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Abstract

We applied three statistical classification techniques—linear discriminant analysis (LDA), logistic regression, and random
forests—to three astronomical datasets associated with searches for interstellar masers. We compared the performance of
these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated
interstellar masers. We also discuss the interpretability of the results of each classification technique. Non-parametric
methods have the potential to make accurate predictions when there are complex relationships between critical parameters.
We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest
dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques,
rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of
the predictions obtained is not being limited by the use of parametric models. We also found that for LDA, transformation
of the data to match a normal distribution led to a significant improvement in accuracy. The different classification
techniques had significant overlap in their predictions; further astronomical observations will enable the accuracy of these
predictions to be tested.

Keywords: masers – methods: classification – stars: formation

1 INTRODUCTION

In recent years, astronomical instrumentation across a range
of wavelength bands has improved to the point where high-
resolution, sensitive surveys of large areas of the sky are
becoming much more common (e.g. Benjamin et al. 2003;
Johnston et al. 2007). The higher data rates from new in-
strumentation and large surveys give the opportunity to col-
lect detailed information on very large numbers of sources
and undertake more sophisticated statistical investigations of
their properties. This will enable both more reliable iden-
tification of sub-groups within the broader population, and
identification of rare or unusual objects. However, these new
instruments also present the astronomical community with a
challenge of how best to extract the maximum utility from
large volumes of data.

The desire to accurately and efficiently classify astronomi-
cal sources identified in large surveys into different groups is
an increasingly common one. Attempts to develop efficient
criteria for targeted searches for interstellar masers, is one

specific example of an application of survey source classifi-
cation. A number of studies have found that star-formation
regions with an associated interstellar maser differ signifi-
cantly in their infrared or millimetre continuum properties
from the majority of the population (e.g. Ellingsen 2005,
2006; Chen et al. 2011). In developing criteria for targeting
future searches, it is desirable to identify a large fraction of
the population of interest while including only a small num-
ber of sources which do not yield detections. In the termi-
nology of classification, it is important to minimise both the
number of false-negatives and false-positives. A related issue
is in understanding the characteristics through which the clas-
sification has been achieved. For example, if you are able to
develop efficient criteria for targeting a search for interstellar
masers on the basis of infrared or millimetre continuum prop-
erties, what is the physical meaning of those characteristics—
do they correspond to a particular mass range, or evolu-
tionary phase of the associated high-mass star-formation
region?
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Maser emission occurs naturally in a range of astrophysi-
cal environments, including the molecular gas close to newly
forming stars, the envelopes of late-type stars, and close to
the nuclei of some active galaxies. Masers have proven to be
a reliable signpost of the very early stages of high-mass star
formation (e.g. Ellingsen 2006); with recent improvements in
the availability of sensitive large-area surveys at mid-infrared
through millimetre wavelengths, they are increasingly being
used as tools to study high-mass star formation (e.g. Tit-
marsh et al. 2013). Masers can provide information on the
dynamics of the star-formation region through observations
of their kinematics (e.g. Goddi, Moscadelli, & Sanna 2011),
on the magnetic field from observations of the polarisation
(e.g. Surcis et al. 2012), and potentially the presence and
absence of different transitions can provide an evolutionary
timeline (e.g. Ellingsen et al. 2007; Breen et al. 2010). If it is
possible to use classification techniques to reliably identify
which regions host different types of maser transition, then
an understanding of the physical properties of those regions
in combination with the maser-based evolutionary timeline
could provide important insights into the formation of high-
mass stars.

These types of classification problems are commonly en-
countered in a wide range of scientific disciplines, and from
the broader literature we have been able to identify a number
of commonly used classification techniques. When consid-
ering different classification methods, Breiman (2001b) has
suggested that there is a trade off between parametric tech-
niques that are easy to interpret but not always as accurate,
and non-parametric methods that are more difficult to inter-
pret, but deliver a higher level of accuracy. Here, we use
three different classification techniques to investigate their
strengths and weaknesses when applied to the specific prob-
lem of efficiently identifying target sources for searches for
interstellar masers. The three methods we have chosen for
our investigation are linear discriminant analysis (LDA), lo-
gistic regression, and random forests. These three methods
were chosen because they have proven effective across a wide
range of problem domains, they are relatively easy to imple-
ment, and they include two parametric methods (LDA and
logistic regression) and one non-parametric method (random
forests).

LDA uses similar calculations and techniques to princi-
pal component analysis (PCA) which is quite widely used
in astronomy (e.g. Lo et al. 2009; Einasto et al. 2011).
Kobel et al. (2009) used LDA in their classification of differ-
ent photospheric magnetic elements on the Sun. They found
that the predictions they were able to make on the basis of
LDA showed good agreement with the results from previ-
ous studies. This can in part be credited to the semi-artificial
segregation between the classes of photospheric magnetic
elements, as the variables chosen were those with the most
significant differences in brightness values. Logistic regres-
sion has been less commonly applied in astronomy than PCA,
although it has previously been used to successfully identify
which star-formation regions are more likely to host different

types of interstellar masers (e.g. Breen et al. 2007; Ellingsen
et al. 2010). Yuan et al. (2010) and Song et al. (2009) have
both shown that logistic regression can be an effective means
of predicting solar flares. Random forests are a relatively new,
non-parametric classification technique which has proven to
be very effective in other fields, such as ecology. Cutler et al.
(2007) compared the results of classifying ecological data,
using the same classification methods as are used here and
found that random forests had the highest accuracy. Within
astronomy, random forests have been used by Bailey et al.
(2007) to improve the reliability of finding supernovae from
images, while Carliles et al. (2010) used them to assign pho-
tometric redshifts. Recently, they have also been used as the
basis of processes for automated rapid classification and de-
cision making. Morgan et al. (2012) used random forests
as part of a method for making time-efficient recommenda-
tions as to which gamma-ray burst events are likely to be
high-redshift in order to prioritise whether a specific event
deserves additional observing time. They found that by ob-
serving the top 20% of recommended events, it was possible
to identify 56% of the high-redshift bursts, while using the
top 40% of recommendations allows identification of 84%
of high-redshift events. Mirabal et al. (2012) used random
forests to accurately classify whether unidentified objects
detected in Gamma-rays by the Fermi satellite were likely to
be Active Galactic Nuclei (AGN) or pulsars (they achieved
accuracies of 97.7 and 96.5% for AGN and pulsar identifica-
tion, respectively).

To better understand the strengths and limitations of these
different classification techniques, both in terms of their ef-
ficiency and the degree to which the outcomes of the clas-
sification process can be related to the properties of the as-
tronomical sources, we compared their performance on three
published datasets (Breen et al. 2007; Ellingsen et al. 2010;
Chen et al. 2012). For each of these three sets of data, we ap-
plied the three classification techniques to make predictions
as to which infrared (or millimetre) sources are likely to also
be associated with masers. In Section 2, we describe in more
detail each of the classification techniques used. The proper-
ties of each of the datasets are outlined in Section 3 where
we examine the results of applying the different classification
techniques in each case.

2 CLASSIFICATION TECHNIQUES

In the context of the current work, our data typically consists
of astronomical sources for which a range of parameters (e.g.
the intensity in a particular wavelength range) have been
measured, along with parameters which are related to the
quality or uncertainty in the measurement and others which
identify the particular astronomical object (e.g. the source
number or coordinates). These parameters are all potential
inputs to the different classification techniques and we refer to
these as predictor variables. In the field of machine learning,
these are often referred to as features, however, as that term
frequently has a different meaning in astronomical literature
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we do not use that terminology here. For some (sometimes
all) of the sources in the data set, we also have information
as to whether or not that source has an associated maser
emission from a specific molecular transition. Hence, we are
seeking to accurately classify our astronomical sources into
two classes, those with an associated interstellar maser and
those without.

2.1. Linear discriminant analysis

LDA finds the linear combination of predictor variables
which maximises the separation of the different classes and
minimises the variation within classes (Feigelson & Babu
2012). LDA can be visualised geometrically as projection
from a high-dimensional space onto a line. When given a
new source to classify, LDA uses this linear combination
to convert the high-dimensional data to a real number, and
the classification of the sample is determined by comparing
this number to a threshold value. The technique is relatively
simple and so is unsuitable if there are complex, non-linear
interactions between the variables. LDA is a technique of di-
mensionality reduction similar to PCA, which is more com-
monly used in astronomy. Both LDA and PCA attempt to
model the data with linear combinations of the predictor
variables; the difference is that PCA does not use classifica-
tion information in producing the model, whereas LDA does
(Feigelson & Babu 2012).

The assumptions of LDA are that the data follows a mul-
tivariate normal distribution for each class, classes may have
different means but are assumed to have the same variance
structure. This makes LDA a parametric method in the sense
that it assumes a particular model of the data. Most as-
tronomical data are not normally distributed, so transfor-
mations of the variables are usually required. For each of
the three datasets we studied, LDA was applied to both
the original data and to the transformed data as a com-
parison. Data Set 2 required an inverse function to nor-
malise the data (each predictor variable was transformed
via a 1

x function). In the case of Data Sets 1 and 3 where
the samples were naturally clustered, an inverse transfor-
mation would have destroyed the bimodality present. For
this reason, a log transformation was selected as it im-
proved the normality of the data while still being easy to
interpret.

LDA models were fitted using the lda function in R
(R Core Team 2013, part of the MASS package), we left
the prior input parameter at its default setting which is
to assume that probability of being in a particular class is
equal to the relative frequency of the class in the training
data.

2.2. Logistic regression

Logistic regression is a form of generalised linear modelling
(GLM) that is used to predict the probability of an event oc-
curring; in this case, whether or not an astrophysical source

has an associated interstellar maser. The probability of oc-
currence P is calculated from

P = 1

1 + e−z
,

where z = b0 + b1.x1 + · · · + bn.xn, the b values are regres-
sion coefficients and the xi values are the predictor variables.
P is then compared to a cut-off threshold of 0.5 (50% like-
lihood) to determine whether an object is predicted to have
an associated maser, or not. Like LDA, logistic regression is
also a parametric method.

Linear regression assumes that the response variable is nor-
mally distributed, in contrast logistic regression assumes that
the response variable follows a binomial distribution (which
is applicable in our case of two classes). This means that the
method of least squares (used in linear regression), cannot be
applied to logistic regression (Hosmer & Lemeshow 2000).
Instead, maximum likelihood (formulated by Fisher 1922) is
used to estimate the parameters of the model. The likelihood
function is calculated using the product of contributions to
the model from each of the predictor variables (Hosmer &
Lemeshow 2000).

Logistic regression was implemented using the function
glm which is part of the base R package (R Core Team
2013). To perform a logistic regression, the family option in
glm is set to binomial and the link function is set to logit.
It was not feasible to alter any other input parameters in the
function to produce our models.

2.3. Random forests

Classification trees are a non-parametric technique of clas-
sification (in contrast to both logistic regression and LDA),
which means that they do not assume an underlying model of
the data (Cutler et al. 2007; Carliles et al. 2010). Classifica-
tion trees can be more accurate than parametric approaches
when complex interactions occur between the predictor vari-
ables. This could be the expected case for maser association
with infrared or millimetre sources, as well as a broad range
of astronomical classification problems. Individual classifi-
cation trees may not be very accurate, especially when there
are more than a few predictor variables, however, a collec-
tion of trees grown independently on randomly perturbed
versions of the data greatly increases the accuracy of predic-
tions (Breiman 2001c; Cutler et al. 2007). Random forests
work by producing large numbers of classification trees and
then determining the classification of a particular sample (in
our case, an astronomical source) by allowing each of these
trees to ‘vote’ and then taking the majority rule (Breiman
2001a). This voting system is also how the probability of a
sample being classified into a certain group is calculated; by
dividing the number of trees voting for a certain classification
by the total number of trees.

To produce individual classification trees in a random for-
est, a bootstrap sample is selected for each tree. For a data
set with N entries, N samples are taken. Because sampling is

PASA, 33, e015 (2016)
doi:10.1017/pasa.2016.13

https://doi.org/10.1017/pasa.2016.13 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2016.13
https://doi.org/10.1017/pasa.2016.13


4 Manning et al.

done with replacement, approximately two-thirds of the orig-
inal data occurs at least once in each bootstrap sample (Efron
& Tibshirani 1994). Hastie, Tibshirani, & Friedman (2001)
showed that bootstrap sampling causes the variance of the
estimated class to converge to a lower limit when more trees
are added to the forest, and so rarely overfit (Breiman 2001c).
A classification tree is grown from each bootstrap sample us-
ing recursive binary partitioning. The branching points of the
trees are called nodes. In standard trees, the predictor variable
at each node is chosen based on the best split, which is deter-
mined by the Gini index (a measure of statistical dispersion,
see Hastie et al. 2001, pg 271). In a random forest, the variable
providing the best split is chosen from a random subset of pre-
dictor variables (Liaw & Wiener 2002). The predictor vari-
able and the subset of predictor variables from which it is cho-
sen is independent of any other nodes’ variable choices. This
approach decreases the dependence between individual trees.
The splitting process continues until further subdivision no
longer decreases the Gini index. The final classification given
by each tree depends on the terminal node the source has been
allocated to.

A nice feature of random forests is that they have an in-
built way of estimating the classification error because of
the use of bootstrapping to select slightly different data for
each tree. Data not included in the bootstrap sample (ap-
proximately one-third of observations) for a particular tree
are referred to as out-of-bag (oob) values. The tree grown
from each bootstrap sample is used to predict the classifi-
cation for each of the oob values, giving an estimate of the
classification error as well as a means to compare the impor-
tance of each variable in the classification process (Breiman
& Cutler 2013). The importance of a variable is expressed by
the difference between the probability of predicting the class
correctly in shuffled oob data (the sample order is rearranged
to eliminate systematic errors) compared to the unshuffled
oob data (Cutler et al. 2007).

Random forests also give a natural metric for determining
the similarity of two different astronomical sources (or other
groups of samples). Proximities between two sources are
calculated in the random forest process. If a pair of sources
end up in the same terminal node, their proximity is increased
by one. Similar source pairs end up in the same terminal node
more often than dissimilar ones. The proximities are then
normalised (divided by the total number of trees) and the
proximity of a point and itself is set to be one. The proximities
are then expressed as a symmetric matrix, where the diagonal
entries all have the value one. The proximity matrix can
be used as input for multi-dimensional scaling (MDS), as
a way of visualising the classification results (displayed in
Section 3).

A potential drawback of random forests is that they cannot
be used to directly test hypotheses (Cutler et al. 2007). They
also do not give a clear representation of the actual classifi-
cation process. However, although the internal calculations
are difficult to interpret, they produce useful properties such
as relative variable importance and an estimate of the clas-

sification error without extra external calculations (Breiman
& Cutler 2013).

To create the random forests used in the modelling and
classification, we used the R function randomForest (in
the randomForest package). For an introduction to the
usage and features of randomForest functions in the R
environment, see Liaw & Wiener (2002). There are a number
of parameters that can be varied when growing the random
forest in order to optimise its classification and predictive
accuracy. These include the number of trees in the forest,
the number of variables randomly sampled as candidates at
each split, and the maximum number of terminal nodes in
the trees. The minimum size of the terminal nodes can also
be varied, where a larger number leads to smaller trees which
take less time to grow. Setting the node size to k means that
no node with fewer than k cases will be split (Breiman &
Cutler 2013). A terminal node size of 1 is therefore the most
accurate, but in cases with large datasets, memory constraints
may require this to be higher. We found that altering these
parameters did not consistently increase the sensitivity or
specificity significantly, so the default values for the param-
eters were used: 500 trees grown in the forest, a node size
of 1 (default for regression is 5), and the maximum possible
number of terminal nodes. The default number of variables
chosen at each split is

√
p for classification and p/3 for re-

gression (rounded to the nearest integer), where p is the total
number of predictor variables in the data set. Other factors
that can be varied are whether or not the cases are sampled
with replacement (the default, which we used, is with re-
placement), and the prior probability of each class occurring
can also be set with the default being to assume equal class
probabilities.

For both Data Set 2 and 3 (where predictions were done),
random forests were grown using 3 000 trees rather than
the default 500. Since each tree is grown independently, this
is equivalent to combining the results of multiple smaller
forests. 3 000 trees was chosen for both data sets because
this produced the most accurate results in the cross validation.
Generally, random forests is robust against over-fitting (see
Breiman 2001c), however, in the case of Data Set 2, due to the
very small training set compared to its number of predictor
variables, more than 3 000 trees decreased the classification
accuracy. In the case of Data Set 3, using more than 3 000
trees had no effect.

2.4. Accuracy of classification techniques

There are four possible outcomes of the classification of each
astronomical source. The two desired outcomes are that the
classification technique can correctly identify a source which
does have an associated maser (a ‘true positive’), or it can
correctly identify a source as not having a maser (a ‘true
negative’). A perfect classification would have all samples
with one or the other of these outcomes. There are however,
two ways in which the classification scheme can give an
incorrect outcome and depending on the circumstances these
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Table 1. The relationship between the four possible classifica-
tion results and the calculated values of the sensitivity and the
specificity.

Know negatives Known positives

Classified as negative True negatives False negatives
Classified as positive False positive True positive

Specificity
(true negative rate)

Sensitivity
(true positive rate)

are not necessarily of equal importance. A ‘false positive’
outcome is where a source which does not have an associated
maser is classified as being associated with one, while a
‘false negative’ occurs when a source which does have an
associated maser is classified as not having one associated
(see the Confusion Matrix in Table 1).

For each classification method, we calculated both the
sensitivity (known as recall in machine learning) and speci-
ficity. In this context, the sensitivity, or true positive rate
(TPR), is the percentage of maser associations correctly pre-
dicted by the model, and specificity is the percentage of maser
non-associations correctly predicted, or the true negative rate
(TNR).

Sensitivity (TPR) = True Positives

True Postives + False Negatives

Specificity (TNR) = True Negatives

True Negatives + False Positives

2.4.1. Predictor variable importance

Logistic regression performed using R has two techniques for
determining the importance of the variables included in the
model. The first is a set of p-values provided when the logistic
regression is performed. The second is the in-built stepAIC
function, which includes all possible predictor variables in
the starting model and iteratively removes variables which
do not significantly contribute to the model to yield the
most parsimonious model with the greatest predictive power.
To determine which variables to include in the logistic re-
gression models, we used a combination of the stepAIC
function and manual variable selection. Variables that did
not increase the accuracy of the model were excluded (see
Section 3).

For LDA, variable selection was done manually. We used
the logistic regression’s selection as a starting point, and then
included additional predictors if they improved the prediction
accuracy.

Random forests includes an internal calculation of the
mean decrease in accuracy for each of the variables utilised,
which is a measure of how poorly the model performs when
that variable is not included. Thus, the higher the value is,
the more the predictor variable contributes to the accuracy
of the model. Negative values decrease the accuracy and
values close to zero offer little or no effect. It is worth not-

ing that random forests is potentially robust enough to deal
with all available variables and so including them all in the
model does not generally decrease the accuracy significantly
(Feigelson & Babu 2012).

2.4.2. Cross validation

The aim of classification is to build models that will gen-
eralise well to new data. When constructing models, there
is a danger in over-fitting to the training data. In order to
determine the accuracy of each of the classification methods
on the three data sets, we used a 10-fold cross validation
technique. Using a fitted model that has been trained on a
randomly chosen 90% of the data, the classification of the
remaining tenth is predicted. This procedure of training and
prediction is then repeated 1 000 times in order to obtain
an estimate of the classification error. Repeating the cross
validation ensures that a high number of the possible com-
binations of the data are used, reducing sampling bias as-
sociated with randomly folding the data. Repeated 10-fold
cross validation of this kind is especially useful when mod-
elling a random forest as the over-fitting associated with re-
gression tree techniques is compensated for by the generous
error estimation of the cross validation (Borra & Di Ciaccio
2010).

In repeated 10-fold cross validation, the results from the
multiple runs are averaged. In this case, the averaged cross
validation produced a mean probability of being associated
with a maser for each sample. A source was classified as
a maser if the probability was 50% or above. The percent-
age of predicted classifications were then compared to the
actual classifications (maser source or non-maser source)
to determine the accuracy for each model for each of the
three data sets. Adjusting the cut-off threshold for maser
classification from 50% was also investigated to explore the
trade-off between sensitivity and specificity of the model.
This is useful information to have available when it is im-
portant to obtain all the positive classifications, even when
it means many false positives are given, and alternatively
the model can be adjusted so that there is only a very small
chance of a false positive, at the expense of false negative
classifications. The receiver operating characteristic (ROC)
curves (explained in Section 2.4.3), display the results of this
analysis.

2.4.3. Receiver operating characteristic curves

An ROC curve plots the TPR (sensitivity) against the false
positive rate (1 − specificity), effectively showing the trade-
off in prediction power for accuracy in a given classification
model. The diagonal line y = x represents randomly classi-
fying the samples, with half predicted as positive and half
as negative. Anywhere in the space above, this line means
that the model is better than random classification, with the
best possible system showing 100% sensitivity with no false
predictions, resulting in a point in the top left-hand corner.
ROC curves were plotted here to compare each classification
method for each data set in Figures 2, 5, and 8.
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Figure 1. Boxplots comparing the variables from Data Set 1 between the sources with an associated water maser and those without. The outline in each
of the boxplots represents the range between the first and third quartiles, with the median being the solid line horizontally through the box. The vertical
lines outside the box extend to the minimum and maximum values, with any outliers (values separated from the quartiles by more than one and a half times
the interquartile range) shown separately as dots. In this case, due to the very small number of samples being associated with a maser in this data set, the
individual sample points are also plotted.

3 RESULTS

3.1. Water masers associated with star-formation
regions in the RCW106 giant molecular cloud

Breen et al. (2007) undertook a complete search for 22 GHz
water masers within the giant molecular cloud RCW 106.
This search detected nine 22 GHz water masers and the re-
gion searched included 73 1.2-mm dust clumps observed and
characterised by Mookerjea et al. (2004). Seven of the dust
clumps were found to be associated with masers (Breen et al.
2007). Breen et al. used a form of logistic regression called
binomial GLM to investigate the properties of the astronomi-
cal sources (in this case dust clumps) with and without water
masers in RCW106. They found that water masers were as-
sociated with those sources which are denser, more massive,
and have higher luminosity.

There are clear differences in the values of all the predic-
tor variables between those sources with an associated water
maser and those without, as is demonstrated by the boxplots
shown in Figure 1. However, it should be noted that there
are varying degrees of overlap in the ranges observed for
the maser associated sources and those which are not. The
obvious difference in the distributions for all the predictor
variables means that we might expect that they should all
contribute to the classification and that the relative impor-
tance might also be similar. The variable importance ratings
returned by the random forest classification are a measure
of the degree to which the classification trees utilised each
predictor variable. The five predictor variables available as
inputs for the classification process were : peak flux den-
sity, source radius, total integrated flux density, dust mass
(calculated assuming a temperature of 40 K and optically
thin dust emission), and column density. Using only source
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Table 2. The predictor variables that increased the classification
accuracy of the various methods for Data Set 1. Random forests
provides an internal calculation of the mean decrease in accuracy
(the higher the value, the more important the variable), logistic
regression provides p -values (the lower the value, the more signif-
icant the variable’s contribution to the model), and LDA provides
no internal measurement of the importance of each variable, so it
is just noted which variables were used (see Section 2.4.1).

Random forests Logistic reg. LDA Norm. LDA

Radius 10.68 0.1388 Y Y
Int. flux 16.35 0.2485 Y Y
Density Y

Table 3. The results of cross-validating random forests, logistic
regression, and LDA (without and with transformation of the pre-
dictor variables) classification and prediction for Data Set 1.

Random
forests

Logistic
reg. LDA

Norm.
LDA

True neg. 66 65 66 65
False pos. 0 1 0 1
False neg. 2 2 3 2
True Pos. 5 5 4 5
Specificity (%) 100 98.5 100 98.5
Sensitivity (%) 100 71.4 57.1 71.4

radius and the total integrated flux density provided the high-
est accuracy for random forests, logistic regression and LDA,
while LDA using the ‘normalised’ data (transformed using
a log function, see Section 2.1) was able to utilise the col-
umn density too. Table 2 shows the comparison of which of
the predictor variables were included in the models based
on their contributions to an increase in classification accu-
racy. Breen et al. (2007) showed that their sample of water
masers preferred denser, more massive and more luminous
sources. Our models indicated that the radius, luminosity and
in the case of LDA on the normalised data, the density were
important variables in predicting whether the sources were
associated with a maser or not. Our results are in agreement
with Breen et al. (2007), except that our models were not
improved by inclusion of mass as a predictor variable.

Table 3 summarises the results we obtained from cross val-
idation of the three different classification techniques under
consideration (for details, see Section 2.4.2). Specificity val-
ues were high, due to the fact that the majority of the sources
were not associated with masers, with the sensitivity values
being lower in each case. For Data Set 1, random forests per-
formed the best considering both sensitivity and specificity.
Notably, there are very few false positive classifications over
all the models, which is most likely due to the data being
unbalanced in that the majority of the samples were not as-
sociated with masers. Another clear result is that performing
LDA on the log transformed data increases the model’s sen-
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Figure 2. Receiver operating characteristic curves showing the results of
the cross validation for Data Set 1. The diagonal line y = x represents
randomly classifying the samples, with half predicted as positive and half
as negative. For definitions of classification results, see Section 2.4.

sitivity, making it comparable to logistic regression in this
case. The advantage of transforming the data is also obvious
in the ROC shown below in Figure 2 (for an explanation on
ROC curves, see Section 2.4.3).

Figure 2 shows that LDA under-performs for Data Set 1,
however, when LDA is applied to the transformed data it is
more accurate than logistic regression. The relatively small
data set causes the apparent steps in the plot and this is also
evident for Data Set 2 in Figure 5. The ROC curves for Data
Set 3 (Figure 8) are much smoother because there are 214
samples rather than 73, or 32. Despite the apparent steps
in the ROC curves, the plot very clearly shows the most
accurate classification technique for this data set (the non-
parametric method of random forests) and the least accurate
(the parametric method of LDA using untransformed data).

Figure 3 shows a MDS plot for the full data set. MDS plots
give a visual representation of the distances between proxim-
ities identified in the random forest implementation; sources
that the random forest process identifies as being similar are
clustered within the MDS plot. The distance values are ar-
bitrary, they are simply relative magnitudes, plotted here as
Dimension[1] and Dimension[2]. Figure 3 shows the four
correctly identified maser sources in a group at the top-left,
separated from the non-maser sources. ‘Border-line’ classi-
fications were samples with a predicted maser association
between 45 and 55%, with the last correctly classified maser
shown just below the others as such. The model was not
sensitive enough to detect the differences in the predictor
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variables for the other maser-associated sources (which is
why they were classified as not having an associated water
maser). This is probably due to the small number of sources
in this data set.

3.2. The properties of water maser-associated YSOs
in the LMC

Gruendl & Chu (2009) used the Spitzer Space Telescope
Surveying Agents of Galaxy Evolution (SAGE) Legacy pro-
gramme data (Meixner et al. 2006), along with other public
data sets to identify high- and intermediate-mass young stel-
lar objects (YSOs) in the Large Magellanic Cloud (LMC).
Gruendl & Chu identified 855 definite YSOs in the LMC and
compiled near- and mid-infrared photometric measurements
for the sample. Ellingsen et al. (2010) made Australia Tele-
scope Compact Array (ATCA) observations for the 22 GHz
transition of water towards all known star-formation maser
sites in the LMC, resulting in a total of 13 water masers in
the LMC for which positions are known to arcsecond accu-
racy. The fields observed for the water maser observations
included a total of 32 sources from the Gruendl & Chu (2009)
YSO catalogue. Of the 13 water masers, 11 are within 2 arc-
sec of a Gruendl & Chu YSO, meaning that from a total
catalogue of 855 sources there are 11 which are known to
have an associated water maser and 22 which are known not

to. The 33 sources for which there is information on whether
or not they have an associated water maser can be used as a
training set for classification/prediction.

Ellingsen et al. (2010) used the infrared data from Gruendl
& Chu (2009) to construct the spectral energy distribution
(SED) of each of the YSOs using the online SED-fitter of
Robitaille et al. (2007) and this forms Data Set 2. For some
wavelength ranges, the infrared data for the Gruendl & Chu
(2009) sample is incomplete, hence there is missing data.
However, the results of the SED modelling contain no miss-
ing data (although there is likely to be greater uncertainty
in the fitted SED parameters for those sources which have
less infrared photometric measurements contributing to the
fitting process). All available information about a source is
incorporated into the SED model. According to Ellingsen
et al. (2010), there is very little variation in the amount of in-
formation available for each SED fit, with between seven and
nine infrared intensities available for each source and in the
majority of cases the chi-squared values for the resulting SED
fits are reasonable. Due to the large number of sources mod-
elled, we made no attempt to remove the sources where this
was not the case, with the exception of one maser-associated
source with more missing data than the others (making our
training sample 32 with 10 known masers, and the total data
set 854).

Fifteen predictor variables were extracted from the SED
fitting results; distance to the source, age, radius, mass, and
temperature of the central source, envelope accretion, or in-
fall rate, outer and inner radius of the envelope, cavity open-
ing angle, disc mass, ambient density, inclination of source to
line of sight (LoS), average integrated flux density (from the
outside of the YSO to the stellar surface, along the LoS), total
luminosity, and mass of the envelope. Table 4 shows which
variables were used in each model and how they contributed
to that model. Across the different methods, the most impor-
tant predictor variables appeared to be the mass of the central
source, the outer envelope radius, the inclination towards the
LoS, and the mass of the envelope. In comparison, Ellingsen
et al. (2010) found that the majority of YSOs with an asso-
ciated water maser have high luminosities, central masses,
and ambient densities. They also tend to have redder infrared
colours than those YSOs which are not associated with a
maser. The distributions of the high-importance variables are
shown in Figure 4.

Unlike Data Set 1, these data include some sources where
the maser association is known (32) and some where it is
unknown (822). This means predictions can be made on the
unknown sources. To test how well the various methods will
generalise to data where maser association is unknown, a
cross-validation was applied. For a full description of the
technique used, see Section 2.4.2. The predictions were then
compared with the actual maser association. The results are
given in Table 5.

The SED Data Set 2 had a fairly small number of entries
with known maser status (32), but a large number of possible
predictor variables (15). The results for the cross validation
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Figure 4. Only the predictor variables from Data Set 2 showing noticeable differences between those YSO with and without an associated water maser are
shown. Due to the very small data set, the individual sample points are also plotted. Some of the variables are on logarithmic scales to better illustrate the
differences. For an explanation of boxplots, see Figure 1.

are shown in Table 5 and in the form of ROC curves in
Figure 5.

The cross validation results show that overall, the sensi-
tivity values were quite poor, with LDA performed on the
normalised data being the most accurate method. This was
possibly due to the small data set, methods could not con-
struct an accurate model using only 29 sources and then pre-
dicting on the remaining 3. These results can be visualised in
a ROC curve shown in Figure 5, where in a number of cases
the models fall below the y = x diagonal line, meaning that
they perform worse that simple random classification with
a 50% chance of a source being associated with a maser.
Due to these poor results, we decided not to use this training
data to make predictions on the remaining 822 sources with
unknown maser status.

It is evident from the MDS plot in Figure 6 why the random
forest model had a low sensitivity; the data is not clustered
in groups to the same extent as Data Set 1 (Figure 3). The
known maser sources are represented by the black and red

triangles, while the blue circles and green diamonds rep-
resent the known non-maser sources. This could be due to
the model’s inability to condense the 15 predictor variables
(equivalent to 15 dimensions) into a two-dimensional plot,
or another bi-product of the small sample size.

In summary, the variables that had the most influence over
the various classification models were mass of the central
star, the outer envelope radius, the inclination towards the
LoS, and the mass of the envelope (see Table 4). The likeli-
hood of a YSO being associated with a water maser source
did not appear to depend heavily on variables such as the age
of the source, mass of the disc, ambient density, or average in-
tegrated flux. Ellingsen et al. (2010) applied Mann–Whitney
tests to the different variables to find the difference in the
medians of the distributions of those associated with masers
and those not associated. Statistically significant differences
were found in the data for the mass of the central star, the
outer radius of the envelope, ambient density, inclination to-
wards the LoS, and the total luminosity; results that agree

PASA, 33, e015 (2016)
doi:10.1017/pasa.2016.13

https://doi.org/10.1017/pasa.2016.13 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2016.13
https://doi.org/10.1017/pasa.2016.13


10 Manning et al.

Table 4. The predictor variables that increased the classification
accuracy of the various methods for Data Set 2. The value given
for random forests is the mean decrease in accuracy, while logistic
regression provides p -values. The most important variables in
logistic regression and random forest models are shown in bold.
For further explanation, see Table 2.

Random forests Logistic reg. LDA Norm. LDA

Distance Y
Age Y
Mass 3.943 0.0805 Y
Radius 2.193 0.395 Y Y
Temperature 2.091 Y
Accretion 2.257 Y Y
Outer env. 0.1609 Y
Inner env. 1.099 Y Y
Cavity angle 3.891 Y Y
Disc mass Y Y
Amb. density 0.1935
Inclination 2.677 Y Y
Av. int. flux Y
Total lum. 1.047
Env. mass 4.202 0.2765 Y Y

Table 5. The results of cross-validating random forests, logistic
regression, and LDA classification and prediction for Data Set 2
(association of water masers with infrared YSO in the LMC) using
the full sample of 32 sources with known water maser association
status as the training sample. For definitions of classification results,
see Section 2.4.

Random
forests

Logistic
reg. LDA

Norm.
LDA

True neg. 20 17 15 20
False pos. 2 5 7 2
False neg. 6 8 5 4
True pos. 4 2 5 6
Specificity (%) 90.9 77.3 68.2 90.9
Sensitivity (%) 40.0 20.0 50.0 60.0

with our analysis. It was previously suggested that the in-
clination angle is one of the most influential predictors in
determining the SED for YSOs (Robitaille, et al. 2006). As
a result of the orientation of the cavity, the inclination an-
gle dictates the contribution from the inner, hotter regions
of the envelope to the SED. Hence, our classification results
here agree with those from previous studies, indicating that
the physical variables mentioned above are likely to dictate
water maser-association with certain YSOs in the LMC.

3.3. The properties of dust continuum emission
associated with class I methanol masers

The final data set we investigated (hereafter, Data Set 3)
was a search for 95 GHz class I methanol masers targeted
towards regions selected on the basis of both their emission at
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Figure 5. Receiver operating characteristic curves showing the results of
the cross validation for Data Set 2. The diagonal line y = x represents
randomly classifying the samples, with half predicted as positive and half
as negative. For a full description of a ROC curve, see Section 2.4.3.
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mid-infrared and millimetre wavelength ranges (Chen et al.
2012). The mid-infrared data was taken from the Spitzer
Space Telescope GLIMPSE (Galactic Legacy Infrared Mid-
Plane Survey Extraordinaire) programme, which provides
photometric measurements in four wavelength bands (3.6,
4.5, 5.8, and 8.0 μm; Benjamin et al. 2003; Churchwell
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Figure 7. The variables used in the classification and prediction of Data Set 3. Some of the variables are on logarithmic scales to better illustrate the
differences. For an explanation of boxplots, see Figure 1.
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Table 6. The predictor variables that increased the classification
accuracy of the various methods for Data Set 3. The value given
for random forests is the mean decrease in accuracy, while logistic
regression provides p-values. The most important variables in lo-
gistic regression and random forest models are shown in bold. For
further explanation, see Table 2.

Random
forests

Logistic
reg. LDA

Norm.
LDA

Major axis 4.124 0.2781 Y Y
Minor axis 10.28 0.3867 Y Y
Position angle 1.758 0.0952 Y
Angular radius 9.218 0.3252
40 arcsec 27.94 0.0312 Y Y
80 arcsec 21.81 0.4267 Y
120 arcsec 14.24 0.6531 Y
Int. flux den. 15.31 0.1158 Y Y

et al. 2009), while the millimetre continuum data was from
the Bolocam Galactic Place Survey (BGPS) (Aguirre et al.
2011). The motivation for this survey was a previous search
for 95 GHz class I methanol masers by Chen et al. (2011).
The authors targeted infrared sources for which GLIMPSE
images show extended emission with an excess in the 4.5-
μm band (thought to indicate an outflow from a high-mass
YSO). It was found that those GLIMPSE sources with an
associated BGPS source (54 of the 62 sources which lay
within the BGPS region) were much more likely to exhibit
class I methanol maser emission. Chen et al. (2011) also
found that the GLIMPSE sources with redder mid-infrared
colours were more likely to be associated with methanol
masers and the higher the mass and density of the BGPS dust
clump, the stronger the class I maser emission.

Chen et al. (2012) used the results of Chen et al. (2011) to
identify 420 sources detected in both the Spitzer GLIMPSE
and BGPS catalogues as likely to have an associated class I
methanol maser. They then observed a random selection of
214 of these sources and detected 95 GHz class I methanol
masers towards 62 (hence 152 non-detections). For the clas-
sification process, we used only the data from the BGPS cat-
alogue (version 1.0) which contains a total of 8 358 sources
(Aguirre et al. 2011). The predictor variables used in the
classification models for Data Set 3 were the angular size
of the major and minor axis of the dust clump, as well as
its position angle, deconvolved angular radius, and 1.1-mm
flux density within apertures of diameter 40, 80, and 120
arcsec and the integrated flux density. Boxplots of these vari-
ables are shown in Figure 7. As with the classification of
the other two data sets, here each of the models were op-
timised by omitting superfluous variables, as well as those
that decreased the models’ accuracy. Both logistic regression
and random forests utilised all eight variables, while LDA
performed better without including all of them (see Table 6).

This data set was the primary focus of our analysis, as
it has a training set with several hundred sources, includ-
ing a large number of detections and there are also a large

Table 7. The results of cross-validating random forests, logistic
regression, and LDA classification and prediction for Data Set
3 (class I methanol masers associated with GLIMPSE sources).
Figure 8 shows the ROC curve for each of the models. For defini-
tions of classification results, see Section 2.4.

Random
forests

Logistic
reg. LDA

Norm.
LDA

True neg. 141 142 148 145
False pos. 11 10 4 7
False neg. 21 24 31 23
True pos. 41 38 31 39
Specificity (%) 92.8 93.4 97.4 95.4
Sensitivity (%) 66.1 61.3 50.0 62.9

number of BGPS sources which have not been searched for
class I methanol maser emission (8 144) which provide the
opportunity to make testable predictions.

The variables with high importance in the random forests
calculations were the flux densities (each of the 40, 80, and
120 arcsec aperture values and the integrated) and also the
angular size of the minor axis. The most important variable
was the flux density within 40 arcsec (the smallest angular
scale measured by Bolocam). Logistic regression also found
the flux density within 40 arcsec to be the most important
variable with a p-value of 0.0312, with the next most sig-
nificant variable being the position angle with a p-value of
0.0952, while the 80 arcsec flux had the next highest contri-
bution. This is consistent with the results of Chen et al. (2012)
which showed that class I masers were preferentially asso-
ciated with sources with the highest beam averaged column
density (which is directly proportional to the 40 arcsec flux
density). There is no physical reason why the position angle
of the dust clump would effect the likelihood of a dust clump
having an associated class I methanol maser, but when this
variable was omitted from the classification, the accuracy of
the models decreased. However, while the p-value suggests
that the position angle is a significant predictor variable in lo-
gistic regression, the change in accuracy was not significant
compared to that of the other variables. This suggests that we
can dismiss it as an artefact of the classification method, but
it does serve as a reminder to view results such as this with
a degree of scepticism. It is also worth noting that random
forests presented it with the lowest variable importance.

Table 7 shows the results of the cross-validation of the
different classification techniques used on Data Set 3 (see
Section 2.4.2). Here, random forests offered the highest sen-
sitivity, while surprisingly performing LDA on the untrans-
formed data produced the highest specificity. This is the first
instance in our studies where transforming the data set to
be closer to a normal distribution decreased the performance
of LDA, although the decrease was minor (2%) and likely
not significant. The ROC curve in Figure 8 gives a more
complete representation of the models’ capabilities, showing
that random forests, logistic regression, and LDA using the
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Figure 8. Receiver operating characteristic curves showing the results of
the cross validation for Data Set 3. The diagonal line y = x represents
randomly classifying the samples, with half predicted as positive and half
as negative.

transformed data performed to similar standards, while gen-
erally LDA on the untransformed data performed the worst.

Figure 9 shows the MDS plot for the random forest model
generated using all the training data for Data Set 3. It is
clear that the maser-associated dust clumps are generally lo-
cated in the bottom-right region of the plot. Comparing this
plot to the MDS plots for the other two Data Sets (Figures 3
and 6), we can see that the maser-associated sources are more
clearly separated from those without a maser-association.
The green squares in Figure 9 represent sources which the
random forests model predicts to have an associated class I
methanol maser, but for which the observations of Chen et al.
(2012) did not detect a maser. Many of these sources lie very
close on the MDS plot to others where a maser was detected
and it may be that some of these non-detections have a weak
class I methanol maser which was not detected by Chen
et al. due to the limited sensitivity of those observations. The
95 GHz class I methanol masers are in the same transition
family as the best studied class I methanol maser transition
at 44 GHz. In general, the 44 GHz class I methanol masers
have a peak flux density approximately a factor of 3 greater
than the 95 GHz maser emission in the same source (Val’tts
et al. 2000). These sources would be good candidates for
sensitive observations in the 44 GHz transition to more ro-
bustly determine if they are associated with class I methanol
masers.

The classification models we have developed can also be
used to predict which of the BGPS sources that were not
observed by Chen et al. (2012) are the best candidates for
having an associated class I methanol maser. Since we have
four different classification models, we can compare the re-

Table 8. The classification results on the training data subset
(where the maser presence is known), and the number of pre-
dicted masers from the 8 144 sources for which maser presence
is unknown, using Data Set 3 (class I methanol masers associated
with GLIMPSE sources). For definitions of classification results,
see Section 2.4.

Random
forests

Logistic
reg. LDA

Norm.
LDA

True neg. 140 145 149 147
False pos. 12 7 3 8
False neg. 21 22 30 22
True pos. 41 40 32 40
Specificity (%) 92.1 95.4 98.0 96.7
Sensitivity (%) 66.1 64.5 51.6 64.5
Predictions 632 405 334 460

Table 9. Number of maser predictions on sources from Data Set 3
shared by two classification methods, with 242 sources predicted
to be masers using all four methods.

Random
forests

Logistic
reg. LDA

Norm.
LDA

Random forests 632 364 317 377
Logistic reg. 405 254 371
LDA 334 256
Norm. LDA 460

sults of each, as those sources identified by all, or most of
the models would be expected to be the promising targets for
further searches.

For the prediction model, as with Data Set 2, we grew
a random forest using 3 000 trees (instead of the default
500, see Section 3.2). Table A1 in the Appendix lists the 739
BGPS sources which were predicted to have an associated
class I methanol maser by one or more of the four classifi-
cation models for the 8 144 BGPS sources which have not
yet been searched. Table 8 shows that of the 8 144 potential
BGPS target sources random forests predicts 632 to have an
associated class I methanol maser and this is significantly
more than any of the other classification models. There are
242 of the 8 144 BGPS sources which all models predict
will have an associated class I methanol maser and these
will be the prime targets for future searches. Table 9 shows
the number of sources predicted to be masers by one or two
classification methods, which should be considered if there
is sufficient time to search additional targets.

4 DISCUSSION

We applied three different classification techniques to three
different searches for interstellar masers to investigate each
technique’s performance. We show the classification and
prediction results of LDA performed on both the normally
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Figure 9. The MDS plot for the random forest model used to predict potential millimetre dust-clumps with associated
class I methanol masers (Data Set 3). ‘Border-line’ classifications were samples with a predicted maser association between
45 and 55%. For details on multidimensional plots in random forest analysis, see Figure 3.

distributed data and the untransformed data to demonstrate
the difference (see Section 2.1). In most cases, LDA performs
significantly better when applied to transformed data.

All three methods of classification (both parametric and
non-parametric) used on Data Set 1 returned high values
for both sensitivity (correctly classifying sources associated
with masers) and specificity (correctly classifying non-maser
sources). The highest accuracy was achieved through the
non-parametric method of random forests, which in this case
classified every source correctly.

Data Set 2 had a relatively small training sample (32
sources) compared with the number of predictor variables

(15), and we found here that LDA appeared to give the best re-
sults, while random forests and logistic regression performed
quite poorly in correctly identifying sources associated with
a maser.

For Data Set 3, which has more than 50 detections
and more than 150 non-detections, the non-parametric ran-
dom forests had the highest sensitivity, while the para-
metric method of LDA performed on the untransformed
data had the lowest, but also had the highest speci-
ficity. Considering both sensitivity and specificity, logis-
tic regression, and random forests were the most accurate
methods.
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Based on the predictions of Breiman (2001b), our ini-
tial expectation was that given sufficient training data the
complex relationship between the predictor variables and the
presence or absence of a related astrophysical phenomenon
would be more accurately represented by a non-parametric
approach than a simple linear model. However, the training
data sets were relatively small, and so made it difficult for
the models to capture and convey all the information con-
tained within the predictor variables. We find that random
forests does perform relatively better for the largest data set,
but in this case, it is comparable with the accuracy of the
non-parametric techniques, not superior to them. It may be
that in order to outperform parametric methods, the non-
parametric techniques require still larger amounts of train-
ing data. However, it is more likely that for Data Set 3 all
techniques approximately reach the limit of the information
available within the measured parameters of the data.

There are a number of factors related specifically to the
data which will lead to limitations in the accuracy of any
classification model developed using it. One factor is the in-
trinsic measurement uncertainty for parameters such as the
flux density, angular size, etc., which can influence the results
directly in the sense that it is always possible that given ob-
servations with greater sensitivity additional sources would
be detected. However, the absence of these weaker sources
does more than simply qualifying the question that is be-
ing answered by the classification model. For example, the
intensity of astrophysical masers depends in a complex and
non-linear manner on the physical parameters of the environ-
ment and some of these parameters may not be represented
either directly or indirectly in any of the predictor variables
being used as inputs to the classification methods. A second,
less obvious factor which may limit the accuracy of classi-
fication techniques is that for derived parameters there are
often implicit assumptions. For example, the calculation of
the mass of the dust clumps used for Data Set 1 assumes that
the emission at 1.2-mm wavelength is optically thin (likely
a reasonable assumption), and that the dust is at a constant
temperature of 40 K for all the dust. This second assumption
is necessary because we do not have any information on the
specific temperature distribution of the dust, but it inevitably
leads to systematic errors in the relative mass calculated for
regions where the true dust temperature is on average higher
(or lower) than the assumed value. Similarly, the distance
to individual sources has been estimated using kinematic
distance models, which on average provide a reasonable es-
timate, but which can lead to significant errors for individual
sources. It is also highly probable that our sensitivity values
obtained after cross validation of the classification techniques
were poor due to the unbalanced nature of the data, in that
for all three data sets, the vast majority of the samples are
not associated with masers.

Breen & Ellingsen (2011) tested the binomial generalised
linear model of (Breen et al. 2007, Data Set 1) by search-
ing for 22 GHz water masers towards 267 dust clumps. They
found a high-detection rate towards dust clumps for which the

Figure 10. The integrated flux density versus the beam averaged H2 column
density for the 8 144 BGPS sources not searched for class I methanol masers
by Chen et al. (2012). Sources for which one or more of the classification
models predicts the presence of a class I methanol masers are represented
with red dots, other sources are represented with black dots. The blue line
shows the criteria developed by Chen et al. (2012) to identify BGPS sources
likely to have an associated class I methanol maser.

binomial GLM predicted a probability of greater than 10%
for the presence of a water maser (20 of 27 sources). They
also found that while the detection rate dropped for sources
for which the model predicted a lower probability of hav-
ing an associated water maser, a substantial fraction of water
masers (approximately 70%) were detected towards sources
for which the model predicted a probability of less than 1%.
Breen & Ellingsen (2011) show that unreliable distance esti-
mates for many of the dust clumps is in part responsible for
the misclassification. This is consistent with the assertion we
make above that the combination of measurement and sys-
tematic uncertainties in the underlying data ultimately limit
the accuracy which can be obtained with any classification
technique.

When the different classification models we developed us-
ing Data Set 3 are applied to the 8 144 BGPS sources which
have not been searched for class I methanol maser emission a
total of 739 sources are predicted to have an associated maser
by one or more of the models, with 242 sources predicted
by all four models (see Section 3.3 and Appendix A). Fig-
ure 12 of Chen et al. (2012) plots the integrated flux density
against the beam averaged H2 column density for Data Set 3
and shows that the maser associated sources are restricted to
a limited range for these two predictor variables. Figure 10
shows the integrated flux density versus the beam averaged
H2 column density for the 8 144 BGPS sources not observed
by Chen et al. Those sources for which one or more of the
classification models predict an associated class I methanol
maser are indicated with a red dot, with sources which no
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model predicts to have an associated class I maser are indi-
cated with a black dot. Figure 10 shows that there is a high
level of agreement between the predictions of the classifi-
cation models and the empirical criteria developed by Chen
et al. (2012). In total 1 200 BGPS sources meet the criteria
identified by Chen et al. (2012), approximately a factor of
two more than identified by any of the classification models.
In their calculation of the beam averaged column density,
Chen et al. (2012) assumed a constant temperature of 20 K
for the dust clumps and used the 40 arcsec flux density mea-
surement as the intensity of the dust continuum emission.
This means that the calculated beam average column density
is directly proportional to the BGPS 40 arcsec flux density
measurement. The relationship derived by Chen et al. (2012)
suggested this is the most important predictor variable for
the presence (or otherwise) of class I methanol maser emis-
sion towards these sources. The results presented here also
support this.

Ultimately, determining the relative accuracy of these clas-
sification models, and whether they are superior to directly
derived criteria [such as those of Chen et al. (2012)] is to
test them through future observations. There are currently
approximately 400 different class I methanol maser sources
which have been identified throughout the Galaxy (see Chen
et al. 2013, and references therein), so a search targeted
towards the candidate BGPS sources we have identified is
likely to significantly increase the number of known sources.

5 CONCLUSIONS

In this paper, we present three major findings regarding the
utilisation of different classification techniques on different
size astronomical data sets. (1) For small data sets parametric
methods (such as LDA and logistic regression perform better
than random forests (a non-parametric method). (2) For larger
data sets, random forests has the capability to out-perform
the parametric methods trialled here. (3) In almost all cases,
transforming the data to be closer to a normal distribution sig-
nificantly increases the accuracy of LDA. In the case where
using transformed data slightly decreased the accuracy of the
model, the classification results were very similar. Since the
process of transforming data is relatively easy, this is a step
that should be definitely employed if LDA is utilised. This
step has typically not been included when LDA has been
applied to astronomical data used in past studies.

Our results suggest that where there is very limited training
information parametric models which can only predict based
on simple combinations of the input variables are more ac-
curate than non-parametric methods. However, where there
is more training data (such as Data Sets 1 and 3), non-
parametric models can perform as well (likely better in some
circumstances) than parametric techniques. Our results for
Data Set 3 show that random forests is comparable in accu-
racy to the parametric methods, rather than exceeding them
as expected (see Breiman 2001b).

Frequently in astrophysics relationships are sought be-
tween two or three variables in the form of correlations be-
tween them, such as the radio:far-infrared correlation for
galaxies, or colour–colour selection criteria for Hii regions.
In the past, this has often been because of limited numbers
of predictor variables being available for large samples of
data, however, this is now less of an issue. Mathematical
classification techniques such as those utilised here poten-
tially offer significant improvements over simple correlation
relationships, but the most appropriate technique to apply
depends heavily on the nature of the data available and the
goal of the investigation (e.g. detection prediction, physical
understanding of relationship between variables). Our mod-
els determined which predictor variables were important in
the classification process, and for all three Data Sets our re-
sults agreed with the previous studies of Breen et al. (2007),
Ellingsen et al. (2010), and Chen et al. (2012), respectively.

For the specific goal of identifying millimetre dust clumps
which are more likely to have an associated class I methanol
maser, we find that on the basis of cross-validation tests
and the predictions the models produce on the training data,
both the non-parametric method of random forests, and the
parametric methods of logistic regression and LDA are well
suited for the task of identifying likely targets for future
searches. 242 sources out of the 8 144 in Data Set 3, were
predicted by all four of our techniques to have associated
masers. The results of future searches for class I methanol
masers towards BGPS sources will allow a direct test of each
of the classification models and allow us to determine the
validity of these conclusions.
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A&A, 426, 119
Morgan, A. N., Long, J., Richards, J. W., Broderick, T., Butler,

N. R., & Bloom, J. S. 2012, ApJ, 746, 170
R Core Team 2013, R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna,
Austria, http://www.R-project.org

Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007,
ApJS, 169, 328

Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., &
Denzmore, P. 2006, ApJS, 167, 256

Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., & Abramenko,
V. 2009, Sol. Phys., 254, 101

Surcis, G., Vlemmings, W. H. T., van Langevelde, H. J., &
Hutawarakorn Kramer, B. 2012, A&A, 541, A47

Titmarsh, A. M., Ellingsen, S. P., Breen, S. L., Caswell, J. L., &
Voronkov, M. A. 2013, ApJ, 775, L12

Val’tts, I. E., Ellingsen, S. P., Slysh, V. I., Kalenskii, S. V., Otrupcek,
R., & Larionov, G. M. 2000, MNRAS, 317, 315

Yuan, Y., Shih, F. Y., Jing, J., & Wang, H.-M. 2010, RAA, 10, 785

APPENDIX

A CLASSIFICATION MODEL PREDICTIONS

Table A1 summarises the predictions for each of the classifica-
tion models for class I methanol masers associated with Bolocam
sources.
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Table A1. Bolocam Galactic Plane sources for which one or more of the mathematical classification
models predicted the presence of an associated class I methanol maser (probability of a maser >0.5).
The maser probability for each model is listed, those which exceed 0.5 are in bold type. This list contains
a total of 739 sources that were predicted to be masers by at least one of the four methods (242 of which
were predicted by all methods), from a total of 8 144 sources in version 1.0.1 of the Bolocam catalogue.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

4 G000.010+00.157 0.43 0.44 0.40 0.60
5 G000.016−00.017 0.84 0.49 0.64 0.42
7 G000.020+00.033 0.81 0.29 0.47 0.17
8 G000.020−00.051 0.92 0.71 0.75 0.45
18 G000.052+00.027 0.78 0.72 0.91 0.64
20 G000.054−00.209 0.82 0.47 0.77 0.31
22 G000.066−00.079 0.86 0.87 1.00 0.76
24 G000.070+00.175 0.55 0.06 0.27 0.02
27 G000.072+00.047 0.60 0.27 0.37 0.15
32 G000.094−00.109 0.55 0.12 0.22 0.09
35 G000.098+00.073 0.55 0.12 0.06 0.11
38 G000.104−00.005 0.90 0.73 0.80 0.80
39 G000.106−00.085 0.94 0.96 0.99 0.76
41 G000.110+00.001 0.84 0.77 0.77 0.76
43 G000.118+00.085 0.51 0.13 0.31 0.08
47 G000.120−00.513 0.21 0.11 0.05 0.54
48 G000.122−00.113 0.58 0.37 0.19 0.23
56 G000.140+00.021 0.87 0.20 0.52 0.27
57 G000.140−00.085 0.83 0.43 0.54 0.27
61 G000.156−00.091 0.85 0.29 0.71 0.44
62 G000.162−00.039 0.56 0.23 0.38 0.16
72 G000.184−00.003 0.62 0.23 0.14 0.09
79 G000.208−00.003 0.71 0.71 0.05 0.48
81 G000.212−00.517 0.93 0.93 0.97 0.87
83 G000.216−00.019 0.79 0.13 0.34 0.10
84 G000.216−00.045 0.75 0.14 0.31 0.12
87 G000.228−00.475 0.61 0.15 0.69 0.23
89 G000.234−00.089 0.54 0.11 0.31 0.03
91 G000.246−00.043 0.72 0.30 0.18 0.27
96 G000.254+00.013 0.96 0.99 1.00 0.88
99 G000.262+00.027 0.98 1.00 1.00 0.98
102 G000.274−00.085 0.60 0.09 0.13 0.16
103 G000.278−00.063 0.58 0.10 0.51 0.17
106 G000.282−00.481 0.64 0.62 0.80 0.71
109 G000.292−00.025 0.58 0.12 0.25 0.03
112 G000.296+00.043 0.86 0.78 0.50 0.75
115 G000.318−00.101 0.72 0.18 0.42 0.13
116 G000.320−00.201 0.86 1.00 0.99 0.99
123 G000.332−00.011 0.61 0.08 0.60 0.09
124 G000.332−00.075 0.76 0.22 0.56 0.22
126 G000.338+00.097 0.52 0.16 0.24 0.05
127 G000.340+00.053 0.71 0.74 0.85 0.73
130 G000.368−00.083 0.59 0.28 0.26 0.09
135 G000.378+00.041 0.96 1.00 0.56 0.97
141 G000.394−00.083 0.59 0.06 0.29 0.06
148 G000.412−00.503 0.44 0.77 0.34 0.79
149 G000.414+00.051 0.86 0.39 0.97 0.71
168 G000.472+00.019 0.94 0.77 0.03 0.57
170 G000.482−00.005 0.95 1.00 1.00 0.97
171 G000.492−00.111 0.58 0.18 0.37 0.27
173 G000.498+00.017 0.78 0.89 0.82 0.87
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

175 G000.500+00.187 0.29 0.58 0.09 0.60
186 G000.530+00.181 0.89 0.98 0.75 0.90
190 G000.546−00.003 0.92 0.70 0.46 0.41
193 G000.558−00.067 0.53 0.16 0.38 0.14
196 G000.572+00.023 0.68 0.07 0.38 0.10
199 G000.586−00.125 0.56 0.07 0.14 0.13
203 G000.590+00.007 0.66 0.40 0.13 0.21
206 G000.598−00.113 0.59 0.17 0.07 0.49
207 G000.606−00.033 0.86 0.01 0.38 0.16
209 G000.608+00.001 0.83 0.40 0.08 0.13
211 G000.610−00.057 0.95 0.99 0.67 0.96
218 G000.630−00.095 0.85 0.24 0.18 0.73
222 G000.648+00.027 0.90 0.00 0.01 0.42
223 G000.656−00.045 0.77 1.00 1.00 1.00
225 G000.670−00.141 0.88 0.01 0.21 0.30
226 G000.674−00.097 0.91 0.09 0.36 0.66
227 G000.680−00.029 0.94 1.00 1.00 1.00
228 G000.684−00.169 0.65 0.03 0.08 0.14
229 G000.686−00.111 0.84 0.90 0.09 0.60
237 G000.738−00.051 0.90 0.86 0.17 0.48
238 G000.738−00.093 0.84 0.10 0.66 0.43
239 G000.738−00.157 0.59 0.18 0.60 0.12
241 G000.748+00.017 0.76 0.17 0.15 0.08
244 G000.760−00.069 0.78 0.00 0.07 0.16
245 G000.762+00.013 0.68 0.04 0.10 0.01
249 G000.772−00.109 0.67 0.22 0.08 0.18
250 G000.772−00.251 0.75 0.54 0.80 0.69
251 G000.776−00.187 0.70 0.31 0.44 0.24
258 G000.798−00.156 0.51 0.38 0.40 0.22
260 G000.802−00.098 0.82 0.25 0.60 0.13
261 G000.812+00.024 0.59 0.05 0.35 0.03
263 G000.826−00.212 0.89 0.58 0.55 0.51
266 G000.834−00.152 0.84 0.06 0.72 0.19
268 G000.836−00.200 0.74 0.05 0.16 0.09
269 G000.840+00.184 0.68 0.86 0.26 0.82
277 G000.862−00.054 0.70 0.19 0.46 0.62
280 G000.868−00.040 0.72 0.00 0.02 0.02
285 G000.886−00.036 0.77 0.44 0.09 0.78
296 G000.906−00.022 0.52 0.26 0.10 0.33
317 G000.950−00.080 0.59 0.00 0.28 0.01
346 G001.010−00.240 0.82 0.94 0.77 0.92
349 G001.020−00.122 0.50 0.05 0.35 0.02
350 G001.024+00.068 0.53 0.05 0.23 0.01
367 G001.092−00.030 0.65 0.01 0.34 0.06
377 G001.128−00.108 0.66 1.00 0.98 0.98
390 G001.150−00.126 0.40 0.30 0.05 0.60
408 G001.194−00.074 0.55 0.17 0.33 0.12
427 G001.234+00.056 0.56 0.23 0.49 0.20
471 G001.320−00.142 0.55 0.12 0.28 0.08
481 G001.338+00.096 0.52 0.17 0.41 0.14
489 G001.354+00.260 0.53 0.16 0.64 0.08
513 G001.406+00.328 0.14 0.12 0.05 0.77
536 G001.476+00.040 0.58 0.12 0.34 0.04
548 G001.518−00.194 0.27 0.15 0.53 0.15
572 G001.600+00.022 0.72 0.09 0.43 0.37
578 G001.610−00.172 0.63 0.14 0.58 0.09
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

585 G001.652−00.066 0.67 0.07 0.79 0.17
596 G001.676−00.130 0.56 0.12 0.27 0.07
603 G001.696−00.386 0.57 0.29 0.30 0.25
604 G001.698−00.366 0.68 0.27 0.52 0.24
612 G001.734−00.412 0.73 0.21 0.66 0.39
663 G002.144+00.006 0.54 0.50 0.15 0.42
700 G002.444+00.126 0.29 0.48 0.37 0.55
723 G002.534+00.198 0.56 0.60 0.55 0.60
735 G002.616+00.132 0.83 0.74 0.34 0.68
834 G003.094+00.164 0.67 0.28 0.52 0.24
920 G003.310−00.402 0.89 0.61 0.73 0.66
929 G003.350−00.080 0.65 0.99 0.56 0.99
937 G003.410+00.880 0.51 0.35 0.13 0.17
946 G003.438−00.352 0.95 1.00 0.98 0.99
986 G003.910−00.002 0.61 0.33 0.10 0.24
987 G003.932−00.008 0.64 0.11 0.09 0.10
1018 G004.418+00.124 0.43 0.51 0.13 0.89
1020 G004.434+00.126 0.91 0.95 0.59 0.89
1039 G004.681+00.277 0.67 0.55 0.15 0.49
1060 G004.885−00.171 0.06 0.30 0.04 0.58
1114 G005.621−00.081 0.36 0.66 0.29 0.86
1116 G005.641+00.239 0.96 0.99 0.96 0.95
1129 G005.833−00.511 0.75 0.39 0.72 0.62
1130 G005.837−00.397 0.28 0.25 0.53 0.22
1135 G005.883−00.357 0.54 0.51 0.23 0.17
1136 G005.887−00.391 0.98 1.00 1.00 1.00
1138 G005.897−00.319 0.79 0.70 0.37 0.50
1140 G005.901−00.443 0.99 1.00 0.99 0.99
1141 G005.903−00.429 0.99 1.00 1.00 0.99
1142 G005.911−00.543 0.70 0.31 0.18 0.24
1175 G006.191−00.359 0.97 1.00 0.93 0.96
1188 G006.249−00.123 0.69 0.45 0.13 0.28
1216 G006.553−00.097 0.93 0.98 0.87 0.95
1240 G006.799−00.255 0.99 1.00 0.93 0.98
1250 G006.919−00.225 0.87 0.64 0.61 0.64
1269 G007.167+00.133 0.22 0.33 0.14 0.64
1281 G007.269−00.529 0.59 0.64 0.33 0.51
1286 G007.289−00.529 0.14 0.29 0.13 0.58
1305 G007.475+00.061 0.85 0.96 0.81 0.83
1314 G007.632−00.110 0.48 0.68 0.11 0.77
1316 G007.636−00.194 0.61 0.13 0.09 0.19
1326 G007.992−00.268 0.96 0.96 0.76 0.91
1337 G008.141+00.224 0.75 1.00 1.00 0.99
1347 G008.282+00.164 0.55 0.10 0.11 0.05
1354 G008.352−00.318 0.10 0.49 0.35 0.62
1358 G008.400−00.290 0.69 0.70 0.44 0.64
1359 G008.407−00.350 0.71 0.54 0.60 0.64
1366 G008.506−00.280 0.19 0.14 0.07 0.66
1377 G008.670−00.356 0.95 1.00 1.00 1.00
1383 G008.734−00.364 0.60 0.34 0.34 0.24
1399 G008.874−00.494 0.56 0.14 0.24 0.11
1421 G009.620+00.194 0.95 1.00 0.99 1.00
1435 G009.986−00.030 0.50 0.65 0.13 0.42
1452 G010.134−00.376 0.57 0.41 0.19 0.84
1454 G010.150−00.408 0.60 0.32 0.16 0.24
1455 G010.152−00.344 0.73 1.00 0.62 0.98
1456 G010.166−00.360 0.83 0.99 0.99 0.93
1459 G010.192−00.390 0.59 0.60 0.08 0.41
1462 G010.204−00.348 0.71 0.75 0.16 0.62
1465 G010.212−00.310 0.69 0.20 0.04 0.44
1474 G010.286−00.120 0.83 0.91 1.00 0.80
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

1476 G010.300−00.148 0.98 1.00 1.00 1.00
1480 G010.324−00.162 0.98 1.00 0.99 0.88
1483 G010.343−00.144 0.78 0.99 0.73 0.94
1495 G010.446−00.018 0.82 0.80 0.22 0.63
1507 G010.625−00.338 0.56 0.96 0.70 0.96
1518 G010.681−00.028 0.23 0.55 0.27 0.70
1562 G010.973−00.094 0.26 0.27 0.29 0.59
1566 G010.989−00.084 0.51 0.25 0.26 0.19
1574 G011.035+00.062 0.22 0.30 0.26 0.52
1584 G011.083−00.536 0.34 0.45 0.55 0.46
1590 G011.111−00.398 0.67 0.80 0.65 0.75
1655 G011.904−00.140 0.85 0.88 0.63 0.74
1659 G011.947−00.036 0.60 0.90 0.34 0.96
1676 G012.113−00.128 0.65 0.22 0.08 0.17
1683 G012.209−00.104 0.96 1.00 0.76 0.99
1684 G012.215−00.118 0.85 0.89 0.01 0.53
1708 G012.403−00.466 0.38 0.52 0.41 0.48
1710 G012.419+00.506 0.96 1.00 0.99 0.98
1747 G012.681−00.182 0.87 0.99 1.00 0.96
1758 G012.721−00.216 0.91 0.91 0.61 0.85
1762 G012.739−00.102 0.15 0.25 0.51 0.30
1771 G012.773+00.334 0.91 0.81 0.79 0.67
1780 G012.809−00.200 0.93 1.00 1.00 1.00
1792 G012.853−00.226 0.79 0.97 0.18 0.91
1796 G012.861−00.272 0.57 0.88 0.21 0.61
1801 G012.879−00.288 0.53 0.37 0.10 0.40
1804 G012.891−00.224 0.65 0.28 0.16 0.61
1805 G012.895−00.282 0.62 0.39 0.09 0.37
1810 G012.909−00.260 0.77 1.00 1.00 0.99
1813 G012.917−00.334 0.66 0.39 0.29 0.44
1833 G012.999−00.358 0.67 0.84 0.54 0.77
1869 G013.211−00.142 0.98 0.98 0.95 0.82
1871 G013.217+00.036 0.76 0.23 0.84 0.26
1876 G013.245−00.084 0.93 0.94 0.59 0.88
1883 G013.275−00.336 0.56 0.12 0.36 0.04
1894 G013.333−00.038 0.51 0.28 0.25 0.43
1905 G013.387+00.066 0.28 0.54 0.36 0.48
1954 G013.874+00.281 0.97 1.00 1.00 0.98
1974 G013.971−00.411 0.28 0.30 0.05 0.62
1984 G014.012−00.175 0.40 0.55 0.17 0.36
1985 G014.016−00.133 0.57 0.52 0.64 0.60
1995 G014.089−00.557 0.52 0.41 0.15 0.85
1997 G014.102+00.087 0.79 0.93 0.45 0.85
2007 G014.181−00.529 0.66 0.59 0.14 0.57
2009 G014.183−00.503 0.74 0.21 0.24 0.40
2011 G014.194−00.193 0.62 0.96 0.70 0.91
2016 G014.227−00.513 0.93 1.00 0.88 0.96
2019 G014.244−00.071 0.78 0.88 0.67 0.81
2027 G014.327−00.533 0.55 0.31 0.11 0.11
2050 G014.466−00.089 0.76 0.48 0.27 0.43
2051 G014.474−00.007 0.60 0.27 0.44 0.14
2054 G014.492−00.139 0.80 0.77 0.51 0.67
2072 G014.606+00.012 0.51 0.89 0.75 0.95
2081 G014.633−00.574 0.90 1.00 0.98 0.95
2082 G014.634+00.308 0.67 0.72 0.46 0.68
2101 G014.736−00.102 0.02 0.05 0.10 0.59
2106 G014.760−00.180 0.13 0.27 0.06 0.56
2136 G014.918+00.068 0.36 0.51 0.23 0.49
2146 G014.973−00.746 0.56 0.18 0.09 0.89
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

2147 G014.983−00.692 0.85 1.00 0.96 0.98
2150 G014.991−00.738 0.89 0.91 0.73 0.70
2151 G015.004+00.010 0.71 0.24 0.07 0.15
2152 G015.013−00.674 0.79 1.00 1.00 1.00
2153 G015.021−00.620 0.85 0.99 0.24 0.77
2155 G015.031−00.670 0.82 1.00 1.00 1.00
2156 G015.031−00.746 0.59 0.68 0.25 0.93
2157 G015.045−00.650 0.89 0.94 0.00 0.97
2159 G015.057−00.624 0.83 0.91 0.44 0.56
2162 G015.079−00.604 0.69 0.52 0.43 0.74
2165 G015.093−00.676 0.83 0.36 0.36 0.84
2167 G015.095−00.710 0.99 0.99 0.22 0.79
2168 G015.097−00.734 0.84 0.65 0.73 0.70
2169 G015.099−00.558 0.55 0.43 0.30 0.33
2170 G015.099−00.600 0.82 0.43 0.42 0.30
2171 G015.101−00.656 0.90 0.94 0.64 0.80
2181 G015.137−00.674 0.85 0.66 0.73 0.35
2184 G015.153−00.660 0.64 0.67 0.17 0.30
2189 G015.182−00.158 0.26 0.47 0.33 0.67
2190 G015.195−00.628 0.94 1.00 0.71 0.96
2191 G015.201−00.442 0.56 0.54 0.50 0.55
2193 G015.205−00.626 0.82 0.14 0.89 0.57
2195 G015.234−00.612 0.74 0.39 0.37 0.88
2198 G015.250−00.602 0.68 0.48 0.05 0.67
2224 G015.557−00.463 0.23 0.55 0.23 0.67
2234 G015.665−00.499 0.64 0.62 0.34 0.59
2248 G016.144+00.009 0.63 0.17 0.11 0.15
2274 G016.362−00.355 0.20 0.03 0.05 0.51
2275 G016.364−00.209 0.86 0.92 0.97 0.84
2311 G016.821−00.344 0.66 0.75 0.46 0.62
2312 G016.832+00.080 0.67 0.40 0.13 0.31
2320 G016.926+00.298 0.22 0.05 0.06 0.53
2325 G016.946−00.074 0.36 0.78 0.11 0.86
2343 G017.366−00.034 0.26 0.07 0.05 0.59
2351 G017.638+00.154 0.95 1.00 0.98 0.98
2365 G018.091−00.302 0.71 0.23 0.60 0.17
2375 G018.150−00.286 0.84 0.94 0.43 0.70
2377 G018.173−00.298 0.54 0.62 0.45 0.57
2386 G018.260−00.246 0.55 0.36 0.82 0.48
2387 G018.277−00.262 0.52 0.76 0.14 0.82
2388 G018.302−00.390 0.97 1.00 0.99 0.98
2396 G018.462−00.002 0.85 0.99 0.35 0.91
2424 G018.608−00.074 0.19 0.55 0.21 0.70
2430 G018.655−00.060 0.78 0.76 0.44 0.72
2431 G018.666+00.032 0.26 0.30 0.56 0.57
2442 G018.738−00.225 0.90 0.96 0.83 0.92
2455 G018.830−00.483 0.84 0.38 0.96 0.56
2456 G018.834−00.299 0.33 0.38 0.14 0.58
2510 G019.077−00.287 0.86 1.00 0.93 0.97
2561 G019.364−00.031 0.91 0.93 0.91 0.89
2573 G019.474+00.171 0.94 1.00 0.67 0.99
2601 G019.609−00.233 0.98 1.00 0.97 1.00
2602 G019.612−00.137 0.38 0.70 0.34 0.76
2603 G019.614−00.257 0.63 0.62 0.45 0.56
2612 G019.702−00.263 0.72 0.65 0.28 0.61
2619 G019.756−00.129 0.16 0.54 0.28 0.57
2673 G020.366−00.011 0.07 0.39 0.16 0.59
2718 G020.734−00.059 0.82 0.93 0.29 0.90
2720 G020.750−00.091 0.80 0.81 0.54 0.86
2722 G020.763−00.059 0.53 0.46 0.10 0.31
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

2741 G020.984+00.097 0.30 0.23 0.61 0.16
2784 G021.385−00.253 0.60 0.88 0.28 0.89
2788 G021.423−00.541 0.76 0.71 0.45 0.71
2819 G021.878+00.007 0.67 0.72 0.41 0.62
2854 G022.353+00.067 0.65 0.80 0.39 0.87
2860 G022.379+00.447 0.32 0.50 0.19 0.45
2864 G022.417+00.315 0.57 0.13 0.61 0.14
2907 G022.725−00.274 0.53 0.27 0.10 0.15
2971 G023.012−00.410 0.93 0.99 0.98 0.94
3016 G023.202−00.000 0.86 0.77 0.60 0.80
3018 G023.208−00.378 0.94 1.00 0.70 1.00
3026 G023.268+00.078 0.60 0.88 0.32 0.75
3027 G023.272−00.258 0.87 0.81 0.81 0.77
3029 G023.274−00.212 0.52 0.29 0.40 0.32
3039 G023.321−00.298 0.50 0.44 0.58 0.55
3053 G023.368−00.290 0.77 0.83 0.26 0.68
3065 G023.414−00.228 0.89 0.03 0.91 0.31
3077 G023.456+00.064 0.69 0.89 0.33 0.85
3078 G023.456−00.018 0.24 0.05 0.06 0.73
3086 G023.484+00.096 0.75 0.57 0.36 0.46
3116 G023.571+00.014 0.81 0.86 0.47 0.73
3141 G023.658−00.142 0.53 0.11 0.13 0.12
3155 G023.711+00.170 0.73 0.97 0.49 0.93
3183 G023.870−00.124 0.74 0.50 0.84 0.45
3186 G023.888+00.060 0.15 0.14 0.14 0.65
3189 G023.902+00.064 0.27 0.66 0.11 0.72
3200 G023.955+00.150 0.90 0.96 0.64 0.83
3205 G023.992−00.092 0.35 0.15 0.70 0.31
3212 G024.018+00.048 0.56 0.32 0.26 0.30
3307 G024.402−00.190 0.53 0.29 0.15 0.25
3313 G024.414+00.102 0.57 0.31 0.63 0.47
3320 G024.439+00.228 0.61 0.13 0.36 0.05
3322 G024.443−00.228 0.95 0.99 0.87 0.95
3326 G024.461+00.196 0.73 0.60 0.19 0.38
3329 G024.472+00.490 0.68 0.38 0.97 0.66
3337 G024.494−00.040 0.83 1.00 0.98 0.99
3343 G024.510−00.220 0.84 0.66 0.60 0.60
3357 G024.545−00.248 0.53 0.57 0.56 0.42
3409 G024.757+00.091 0.69 0.86 0.25 0.74
3440 G024.943+00.075 0.52 0.75 0.05 0.92
3461 G025.155−00.275 0.61 0.34 0.49 0.39
3474 G025.227+00.289 0.53 0.83 0.30 0.71
3497 G025.353−00.193 0.63 0.35 0.61 0.47
3502 G025.384−00.181 0.98 1.00 0.96 0.94
3507 G025.400−00.141 0.92 1.00 0.98 0.95
3511 G025.411+00.103 0.61 0.39 0.17 0.24
3519 G025.456−00.211 0.54 0.60 0.73 0.52
3576 G025.713+00.045 0.70 0.75 0.37 0.72
3582 G025.737+00.213 0.54 0.24 0.32 0.11
3588 G025.797+00.245 0.57 0.52 0.35 0.51
3591 G025.805−00.041 0.56 0.88 0.32 0.87
3594 G025.827−00.179 0.93 1.00 0.92 1.00
3645 G026.209+00.025 0.24 0.09 0.06 0.58
3679 G026.510+00.281 0.99 1.00 0.91 1.00
3685 G026.545−00.293 0.58 0.41 0.13 0.47
3690 G026.562−00.303 0.80 0.73 0.47 0.85
3766 G027.187−00.083 0.40 0.90 0.25 0.93
3774 G027.283+00.149 0.51 0.41 0.52 0.52
3782 G027.367−00.167 0.94 1.00 0.99 1.00
3807 G027.562+00.080 0.95 0.69 0.84 0.64
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

3852 G027.903−00.016 0.15 0.44 0.36 0.61
3864 G027.977+00.076 0.69 0.35 0.52 0.46
3899 G028.149+00.148 0.12 0.08 0.03 0.62
3913 G028.201−00.052 0.84 1.00 0.99 1.00
3921 G028.241+00.058 0.64 0.09 0.30 0.03
3925 G028.285−00.364 0.92 0.97 0.91 0.90
3929 G028.305−00.388 0.58 0.29 0.57 0.42
3936 G028.337+00.116 0.43 0.67 0.29 0.72
3939 G028.344+00.058 0.52 0.34 0.18 0.31
3955 G028.397+00.078 0.99 1.00 0.97 0.97
3998 G028.565−00.236 0.53 0.62 0.66 0.61
4006 G028.609+00.016 0.92 0.92 0.46 0.85
4014 G028.651+00.026 0.90 0.96 0.39 0.83
4048 G028.811+00.169 0.63 0.26 0.61 0.40
4049 G028.817+00.363 0.34 0.81 0.18 0.87
4055 G028.831−00.255 0.86 1.00 0.66 0.99
4061 G028.863+00.065 0.73 0.98 0.60 0.94
4063 G028.881−00.025 0.64 0.28 0.12 0.19
4121 G029.225+00.023 0.54 0.36 0.10 0.15
4152 G029.397−00.095 0.58 0.56 0.20 0.53
4154 G029.435−00.177 0.60 0.12 0.12 0.05
4236 G029.855−00.056 0.60 0.36 0.41 0.50
4239 G029.863−00.048 0.58 0.60 0.32 0.70
4243 G029.888−00.000 0.24 0.06 0.52 0.04
4252 G029.913−00.046 0.87 0.70 0.90 0.55
4254 G029.920−00.016 0.54 0.34 0.09 0.19
4258 G029.933−00.064 0.90 0.79 0.55 0.46
4259 G029.937−00.790 0.29 0.08 0.07 0.53
4261 G029.943+00.072 0.14 0.06 0.04 0.62
4266 G029.955−00.018 0.97 1.00 0.97 1.00
4272 G029.975−00.050 0.93 0.93 0.72 0.75
4281 G030.004−00.270 0.85 0.82 0.89 0.80
4384 G030.387−00.106 0.84 0.71 0.50 0.73
4449 G030.536+00.021 0.39 0.86 0.32 0.89
4468 G030.590−00.043 0.81 1.00 0.91 0.99
4488 G030.652−00.203 0.66 0.81 0.74 0.78
4499 G030.688−00.261 0.39 0.60 0.46 0.83
4500 G030.688−00.039 0.87 0.63 0.93 0.78
4509 G030.704−00.067 0.91 1.00 1.00 1.00
4518 G030.719−00.081 0.94 1.00 0.91 0.99
4526 G030.746−00.059 0.89 0.99 0.96 0.90
4527 G030.746+00.001 0.72 0.09 0.53 0.11
4530 G030.756−00.051 0.90 1.00 0.97 0.96
4533 G030.760+00.207 0.78 0.58 0.48 0.56
4537 G030.768−00.039 0.96 0.91 0.09 0.85
4541 G030.776−00.215 0.60 0.50 0.52 0.60
4546 G030.788−00.025 0.81 0.94 0.99 0.83
4547 G030.788+00.205 0.96 0.99 0.33 0.93
4553 G030.802+00.115 0.32 0.10 0.04 0.79
4555 G030.808−00.027 0.98 0.97 0.75 0.87
4560 G030.820−00.055 0.94 1.00 1.00 1.00
4566 G030.830+00.135 0.51 0.05 0.21 0.02
4573 G030.850−00.081 0.74 0.76 0.34 0.56
4582 G030.868+00.115 0.94 1.00 0.50 0.97
4583 G030.870−00.155 0.34 0.29 0.09 0.88
4586 G030.878+00.059 0.58 0.20 0.40 0.10
4594 G030.896+00.139 0.56 0.43 0.30 0.50
4598 G030.900+00.163 0.49 0.55 0.21 0.60
4633 G030.974−00.139 0.67 0.32 0.43 0.28
4636 G030.980+00.215 0.24 0.44 0.23 0.68
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

4654 G031.028+00.265 0.53 0.06 0.11 0.04
4662 G031.050+00.357 0.58 0.35 0.38 0.28
4695 G031.160+00.049 0.55 0.42 0.32 0.46
4722 G031.246−00.111 0.68 0.98 0.61 0.99
4736 G031.282+00.063 0.91 1.00 0.94 1.00
4760 G031.398−00.257 0.87 1.00 0.67 0.99
4764 G031.414+00.307 0.88 1.00 1.00 1.00
4911 G032.021+00.063 0.81 0.40 0.58 0.48
4916 G032.044+00.059 0.96 1.00 0.94 0.91
4926 G032.119+00.091 0.31 0.53 0.39 0.71
4933 G032.152+00.135 0.90 0.99 0.91 0.97
4975 G032.474+00.205 0.61 0.40 0.53 0.38
5041 G032.744−00.075 0.90 0.99 0.74 0.91
5053 G032.798+00.193 0.93 1.00 0.99 1.00
5057 G032.820−00.329 0.34 0.62 0.30 0.80
5120 G033.133−00.091 0.60 0.99 0.85 0.99
5171 G033.414−00.002 0.58 0.24 0.32 0.19
5229 G033.652−00.025 0.55 0.18 0.46 0.22
5263 G033.810−00.187 0.20 0.49 0.33 0.51
5278 G033.914+00.107 0.82 1.00 1.00 0.99
5306 G034.091+00.015 0.83 0.47 0.72 0.45
5321 G034.191−00.594 0.63 0.41 0.11 0.37
5340 G034.258+00.154 0.92 1.00 1.00 1.00
5346 G034.283+00.184 0.33 0.55 0.05 0.20
5384 G034.454+00.006 0.49 0.55 0.39 0.90
5385 G034.457+00.248 0.57 0.49 0.52 0.45
5433 G034.712−00.596 0.76 0.56 0.73 0.40
5467 G034.820+00.350 0.92 0.94 0.78 0.87
5530 G035.026+00.350 0.92 1.00 0.54 0.97
5538 G035.045−00.478 0.58 0.05 0.25 0.02
5627 G035.466+00.138 0.86 0.98 0.91 0.92
5653 G035.576+00.066 0.84 0.35 0.64 0.35
5654 G035.576−00.032 0.92 1.00 0.67 0.99
5657 G035.579+00.006 0.84 0.50 0.69 0.36
5695 G035.750+00.152 0.81 0.58 0.67 0.62
5700 G035.794−00.176 0.64 0.85 0.45 0.79
5756 G036.405+00.020 0.36 0.46 0.27 0.81
5849 G037.547−00.112 0.66 0.83 0.54 0.83
5850 G037.555+00.200 0.85 0.93 0.50 0.90
5853 G037.599+00.426 0.64 0.31 0.08 0.21
5864 G037.737−00.112 0.51 0.81 0.49 0.88
5874 G037.820+00.412 0.83 0.90 0.25 0.75
5879 G037.875−00.400 0.99 1.00 0.97 0.98
5931 G038.694−00.454 0.21 0.22 0.19 0.53
5956 G038.920−00.352 0.81 0.93 0.81 0.92
5972 G039.256−00.059 0.60 0.12 0.16 0.06
5980 G039.389−00.143 0.44 0.41 0.19 0.59
6006 G039.883−00.347 0.18 0.52 0.33 0.62
6024 G040.283−00.221 0.97 1.00 0.74 0.99
6029 G040.622−00.139 0.70 0.83 0.56 0.82
6082 G041.741+00.095 0.62 0.23 0.11 0.17
6117 G043.164−00.031 0.96 1.00 1.00 1.00
6118 G043.169+00.009 0.91 1.00 1.00 1.00
6119 G043.177−00.521 0.98 0.99 0.92 0.92
6120 G043.237−00.047 0.89 0.99 0.90 0.88
6122 G043.307−00.213 0.73 0.97 0.21 0.97
6126 G043.795−00.125 0.98 1.00 0.64 0.97
6142 G044.307+00.041 0.81 0.64 0.42 0.53
6162 G045.069+00.133 0.99 1.00 0.79 0.99
6165 G045.121+00.133 0.98 1.00 1.00 0.99
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

6172 G045.453+00.061 0.95 1.00 0.92 0.98
6176 G045.465+00.047 0.97 1.00 0.58 0.94
6177 G045.477+00.135 0.89 0.93 0.90 0.84
6202 G045.805−00.355 0.57 0.25 0.19 0.26
6254 G048.579+00.056 0.66 0.37 0.65 0.36
6256 G048.603+00.024 0.74 0.92 0.54 0.87
6286 G048.895−00.410 0.53 0.20 0.09 0.09
6287 G048.914−00.280 0.71 0.04 0.90 0.51
6291 G048.989−00.300 0.86 1.00 0.99 0.97
6292 G048.997−00.312 0.73 0.32 0.07 0.92
6299 G049.070−00.350 0.51 0.21 0.17 0.11
6300 G049.075−00.276 0.27 0.09 0.15 0.65
6310 G049.170−00.208 0.60 0.35 0.68 0.43
6312 G049.192−00.336 0.93 0.88 0.74 0.94
6313 G049.210−00.342 0.89 0.97 1.00 0.92
6321 G049.264+00.312 0.63 0.09 0.10 0.07
6334 G049.367−00.302 0.87 1.00 1.00 0.98
6336 G049.371−00.350 0.70 0.25 0.52 0.20
6337 G049.375−00.262 0.87 0.84 0.66 0.55
6339 G049.389−00.320 0.92 0.87 0.86 0.97
6340 G049.390−00.310 0.88 0.97 0.53 0.87
6344 G049.402−00.214 0.67 0.14 0.34 0.10
6362 G049.489−00.370 0.77 1.00 0.96 1.00
6363 G049.489−00.386 0.95 1.00 1.00 1.00
6365 G049.529−00.346 0.63 0.33 0.37 0.18
6371 G049.561−00.276 0.78 0.59 0.61 0.43
6389 G050.283−00.390 0.18 0.50 0.19 0.61
6402 G051.375−00.011 0.52 0.25 0.63 0.35
6406 G052.752+00.336 0.62 0.59 0.09 0.35
6410 G053.036+00.112 0.63 0.71 0.18 0.79
6425 G053.259+00.040 0.43 0.32 0.11 0.57
6446 G053.957+00.032 0.55 0.38 0.13 0.33
6448 G054.108−00.049 0.55 0.10 0.26 0.05
6452 G054.120−00.075 0.51 0.14 0.08 0.54
6467 G056.250−00.160 0.25 0.03 0.11 0.56
6486 G059.786+00.067 0.82 1.00 0.96 0.98
6495 G060.887−00.129 0.90 1.00 1.00 0.93
6497 G061.475+00.090 0.90 1.00 1.00 1.00
6502 G063.115+00.340 0.59 0.61 0.29 0.49
6506 G071.149+00.402 0.75 0.36 0.13 0.29
6508 G072.954−00.028 0.57 0.14 0.14 0.10
6521 G075.757+00.339 0.90 1.00 1.00 0.99
6523 G075.784+00.341 0.95 1.00 1.00 0.99
6528 G075.835+00.399 0.84 1.00 1.00 0.98
6529 G075.841+00.367 0.85 0.74 0.69 0.77
6530 G075.843+00.359 0.80 0.66 0.61 0.96
6547 G076.156−00.287 0.84 0.59 0.72 0.67
6550 G076.186+00.095 0.88 0.53 0.78 0.46
6555 G076.358−00.601 0.84 0.69 0.68 0.60
6556 G076.382−00.623 0.92 1.00 1.00 1.00
6562 G077.475−01.083 0.57 0.45 0.05 0.22
6569 G077.820−01.313 0.55 0.43 0.14 0.39
6588 G077.978+00.577 0.26 0.03 0.04 0.61
6599 G078.034+00.617 0.58 0.23 0.06 0.18
6602 G078.106−00.317 0.68 0.69 0.66 0.73
6604 G078.114−00.637 0.89 0.57 0.71 0.42
6631 G078.379+01.017 0.41 0.50 0.54 0.40
6652 G078.888+00.709 0.95 1.00 0.99 0.99
6657 G078.978+00.351 0.83 0.95 0.99 0.84
6669 G079.132−00.369 0.87 0.95 0.87 0.87

PASA, 33, e015 (2016)
doi:10.1017/pasa.2016.13

https://doi.org/10.1017/pasa.2016.13 Published online by Cambridge University Press

http://dx.doi.org/10.1017/pasa.2016.13
https://doi.org/10.1017/pasa.2016.13


Comparison of Classification Techniques for Masers 27

Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

6683 G079.289+01.301 0.50 0.36 0.45 0.35
6685 G079.296+00.283 0.68 0.48 0.39 0.63
6686 G079.308+01.307 0.82 0.55 0.28 0.38
6687 G079.313+00.279 0.84 0.72 0.52 0.67
6690 G079.335+00.341 0.51 0.35 0.60 0.57
6698 G079.483−00.719 0.55 0.49 0.18 0.42
6703 G079.563−00.767 0.94 1.00 0.54 0.95
6704 G079.643+00.473 0.62 0.95 0.12 0.71
6712 G079.879+01.179 0.93 0.92 0.93 0.84
6718 G079.981+00.811 0.45 0.52 0.32 0.50
6721 G079.986+00.839 0.60 0.13 0.48 0.07
6730 G080.364+00.445 0.87 0.37 0.65 0.27
6741 G080.635+00.686 0.73 0.55 0.64 0.52
6747 G080.829+00.568 0.74 0.69 0.55 0.61
6753 G080.863+00.384 0.79 0.96 0.69 0.94
6754 G080.864+00.422 0.79 0.98 0.90 0.97
6762 G080.941−00.126 0.69 0.61 0.75 0.72
6765 G080.954−00.154 0.61 0.45 0.19 0.34
6788 G081.117−00.140 0.72 0.28 0.61 0.18
6796 G081.174−00.100 0.93 0.99 0.74 0.99
6808 G081.260+00.984 0.33 0.06 0.04 0.75
6815 G081.302+01.052 0.96 1.00 0.98 0.99
6820 G081.344+00.760 0.84 1.00 0.91 0.95
6839 G081.451+00.470 0.57 0.10 0.33 0.06
6840 G081.457+00.018 0.61 0.29 0.32 0.57
6844 G081.477+00.022 0.71 0.09 0.77 0.33
6859 G081.542+00.986 0.33 0.70 0.17 0.71
6863 G081.549+00.096 0.64 0.68 0.48 0.60
6872 G081.582+00.104 0.68 0.80 0.35 0.71
6901 G081.680+00.540 0.93 1.00 1.00 1.00
6909 G081.721+00.572 0.97 1.00 1.00 1.00
6920 G081.753+00.593 0.86 1.00 1.00 0.98
6926 G081.765+00.641 0.23 0.55 0.08 0.20
6934 G081.783+00.621 0.68 0.37 0.12 0.85
6941 G081.831+00.853 0.32 0.53 0.15 0.66
6947 G081.844+00.881 0.83 0.30 0.63 0.19
6955 G081.875+00.783 0.84 1.00 1.00 1.00
7069 G084.548+00.104 0.36 0.67 0.20 0.68
7097 G084.774−01.184 0.55 0.28 0.09 0.17
7098 G084.784−01.104 0.37 0.14 0.03 0.80
7099 G084.805−01.112 0.84 0.73 0.19 0.51
7101 G084.829−01.092 0.73 0.06 0.45 0.29
7104 G084.844−01.084 0.66 0.22 0.26 0.42
7111 G084.951−00.692 0.37 0.55 0.17 0.80
7121 G085.042−00.144 0.72 0.21 0.78 0.28
7126 G085.073−00.140 0.18 0.14 0.59 0.22
7140 G085.412+00.002 0.53 0.78 0.41 0.70
7146 G089.635+00.171 0.50 0.08 0.14 0.06
7149 G098.978+03.960 0.61 0.35 0.17 0.20
7150 G099.115+03.926 0.62 0.53 0.22 0.52
7151 G099.981+04.168 0.98 1.00 0.97 0.93
7170 G110.113+00.050 0.48 0.20 0.68 0.43
7213 G111.284−00.664 0.82 0.14 0.81 0.25
7232 G111.447+00.798 0.49 0.05 0.54 0.03
7235 G111.484+00.746 0.62 0.18 0.80 0.33
7243 G111.522+00.800 0.91 0.81 0.40 0.57
7244 G111.528+00.818 0.79 0.57 0.51 0.56
7247 G111.537+00.756 0.95 1.00 0.99 1.00
7248 G111.545+00.776 0.95 1.00 1.00 1.00
7252 G111.573+00.750 0.68 0.96 0.84 0.98
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

7257 G111.597+00.806 0.57 0.08 0.66 0.08
7260 G111.615+00.374 0.84 0.98 0.94 0.96
7305 G111.787+00.586 0.52 0.12 0.31 0.15
7322 G111.882+00.992 0.84 0.56 0.73 0.56
7331 G111.945+00.808 0.53 0.18 0.38 0.06
7351 G133.694+01.215 0.98 1.00 1.00 1.00
7352 G133.715+01.217 0.93 1.00 1.00 1.00
7361 G133.736+01.271 0.64 0.25 0.35 0.13
7364 G133.748+01.197 0.98 1.00 0.72 0.92
7367 G133.784+01.421 0.70 0.05 0.49 0.03
7374 G133.890+01.137 0.26 0.46 0.10 0.82
7380 G133.949+01.063 0.87 1.00 1.00 1.00
7392 G134.203+00.753 0.79 0.17 0.53 0.36
7394 G134.211+00.729 0.67 0.04 0.16 0.26
7396 G134.218+00.787 0.73 0.26 0.30 0.33
7456 G138.295+01.556 0.91 0.96 0.82 0.85
7459 G138.503+01.646 0.53 0.62 0.38 0.60
7460 G188.792+01.027 0.75 0.56 0.79 0.52
7461 G188.948+00.883 0.81 1.00 1.00 0.99
7465 G189.030+00.781 0.96 1.00 0.99 0.94
7466 G189.032+00.793 0.91 0.47 0.72 0.66
7474 G189.776+00.343 0.91 1.00 0.85 0.98
7481 G189.804+00.355 0.82 0.71 0.37 0.58
7482 G189.810+00.369 0.55 0.17 0.19 0.26
7483 G189.831+00.343 0.60 0.18 0.36 0.16
7486 G189.864+00.499 0.60 0.24 0.37 0.20
7492 G189.951+00.331 0.61 0.14 0.25 0.09
7501 G192.581−00.043 0.98 1.00 0.99 0.98
7502 G192.596−00.051 0.78 1.00 0.93 0.98
7531 G349.836−00.528 0.79 0.63 0.68 0.51
7536 G349.978−00.560 0.38 0.05 0.09 0.52
7538 G349.988−00.558 0.22 0.64 0.08 0.31
7540 G350.016+00.432 0.78 1.00 0.24 0.96
7545 G350.110+00.090 0.98 1.00 1.00 0.97
7546 G350.120+00.060 0.90 0.99 0.69 0.84
7549 G350.177+00.014 0.59 0.58 0.66 0.56
7558 G350.298+00.122 0.72 0.35 0.15 0.26
7559 G350.329+00.100 0.88 0.99 0.47 0.85
7560 G350.341+00.138 0.59 0.42 0.14 0.27
7571 G350.521−00.350 0.39 0.55 0.37 0.51
7577 G350.689−00.492 0.94 0.96 0.77 0.81
7591 G350.783−00.028 0.68 0.96 0.45 0.87
7603 G350.975+00.546 0.32 0.35 0.12 0.71
7604 G350.978−00.540 0.68 0.31 0.10 0.30
7605 G351.040−00.338 0.96 1.00 0.95 0.97
7621 G351.465−00.458 0.72 0.30 0.83 0.19
7628 G351.555+00.206 0.92 1.00 0.99 0.99
7632 G351.581−00.352 1.00 1.00 1.00 1.00
7635 G351.614+00.164 0.95 1.00 0.98 0.89
7645 G351.775−00.538 0.98 1.00 1.00 1.00
7646 G351.785−00.514 0.98 1.00 0.85 0.88
7650 G351.799−00.488 0.72 0.77 0.24 0.65
7651 G351.802−00.448 0.96 0.97 0.85 0.87
7674 G352.098+00.162 0.70 0.85 0.26 0.78
7677 G352.112+00.178 0.34 0.49 0.16 0.52
7697 G352.317−00.444 0.97 1.00 0.95 0.92
7711 G352.519−00.154 0.73 0.95 0.34 0.83
7714 G352.584−00.184 0.64 0.69 0.32 0.60
7716 G352.608−00.192 0.59 0.19 0.17 0.13
7721 G352.684−00.118 0.56 0.66 0.14 0.39
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

7725 G352.858−00.202 0.98 1.00 0.97 0.95
7728 G352.876−00.516 0.57 0.34 0.05 0.18
7733 G353.019+00.504 0.56 0.50 0.25 0.53
7741 G353.067+00.508 0.74 0.76 0.19 0.52
7745 G353.069+00.452 0.84 0.76 0.17 0.73
7747 G353.079+00.422 0.66 0.45 0.07 0.53
7748 G353.091+00.446 0.52 0.32 0.15 0.09
7749 G353.117+00.366 0.67 0.40 0.71 0.42
7751 G353.216−00.246 0.53 0.85 0.18 0.81
7758 G353.316−00.256 0.64 0.13 0.61 0.25
7759 G353.334−00.294 0.53 0.16 0.10 0.31
7760 G353.343−00.288 0.58 0.49 0.26 0.65
7761 G353.343−00.290 0.70 0.31 0.32 0.43
7763 G353.362−00.088 0.50 0.22 0.19 0.38
7764 G353.365−00.166 0.81 0.99 0.46 0.87
7765 G353.367−00.336 0.72 0.26 0.34 0.56
7767 G353.384−00.336 0.66 0.63 0.47 0.75
7770 G353.400−00.070 0.89 1.00 0.45 0.89
7771 G353.412−00.360 0.91 1.00 1.00 1.00
7772 G353.432−00.088 0.74 0.86 0.14 0.68
7779 G353.548−00.016 0.74 0.44 0.46 0.40
7791 G353.834+00.268 0.63 0.60 0.18 0.56
7794 G353.978+00.260 0.54 0.20 0.21 0.06
7806 G354.208−00.036 0.35 0.75 0.22 0.74
7811 G354.343+00.474 0.53 0.12 0.24 0.05
7820 G354.422+00.032 0.71 0.23 0.22 0.22
7832 G354.600+00.474 0.92 0.95 0.09 0.80
7834 G354.617+00.472 1.00 1.00 0.63 0.99
7836 G354.662+00.484 0.72 0.97 0.66 0.91
7837 G354.672+00.242 0.61 0.47 0.06 0.19
7839 G354.711+00.292 0.85 0.99 0.20 0.84
7840 G354.725+00.302 0.94 1.00 0.56 0.96
7843 G354.769+00.326 0.57 0.44 0.19 0.74
7849 G354.826+00.352 0.47 0.23 0.07 0.78
7855 G354.946−00.540 0.68 0.84 0.47 0.65
7859 G355.129−00.300 0.61 0.31 0.08 0.33
7860 G355.186−00.418 0.99 1.00 0.85 0.99
7874 G355.268−00.270 0.89 0.95 0.51 0.88
7877 G355.346+00.148 0.90 1.00 0.31 0.97
7881 G355.413+00.102 0.56 0.87 0.10 0.79
7897 G355.742+00.132 0.61 0.49 0.23 0.51
7901 G355.828−00.500 0.22 0.29 0.60 0.35
7906 G356.007−00.424 0.73 0.26 0.15 0.18
7909 G356.304−00.206 0.21 0.48 0.16 0.58
7917 G356.430+00.104 0.52 0.31 0.14 0.21
7920 G356.482+00.190 0.55 0.58 0.12 0.63
7931 G356.662−00.264 0.84 0.97 0.69 0.84
7950 G357.557−00.322 0.98 1.00 0.75 0.98
7961 G357.968−00.164 0.98 1.00 0.86 0.99
7963 G357.997−00.154 0.46 0.53 0.55 0.49
7976 G358.389−00.484 0.98 1.00 0.91 0.91
7980 G358.461−00.392 0.97 1.00 0.82 0.98
7983 G358.513−00.374 0.57 0.47 0.73 0.51
8019 G358.725−00.130 0.50 0.29 0.36 0.22
8131 G359.141+00.028 0.43 0.70 0.32 0.79
8193 G359.372+00.275 0.56 0.19 0.18 0.18
8198 G359.384−00.021 0.19 0.15 0.06 0.87
8203 G359.418+00.089 0.40 0.18 0.53 0.10
8207 G359.424−00.171 0.48 0.11 0.59 0.10
8212 G359.444−00.105 0.70 1.00 1.00 0.99
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Table A1. Continued.

Bolocam catalogue # BGPS name Random forests Logistic regression LDA Normalised LDA

8217 G359.470−00.037 0.65 0.28 0.32 0.52
8220 G359.475+00.009 0.32 0.20 0.32 0.82
8222 G359.480−00.151 0.81 0.35 0.16 0.20
8226 G359.490−00.035 0.71 0.14 0.36 0.09
8230 G359.500−00.141 0.60 0.00 0.05 0.01
8243 G359.557−00.095 0.71 0.01 0.23 0.09
8245 G359.566−00.161 0.57 0.11 0.23 0.05
8247 G359.576+00.001 0.55 0.07 0.32 0.03
8248 G359.576−00.209 0.55 0.09 0.17 0.02
8252 G359.602−00.221 0.95 0.80 0.37 0.70
8258 G359.617−00.243 0.89 1.00 1.00 0.99
8261 G359.636−00.131 0.65 0.30 0.66 0.30
8263 G359.639+00.017 0.40 0.17 0.06 0.57
8288 G359.713+00.045 0.53 0.20 0.42 0.11
8289 G359.716−00.375 0.82 0.74 0.54 0.74
8299 G359.752+00.037 0.51 0.07 0.36 0.03
8319 G359.822+00.029 0.49 0.05 0.51 0.12
8329 G359.864+00.019 0.53 0.14 0.35 0.22
8332 G359.867−00.085 0.89 0.16 0.25 0.95
8335 G359.891−00.071 0.80 0.98 1.00 0.94
8337 G359.900+00.015 0.70 0.15 0.23 0.11
8338 G359.906+00.041 0.73 0.43 0.15 0.45
8342 G359.912−00.305 0.10 0.32 0.49 0.56
8345 G359.920+00.025 0.75 0.32 0.13 0.16
8353 G359.944+00.171 0.87 0.82 0.49 0.77
8354 G359.946+00.153 0.94 1.00 0.39 0.95
8355 G359.946−00.047 0.91 1.00 1.00 1.00
8356 G359.947+00.023 0.78 0.14 0.45 0.08
8361 G359.971−00.459 0.59 0.99 0.83 0.97
8366 G359.978−00.071 0.85 0.00 1.00 0.84
8367 G359.985+00.023 0.65 0.11 0.43 0.10
8370 G359.994+00.107 0.60 0.11 0.26 0.04
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