < p(1 — §8). Equation (4.2) is the special case of (1.1) with g(u) = «” satisfying (H),
and

c c
ft,x, ) =co[ 1+erx*+ = )1 +eap) + —). 4.3)
xP yl°
We see that (H3) is true with ¢ = min{1/2, ¢y} and (H4) with

CoC2
ub ’

o) =1+ czu”, wr(u) = ﬁ.

hi(u) = co(1 + c1u®), h(u) = e

We now verify (Hs). Notice that

PCoCrCy < o0
(I=8)p—2p

and by a calculation we can show that there exist positive constants 4, B and uy €
(0, 00) such that for u > uy we have

1 1
/ hn(g™ ()wa(s) ds = cocacy / 5O gy =
0 0

pra
Aur if ¢; > 0,

Hi(u) = [ (e ) + 1) + g (s)]ds < |
0 Au ifc; =0,
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u s Bu?™"  if ey > 0,
K(u) = / L W
0 wi1(s+ 1)+ wa(s) Bu? ife; = 0.

Hence there exists u; > ug such that for u > u; we have

4 b .
U ife; >0,¢3 =0,

A .
U ife; =0,¢3=0,

pra .
2’{/%141’(2*” ifc; >0,c¢3 >0,

T,
ZY/%uZ*V ife; =0,¢3 >0.

Finally, from the last inequalities we deduce that if one of the cases
@a<pifc; >0,c3=0,
(b)cr=c3=0,
©a<p(l—yp)ifce; >0,c¢3 >0,
(dy e 1ifc;=0andc; >0
occurs, we have

K~ (H\(w) <

“ 1
lim/ ————ds=00
u=o0 Jo K~1(H(s))

Applying Theorem 4.1, BVP (4.2), (1.2) has a solution if one of the cases (a)—(d) is
satisfied.

EXAMPLE 4.4. Consider the differential equation

x,(l) ' _ o C1 (&)
(m) = co(x(2))" + x(1)P + W’ 4.4)

where p € (0, 1), «, B, y, ¢; are positive constants (i = 0, 1, 2) and
26+y <1, a<1l—p. 4.5)

Equation (4.4) is the special case of (1.3) with g(u) = 1/(max{1, u})? satistying (H>)
since

u foru € [0, 1],

1-p _
L‘l_p” for u € (1, 00),

Glu) = /0 " g(s)ds =

and
(&)
(max({1, x})?7|y|”

C
St x,y)=cox* + —; +
X

We can see that (H3) is satisfied with ¢ = min{1/2, ¢y, ¢;} and (Hy) with

hi(u) = cu®, hz(u)=c<i+;>’ o) =1, w2(u)=uiy’

P (max{l, u})rr
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where ¢ = max{cy, 1, c2}. We shall show that (4.5) guarantees the validity of (Hp).
Since

1 u foru € [0, 1],
G (u)=

IW for u € (1, 00),

we have

1 1 1 1
/0 I (G™H(s?))wo(s) ds = c/o (szﬂ—+y + S7) ds < oo.

Further foru > 1,
u 1
Hy(u) = / [hl(G_l(s) + 1)+ hz(G_l(s))] ds = c/ |:(s + 1% + siﬁ + 1] ds
0 0

ro [ [T+

1
(VA =p)s+p)

1
+ d.
(Va—mﬁEW}‘

and, for u > 0, we have

u s u J+y
K(u):/o mds:/o l—i——s”ds
Thus there exist a positive constant 4 and u; € (1, co) such that
Hy(u) < Au'tT5 K@) > Au*> foru > uj. (4.6)
Now from (4.6) we deduce that
K\ (o) < V' 5 (= ), .7)

where u, (> uy) is a sufficiently large number. Since @ < 1 — p by (4.5), we see that

oo
lim / ————ds=00
u=co Jo K=1(Hy(s))

We have verified that (Hg) is true. Applying Theorem 4.1, BVP (4.4),(1.2) has a
solution.
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