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A Space of Harmonic Maps from a Sphere
into the Complex Projective Space

Hiroko Kawabe

Abstract. Guest—Ohnita and Crawford have shown the path-connectedness of the space of harmonic
maps from S? to CP" of a fixed degree and energy. It is well known that the  transform is defined on
this space. In this paper, we will show that the space is decomposed into mutually disjoint connected
subspaces on which 9 is homeomorphic.

1 Introduction

Let Harm (S*, CP") be the space of harmonic maps from the Riemann sphere S? into
the complex projective space CP" contained in a Banach manifold W!#4(S2, CP").
Then Harm(S?, CP") is the disjoint union of Harm g(S*, CP") consisting of maps
of degree k and energy E. By [GO, C], it is known that Harmy g(S*, CP") is path-
connected. Let Hol(S*, CP") be the space of either holomorphic maps of degree
k > 0 or anti-holomorphic maps of degree k < 0. For an integer r > 0, we denote by
Holx.,(S*, CP?) the subspace of Holi(S*, CP*) consisting of maps with ramification
index . By [C], for 0 < r < k — 2, the map

0: f]{olk,r(Sz, CP?) — f]{armk_z_ﬁk_z_r(sz, CP?)

is a homeomorphism. Inspired by those works, Lemaire and Wood [ R ]
showed the smoothness of the map 0, the injectivity of its differential, and that any
Jacobi field of a harmonic map of S? into CP? is always integrable. For general n > 3,
9: Harmy p(S*, CP") — Harmy: g/ (S*, CP") is not necessarily continuous. See Ex-
ample 6.3. In this paper, we consider the subspaces of Harmy g(S*, CP") on which
0 is continuous. Any new terminology or notation is explained in the following sec-
tions.

Theorem 1.1 Take an integer n > 2 and an (n — 1)-tuple R; = (Ro, Ry, ..., Ry—2).

(i) Iff)fol,fﬁR/ (82, CP") is not empty, it is a path-connected complex submanifold of the
complex manifold Hol} (S?, CP") of dimension

n—2

(k+1)(n+1)—1—2(n—s— DR..

s=0
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(i) For1 < s < n, the map 8°: Holy (S*,CP") — Harmy g (S*,CP") is a
homeomorphism. So J-Carm,tsﬁRI(Sz, CP") can be given the structure of a complex
manifold.

As a direct result, we get the following corollary.

Corollary 1.2 Put Harmg, g (S*,CP") = Holy  (S*, CP"). Then, for 0 < s <
n — 1, the map

9: Harmy g (S*, CP") — Harmj ., p (S*,CP")

is a homeomorphism, where Jarmy RI(SZ, CP") consists of anti-holomorphic maps.

The contents of this paper are as follows. In Section 2, we recall required facts of
harmonic maps into the complex projective space and their harmonic sequences. In
Section 3, we also recall facts about bubble tree maps and their convergence theorem.
Then we show a gluing theorem of a holomorphic bubble tree map. In Section 4,
we prove Theorem 1.1. In Section 5, we apply Theorem 1.1 to consider gluings of
harmonic bubble tree maps. Finally, in Section 6, we give some examples.

2 Harmonic Maps and their Sequences

Let CP" be the complex projective space with the Fubini-Study metric ¢ and the
complex structure J on CP" induced by the multiplication v/—1. We identify the
sphere S? with CP! through a stereographic projection sending the north-pole to the
origin, the south-pole to the infinity and the equator to the unit circle:

$* — {the south pole } ~ C ~ CP' — {[0; 1]}.

The Riemann sphere $?, gy has the induced metric gy from the Fubini-Study metric
that is represented by ds3 = ¢p. Here ¢ is a one-form defined up to a factor of
absolute value 1.

For p > 2and r > 0, let W"P(S?, CP") be a Banach manifold consisting of maps
f: §* — CP" whose derivatives of order < r are L, integrable. A harmonic map f is
a critical point of the energy functional E: W'#4(5?, CP") — R defined by

E(f) = /S Idflzgso NG,

where |df|* is the Hilbert—=Schmidt’s norm (g, f*¢)ns. We normalize E so that
E(f) = kfor f € Holi(S*, CP"). Consider Harm(S*, CP") as the subspace of
WL4(S2 CP"). Denote by Harmy(S*, CP") the subspace of Harm(S?, CP") consist-
ing of maps of degree k. Let C/(S?, CP") be the space of C/ maps from S? into
CP". By the Sobolev embedding theorem W!#* C C° and the regularity theorem,
Harm(S?, CP") is contained in C/(S?, CP") for any j > 0. Since (CP", g) is a Kihler
manifold, the space Hol(S?, CP") is also contained in Harmy(S*, CP"). Note that
Harmi(S?, CP') = Holi(S?*, CP).
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We say that f € Harm(S?, CP") is full if its image lies in no proper projective
subspace of CP". Let Harmj (S?, CP") be the subspace of Harmy(S*, CP") consisting
of full maps. Put Holj (52, CP") = Harmj (S?, CP") N Holx(S?, CP").

Now we introduce a  transform and a 0 transform in [CW], which is the same
correspondence given in [EW, §3]. Denote by G(t, s) the complex Grassmann man-
ifold consisting of s-dimensional subspaces in C'. We equip the standard Riemann
metric and the complex structure on it. See [KN, IX, Example 6.4].

For f € Hol;(S?,CP") and 1 < s < n — 1, consider the map w;: U — AT1C"!
defined by

wy(2) = fu@) A fi @) A A f(2)

— Z D(piwpin""pis)eio/\"'/\eiw

0<ig<-++<is<n

where fy: U — C™' — {0} is alift of f, {e;}; are the standard one forms of C"*!,
and we identify

fU:(p07~~'vpn):ijej7 éS):ng:Z(%pj)ej'
j

i

Let S¢ be the setof z € 52 so that the dimension of the space defined by w;(z) is less
than s+1. When z ¢ Sy, w,(2) defines an (s+1)-dimensional subspace of C""1. When
2y € Sp, wi(z) = (z—20)"W(z) with W(z) # 0 on a neighbourhood of zy. Since W,
is holomorphic and defines an (s + 1)-dimensional subspace of C"*! that is equal to
the space defined by w; except at z, we get a holomorphic map f;: $* — G(n+1,s+1)
defined by f;(z) the space w;(z) or W(z). For details, see [EW, Lemma and Definition
3.3]. The subspace Holi(S?, G(n + 1,5+ 1)) of Hol(S*, G(n + 1,5 + 1)) consisting of
maps of degree k is connected. See [GO, Example 6.3].
Denote by R;(f) the ramification index of f;. By [GH] or [EW], we get

deg f, =2 -deg f,_; — deg f_» — 2 — R_1(f),
where deg f_; = 0 and f; = f. Hence
s—1 u
deg fi=(k=s)(s+1) =Y > Ra(f) > 1

u=0 a=0

for1 < s < n—1ifdegf = k. For a C-subspace X in C""!, denote by X+ the
orthogonal complement of X in C**!. Put

Holy (S?, CP") := Uppao Holi(S?, CP"),
Hol’(S*, CP") = Hol4(S*, CP") N Hol*(S*, CP").
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Theorem 2.1 ([EW, Theorem 6.9]) There is a bijective correspondence between ]? S
Harm™(S?, CP") and a pair (f,s), where f € Hol;(S*, CP") and s is an integer with
0 <'s < n satisfying

f=fNfi
Here ), = 0 and f, = C"*.

When fis harmonic, by Theorem 2.1, we can get a holomorphic map f: $* —
CP" and an integer s > 0 with f = finft,.If fis not anti-holomorphic, we define
the O-transform of fby

of = fur N f.

Similarly, if fis not holomorphic, we define its J-transform by
51? = f1 N f;J;2

By Theorem 2.1, both 8]? and éiare harmonic. When fis anti-holomorphic or
holomorphic, we define f or Of as a zero map respectively. Since these 0 or 0
transforms are the same ones to those defined in [C\W], we get the following theorem.

Theorem 2.2 ([C\W, Theorem 2.2]) For f € Harm(S*, CP"), if Of is non-trivial,
00f = f. When Of is non-trivial, 00 = f.

Denote by R@(f) the ramification index of f By [CW], if f = fNfL forl <
s<n-—1,weget

s—1
deg f = deg f —deg fi1 =k — 25— ) Ra(f),
a=0
where fy = f. For the following lemma, we refer the reader to [GH] and [W, §3].
Lemma 2.3 For f € Harm(S?,CP"), if Of is non-trivial, we get
degdf = deg f — 2 — Ry(f).
By Lemma 2.3, f € Hol; (S*, CP") satisfies
degdf = degd™'f =2~ Ri1(f) = degd™'f =2~ Ry(0"™'f),

and so Ryp(O*'f) = R_1(f) for1 < s < n— 1. Any f € Hol(S* CP") defines a
sequence of harmonic maps

— C 1 K 8"071 " Bn
seq(£,00:0 L FRafp A .05 g o st gup P g,
which is called a harmonic sequence of f of length n. Since any non-trivial f~ c

Harm(S?,CP") has f € Hol,(S?,CP") and an integer s with f = £ N fX, by
Theorem 2.1, seq(f,0) contains f with &°f = f, and so we also call seq(f,0) a
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harmonic sequence of fand denote by seq(]?, s). Obviously f € Harm(S?,CP") is
full exactly when the length of seq( f, s) is n. Put

HolZvRI(SZ, CP") := {f | R(f) = R, for 0 < s < n— 2} C Hol;(S*, CP")
where Ry = {Ry, .. ., R,_2}. We denote by Harmy ,  (S*, CP") the image of
& Holjp (S, CP") — Harm™(S*,CP").

Here J{arm,’;n’R/(SZ,CP") C Hol* (§*,CP"). The frame {Z }o<s<n—1 is called the
Frenet frame of f if {Z, }o<.<; expands the space fy A --- A £ for a lift fy: $2 D
U — C"1. By [W], we get the following lemma.

Lemma 2.4 ([\W, §2and §3]) For f € Hol}(S*, CP"), choose the Frenet frame {Z}

of f and put
dZ, = =1 PZ_1 + wiZs + agpZi

for0 <s < n, wherea_, = a, = 0. Then each 0" f defined by Z; holds

B = [ (il +laP) o0

s v—1 —
deg & f = /(|a$|2 - |a$_1\2) T(p/\(p.

By Lemma 2.4, ) " deg & f = 0, and so we get

n—2 u

degd"f = —(k—n+1n+» > R,

u=0 a=0
By Lemmas 2.3 and 2.4, we also get the following inequalities.

Lemma 2.5 ([W, Theorem 3.1]) For f € Hol[(S?, CP"), choose the Frenet frame
{Z}s of f. Then we get the following for any s.

@) Emgqgn ngugqq Rp(0*f) < E(O°f)+ (n+1) - |deg & f].

() Socyet Sogence s Ro@F) < E@f) + (n+1) - |deg o' f].

For an integer k > 0, denote by V the set of polynomials of the degree no greater
than k and by V| the subset of V; consisting of monics of the degree k. For p; € Vi,

put
po pl ps
po p1 o Pl
D(pOaplv"'ypS): : : .. . .
Py Y pY

Lemma 2.6 For0 <s<n<kandp; € Vy, thedegree of D(py, p1,--- , ps) is no
greater than (k — s)(s + 1).
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Proof Putp;(z) = Zogugk a{;z“. Then D(py, p1,--- , ps) is the sum of monomials
ko! k! 0 s kot tke—(
. a. -+ d o+ ks —(so -+ +s;)
2 G e ’

where k; < k, p = (s, ...,5s) is a permutation of (0, 1,2, ...,s) and €(p) is denoted
for the sign of p. When

s(s+1)

ko+- +ki>k(s+1)— +1

)

ki = k;j for some i # j, and so the corresponding monomials vanish. Therefore

s(s+1)  s(s+1)
22

ko4 +ki—(so+---+s) <k(s+1)— =(k—s)(s+1). |

A map f € Hol,(S?,CP") is represented by using homogeneous coordinates on
CP":
@) =[po@; - pa2)].

We define hy = [qo; q1 5 -5 qu] bY

‘Js = (_1)5 D(P07 ... 7P57171357Ps+17 .. ;Pn)-

This is uniquely defined by f. By definition, the complex conjugate of /¢ defines the
anti-holomorphic map 0" f, which we call the polar of f. See [EW, §3].

Lemma 2.7 Forany f € Hol)(S*, CP"), we get

Ry(Of) =0 and Of € Harm'_,(S*, CP")

n—2s
with E(O° f) = n(2s+1)—2s* forany 0 < s < n—1. Wealsoget 0" f € Hol" ,(S*, CP").

Proof ByLemma2.6,degh¢ < n. Moreover, as f is full and k¢ defines 0" f, deghy =
nand 0" f € Hol™ ,(S*, CP"). By Lemma 2.3, ramification indexes Ry(9* f) hold

s—1

degdf =n— 25 — ZRa(aaf)

a=0
forl1 <s<mn-—1,andso

n—1 s—1

n—1
degd"f = —degf — Y degdf =—n+Y» Y Ry(d"f) = —n.
s=1

s=1 a=0

Hence Ryp(0°f) = 0 forany 0 < s < n — 2. Since
E(O f) —E(0°f) = deg O f + deg O f

by Lemma 2.4, we get the required equality for E(0° f). ]
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3 Bubble Tree Map

As for bubbling phenomena, we refer the reader to Parker and Wolfson [PW] and
Parker [P]. Let TS* — S? be the complex tangent bundle over the complex manifold
$2, gy. Compactifying each vertical fiber, we get a bundle ¥(S?*) — S with fibers
S, = §%, where we identify z of S, with the south pole co of $* and equip the complex
structure on Y(S?). By the induction on k > 1, we define a bundle

YH(S?) = D 1(S?) — BF1($?).

A bubble domain at level k is a fiber S* = $? of ¥¥(S?) — ¥¥~1(5?), and a bubble
domain tower is a union T! = \/,; S of the base space S© of (8?) — $? and
finite number of bubble domains S© (¢ € I, ¢ > 1) with

w8840 5 80 = §f = 77 (z) — 20 € S
We denote by oo, the south pole of S, If a map

ffl=V O 1=\ s — cp
lel el

consists of non-trivial maps f(f) satisfying f“)(oo/) = f“/)(z;;) when w[l(z,g) =350,
we call f! a bubble tree map, f”) a base map, £ a bubble map for ¢ € I — {0}, and
z; € S abubble point of f). Here, without loss of generality, we can assume that
¢ > ¢’ if the level of S is greater than that of S ") Denote by By the set of bubble
points of £

We call f! a harmonic bubble tree map if f € Harm(S", CP") for each ¢ €
I. Similarly we call f a holomorphic (resp. anti-holomorphic) bubble tree map if
O € Hol, (Y, CP") (resp. f© € Hol_ (S, CP")) forany £ € I.

Two maps fy and f; in Harm(S?, CP") are said to be equivalent if f; = f; o o by
a fractional transformation o fixing the infinity. We say that

=V 0T =\ s — cp
el Ll

is equivalent to fll1 = Ve 1@’): Th = Ve, 5&5') s CP"if Th — T and fo(é‘) is

equivalent to fl(@ forany ¢ € I :

o 7
O = (000t 50 Ty g0 2 cpr

We say that a sequence { f*},>1 in Harm(S?, CP") converges to a harmonic bubble
tree map f': T' — CP" if each f* defines a bubble tree map fM =\/,, fA: T —
CP" by the iterated renormalization procedure and if { f}}, converges to a har-

monic bubble tree map f! equivalent to f! uniformly in C® N W'? and uniformly
in C" (r > 1) on any compact set of T' — Uy({oo/} U Bf). Here = ooy
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on a compact set in S/ — {co,} UB o by a fractional linear transformation o s of
S = g2 fixing the south pole. For details, see [PV, §4].

A harmonic bubble tree map f! is said to be gluable if a sequence of harmonic
maps converges to a harmonic bubble tree map f”. By [P, Theorem 2.2 and Corollary
2.3], we get the following convergence theorem.

Theorem 3.1 Let {f}\ be a sequence in Harm(S?, CP") with sup, E(f") < oo.
Then a subsequence (we denote it by the same way) converges to a harmonic bubble tree
map f1 =\, fO: T! — CP" satisfying

llﬁnE(f/\) = ;E(f(l)) and hindegf/\ _ ;deg f(z).

We say that a bubble domain tower T! = \/, S is simple if S© = 7,'(z) by
zy € S — {the south pole } for any £ € I — {0}. We begin to glue a holomorphic
bubble tree map defined on a simple bubble domain tower.

Lemma 3.2 (The first step of gluing)  Let f' =\/, f): T! — CP" be a holomorphic
bubble tree map with a base map ¥ defined on a simple bubble domain tower T' =
V, SO Putk =",k for k, = deg f“). Then there is a sequence of holomorphic maps
fr € Holi(S?, CP") with fz(00) = 9 (00) converging to f' when R — +oo.

Proof By the assumption, each 0 € Holy, (5%, CP") holds £ (z) = £ (c0) for

20 € Bpo € SO Put fO = [p§) 5 -+ ; p], where {py)}j are coprime and pg-é)
satisfies L
Py = oo py @
for ¢ > 1. Por R > 0 large enough, we define a gluing map X = [p&;---; p&] by
PR = p0) + S 0w — LA 0
] 1 = kawiff ] kel dzke ™

where 131]4“ (wy) == py) (z) for wy := z — z;. Though p? is a rational function, fXisa
well-defined map in Holy(S?, CP").

For a fixed Ry > 0 large enough, if |z — z/| > ﬁ forany ¢ > 1,by R — +oo, fR
converges to the restriction of f'”). We can extend this convergence by Ry — +oo0.
When |z — z/| < ﬁ, putw = Rw and define f{: $* — CP" by

A;[)(w) = fR<zz + %W)

for |w| < v/R. For a fixed R, > 0 large enough, passing through a subsequence, the
restrictions of { f{ }z on |w| < \/R; converge to the restriction of

fO) + fOw) = fO(00) = fO(w)

by R — +oo. Extending this convergence by Ry — 400, we get a convergence to
. These facts show that a subsequence of { fX}z converges to fI. Moreover, we
can calculate to get fr(c0) = f©(c0). [
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To continue the procedure, we establish another lemma.

Lemma 3.3 (The second step of gluing) Let
fI = f(o) Vi (\/ ff)\) . TI - Cp"
A
be a holomorphic bubble tree map with a base map f©, where

fIA = f(fA) vV (\/ f([)\}l)): Th Ny e}
I

is a bubble tree map defined on a simple domain tower T with ) (c0) = f(é*)(z%)
by z;,, € S — {oo} and f")(c0) = f(z,) for some z;, € SO — {o0}. Then we
can get a sequence of { f*}x in Hol*(S?, CP") with f*(00) = £ (c0) converging to f'.
Proof Put f) = [p} ;-3 p)] with deg f©) = kyand f) = [pg# ;-5 p)]
with deg f*) = k. By Lemma 3.2, for S > 0 large enough, we get a gluing map
S =1p5; s P3,) defined by

5@ =@ +Y{ Sh
i

where ﬁ?”(w,\#) = p?”(z) for wy, ==z — z,, and p?(oo) = pij(oo). In fact,{ {3 }s
converges to f2 by S — oo.

Since f(© v ( YR fA) also becomes a bubble tree map defined on a simple domain
tower with f5(00) = f¥)(00), we define a map fRS = [pkS; ... ; pRS] by

1 do
P = p @) +Z{ (Rw2) — Py}

where ﬁf\j(w,\) = pij(z) for wy = z — z,. Then a subsequence of { f*5} zs converges

)\t d /\t
/ (SW/\#) ' dzk/\u F ( )}

to fI. This completes the proof. ]

Now we glue a holomorphic bubble tree map by an elementary way without us-
ing the implicit function theorem and without changing the Fubini—Study metric
on CP".

Proposition 3.4 Any holomorphic bubble tree map f' = \/, f: T = \/, 8 —
CP" is gluable.

Proof When I # {0}, we can choose a bubble map f) defined on S’ whose level
is the maximum among any level of S 7). If z; € $“), we can get a bubble tree map
defined on a simple bubble domain tower

(/’0) (\/f ) (10 (\/S(kj)) — CP”7
j
where £ is a base map, f/)(c0) = f m(z,/ ) by bubble points z;, € S (o), Especially
Z( = z,; for some j. By Lemma 3.2, we can glue to get a new holomorphlc map

f Next we repeat the procedure shown in the proofs of Lemmas 3.2 or 3.3 to get
a required holomorphic map . This completes the proof. ]
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4 A Space of Harmonic Maps

From now on, we assume that n > 2. Let V(C™) be the Stiefel manifolds of s-frames
in C™. For the proof of the following lemma, we follow the proof of [C, §3].

Lemma 4.1 Forl < s < n—10<i < i < - < iy, < n, k > nand
¢ € V', take any (po, ..., pu) € Va1 (CKY) so that ¢, po are coprime monics. Then
@ divides D(pi,, piys - - -, pi.) for any (ig, 11, . . ., i) if ¢ divides D(po, pi,, - - -, pi,) for

any (i1, ..., 1).

Proof Since

PO 'D(piwpil;"'apis) = Z (_]-)upi“ 'D(p(hpim"'apviuv"-7pi5)7

0<u<s
we get a required result. ]
For an (n — 1)-tuple R; = {Ry, Ry, ..., R,_,} of non-negative integers with
s—1 u
(k=s)s+1)—=1>=> 3 R,
u=0 a=0

forany 1 < s < n — 1, consider a subspace
Fir, = { f € Holi(S*,CP") | Ro(f) > Ry} C Holi(S*,CP")

and put Fir, = Fkr, — Frre+1- By the induction on s, we continue this procedure.
Define

Fery ke = { f € Fipon, | R() > R}
and put
Firy... = FkRroooke — Frro, RoH1-
By definition, Jol; p (S*, CP") = F{ . Wealso consider another sequence of
spaces. For s > 0, consider a subspace

o +
Firy,..r, C Vg, X -+ X Vp X Fip,,..R,

consisting of (¢g, ..., ¢s, f = [po; -+ ; pal) such that ¢, divides the ramification

44444

Z4 be the set of zeros of ¢. If s > 1, consider the map
e Vi x - x Vi — P(C)

defined by Wy(¢bo, . . ., bs) = Zy, X - - - X Z . Here P(C) is the set of (s+1)-tuples of
finite sets in C. Let Py (C**!) be the subset consisting of Zy x - - - x Z; with Z,NZ,, = ¢
for u # u’. Then Po(C*!) is a subspace deleting a proper algebraic subset from
P(C1) and so is path-connected. Put Vi, = U H(Py(CH)) and
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(¢07~~-7¢57f:[p0;~~~;pn])

with Z; N ZD(piy,opis) = ¢ forany 0 < iy < --- < iy < n. The group PGL(2,C) X
PGL(n, C) acts on the last component of Vg x - --x Vg x Hol} (S*, CP") in a natural
way. Let PV]" be the projective space defined as the quotient space V}"/ ~ where
(@15 qm) ~ (Aq1, - -+, Agm) for X\ € C — {0}. We also denote by PV,,(C**!) the
projective space of V,,,(C*!). Let 7: V,,(CF!) — PV,,(C**!) be the projection. For
the proof of the next lemma, see [C, Lemma 3.2].

Lemma 4.2 Any point of 1?,9 Ro....R, s contained in a neighbourhood biholomorphically

Proof Take (¢o,...,¢s,f = [po ;5 --- 5 pul) € Fk,Ro,m,Rs by coprime polyno-
mials {p;}o<j<n Because of the condition of V} , each a € U Zs, satisfies
D(piyy- -, pi.)(a) # 0 for some 0 < iy < ---i; < n. Therefore, by an action of
PGL(n, C), we can choose g; = Z;:O cjpjsothatgr = [qo; - - - ; qu] defines ramifi-
cation divisors {¢, }, with Z5 N ZD(qiD,---,qiS) =¢gforany0<ip<---<i;<n N

We denote by M(s, m) the space of (s, m)-matrices. For the proof of the following
lemma, we follow the proof of [C, Lemma 3.3].

Lemma 4.3 Ifk—n > Ry, both ﬁk,R(, and Fy  -are path-connected complex manifold
of dimension
(k+1)(n+1)—1—(n— 1)R,.

Proof We begin to show the assertion for Fv,i R, Let Zo be the set of (¢, po) € Vg x Vi
so that they are coprime. For (¢, py) € Zy, define a linear map Ty ,,: Vi — Vg,
by Ty ;,(p) being the remainder of D(py, p) divided by ¢ which we consider as a
(Ro, k+1)-matrix. Let ®g: Zy — M(Ry, k+1) x Vi be the map defined by @ (¢, po) =
(T4,ps Po). Consider a subspace

EO:{(M7p07P17~~~7Pn)|ij:0f0r1§j§n}

of M(Ry, k + 1) x V,;1(C*1). As in the proof of [C, Lemma 3.3], the projection
Ey — V,.1(C¥Y) is a vector bundle, because k — n > Ry, and so E, is a com-
plex manifold. Therefore the projection Ily: E; — M(Rg, k + 1) x Vj defined by
o (M, po, p1,---, pn) = (M, po) is also a complex vector bundle. So the pull-back
®j Ey becomes a connected complex manifold with

dimZy + dimEy — dimM(Rg,k+ 1) X Vi = k+ 1+ Ry + (k+1 — Ry)n
=(k+1)(n+1)—(n—1)R,.

Let m: Vi x V1 (CH*1) — Vi x PV,;1(C**) be the projection. By Lemma 4.1,
m(PEy) = EQRO, and so, by Lemma 4.2, we show the assertion for ﬁ,‘:_Rn = ﬁk,Rg'
Since Fy g,+1 is a proper algebraic subset and cannot disconnect Fy g, ,

=~ —1
Fyr, = Fxry — Ferer1 = Fer, — ™y (Firot1)

is a required one. [ ]
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If f € Holy g, (S*, CP"),

n—2

deghy =n(k—n+1)=> Y Ri(f) > n.

s=0 a=0

Except at finite points, 0" f is locally defined by the Frenet frame {Z}, of f , which is
the Gram—Schmidt orthogonalization of {% fu}sforalift fy: S? D U — C*L.

Lemma 4.4 For f € Hol;($*,CP"), by, = f.
Proof Take f = [po; -+ ; pa] € Holi(§*, CP"), where {p;}; are coprime. For a
lift fu = (po,-- ., pn), Putgu = (qo, - -, qn) and hy = (ry, ..., 1,) where

qj = (=1)D(po, ..., pj,-...ps) and r;j=(=1)D(qo,...,dj--- qn)-

Since hy and hy,, are determined independently on a lift, it is enough to show the
assertion for fy, gu, and hy. Both the inner product f((;) - gu and gg) - hy vanish for
0 <s < n— 1. By the induction on s, we can calculate to get f[&”) -gg"“ = O foranys
and 0 < u < 's. Especially fy - g‘{,s) = 0 for any s, and so both fi; and hy are transverse

to the spacegy A -+ - A g{?_l) in C"*!. This shows that we have ¢ with r; = ¢ - p; for

any j. Since

qo e qn pO .. p(()n)
R : o = joijsn
@’ a”) \pa oo pl?

with¢; =0if0<i+j<n—1land
s = a0 p ™ = (=1 q;pl” = (=1)""*Dlpo, ..., pu),
j=0 j

we get D(qo, ..., q.)D(Po, ..., pn) = D(po,...,ps)""", and so D(qo,...,q.) =
D(po, ..., pn)", because D(py, ..., p,) is not zero except at finite points. Since r; =

¢P17
D( — (1) (g™ i g We Y = (1) D - (g e g
q0>---aqn) ( 1) (qo fo + +4q, T',,) ( 1) ¢ (qo po+ t+4q, pn)
= ¢+ (@py” +-- +aupl”) = (1" & D(po-+- p)

and so we get

ri=(=1)"D(po,....ps)" " pj
for any 0 < j < n. This completes the proof. ]

Lemma 4.5 Forany f € Hol}(S*,CP"), deg f; > nforany0 <s<mn-—1.
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Proof Putd; = deg f.. Since

do—d_y=k-2— Y R(f),

0<u<s—1
there is s such that

n<k=dy<---<dgy>--->dy .

As 0" f is also a full map of degree —d,,_1, d,—1 > n. [ |
Lemma 4.6 Take (¢pg,...,0s—1,[Pos -5 Pnl) € FI?,RO,...,RS_I represented by coprime
{pj}; with deg ¢, = R,(f) for 0 < u < s — 1. In this case, D(po, pi,, - - . , pi,,,) can be

divided by ¢7 = ¢ - ¢ -~ 2| forany 0 < iy < -+ < igyy < 1.

Proof ForR, > 1with0 <u <s— 1, take o € Z;, and an integer k, so that

Pu(2) = (z— )" - ¢y (2)

with ¢, () # 0. Without loss of generality, we can assume that o = 0. Moreover, we

get
N

dzN

for0<ip<---<i,<mand0 < N <ky— 1. Put

D(pio""7piu) 0:0

z=

a, = (p§”(0),...,pl(0)).

We start with N = 0. Under the above situation, if D(p;,, ..., pi,)

—0 = 0 for any

0 < iy < --- < i, by making standard calculations, we can show that a family
{ao,...,a,} is linearly dependent. Moreover, by the assumption on F} Ron R s WE
can put

u—1
a, = E )\(}aj.
j=0

Take 0 <t < ko — 1. By the induction on ¢ > 0, we show that

u—1
t
Ay = Z )\] a]
j=0

Suppose that we have shown this for t—1 > 0. Differentiating D(p;,, . . . , pi,) t-times,
we get a linearly dependent family

Z {8, ar,} +9{a0, .., au_1, a4}

ty<utt—1
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Here, by the assumption of the induction, we can show the linear dependence of any
{ay; . a,} witht, <wu+t—1,and so, by the assumption on F , ., we get

u—1

2 t
Ayt — A] a]

j=0

This means that any {ao,...,a,_1,4a,,...,a.} is linearly dependent as far as u <
ty < <t;with0 <t, —u' <ky—1forsomeu <u’ <s.
On the other hand, as
ko

dzk

D(pim e ,Piu) z=0 7£ 0

for some 0 < iy < --- < i,, we can get a linearly independent family

{80, -« Au—1, Quikyy - -+ Astky |
with
O+1+ - +(u—1D+(utky)+---+(s+k)—(O0+1+---+5) =ko(s—u+1).
These imply that (Ej(z) = ZRolH=uy) (z) with 1),(0) # 0 for s > u, which completes

the proof. ]

Consider the projection

Tt Frry,rey, — (IEZgVi) X PV (CH)

deﬁnedby%s(d)m-"agbsfh [Po Seees pn]) = (¢0’“.’¢Si}’ [PO Seees ps])7Where

{pj}; are coprime polynomials. We denote the image of Fy g, .z _, by B, .r._,

Proposition 4.7 Suppose thatk—n > Ro. Then Fy, is a path-connected complex
submanifold of F,  p  of dimension

(k+D(n+1)=1=Y (n—a—1)R,
a=0

foranyl <s<mn-—2.

Proof By Lemma 4.3, we have shown that Fy g, is a path-connected complex mani-
fold of dimension (k+ 1)(n+ 1) — 1 — (n — 1)R,.

plex submanifold of ﬁk,RU,...,RS,l of the required dimension. Suppose that we have
shown for s — 1 > 0. Then ﬁk7R07___7R571 is a path-connected complex manifold. Since
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E?_ Ro...Ro_, 1S obtained by deleting a proper subvariety from EQ RoroRs 1> f,?’ Rov Roo is

By the definition of ﬁl?.Ro‘....R,-_u we can extend the result of Lemma 4.6 for

Firy oy FOr (¢o, -y 51, [P0 -5 Pul) € Frry ey
{D(po; pirs- - - Pic) Yocis<oocip<n
already has a common divisor 5:‘ Put
X= (00, -1, [pos -5 pnl)s x=7(%) = (0, -1, [Pos - psl)-

Let g.D(po, p1, - - -, Ps, p) denote the quotient of D(py, p1, - - -, ps, p) divided by 5;“
It’s degree k; is given by

ke=(k—s=1)(s+2) = > > Ro+R=degfi1 +R..
u=0 a=0

Forx € Ek,Ro,m,Rsfn define a map S,: Vi — Vi by

Sx(p) - QxD(p()vpla cee 7P57P)~

The kernel of S, is the space expanded by {p; }o< j<; whose orthgonal complement is
isomorphic to the image Im Sy. As the dimension of Im S, is k — s for any x,

Fi,Ro....,Rs,l = Uxeﬁk_Ro _____ R ({x} X Vy_s(Im Sx))
is a complex bundle over ka, Ro....R,_; - Consider the map
F: M(Rg, ks + 1) X Fegy..r_, — M(R,ke+ 1) x Fip o

defined by F(T,x) = (T, x, {Sxpj }sr1<j<n) With 7(X) = x. By the assumption k > n,
F is a bundle map over M(R;, ks + 1) X Ek,Ru,...,Rsfl- Since k; > R; + n by Lemma 4.5,
the subspace

E = {(T,x,{qj}ss1<j<n) | Tqj = O forany j}

of M(Ry, ks + 1) x Fv,l_RU .., s also a bundle over E:ROWRH and so is a path-

connected complex manifold. As ES is also a bundle over M (R, ks + 1) X §k7 Ro,...R
we get the following commutative diagram:

s—17

E, = F*Es C M(Rsv ks + 1) X ﬁk,Ro,...,Rs_l
- U
M(RSa ks + 1) X Bk,RoA,M,Rg, = M(R57 ks + 1) X Bk,Ro,.“,RS,]

and so E; is a path-connected complex manifold.
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For ¢ € V , we also consider a linear map Tys: Vi, — Vi, defined by Tyq being
the remainder of g divided by ¢. Consider the diagram

E,
4
[ii8 ~
— M(Rsa ks + 1) X Bk,RU,...,RS,H

where ®(¢, x) := (T, x). Then the induced bundle ®}E; is a path-connected man-
ifold of dimension

,,,,,

a=0

Put E? = E,N(M(R, ks+1) Xﬁl?.,Ro,....Rsfl ). The restriction ®? of ®; on Vi XE%RO.,...,RH
also induces the bundle ®} E? over V;; x §27 R
DFE,.

Let E? be a subspace of ®*E? consisting of (¢, do, - - ., ds—1, [Po 5 P15 -+ 3 Pnl)
with (¢o, ..., ¢s—1,¢) € V. Since we get E° by deleting a proper subvariety from

R, of the same dimension to that of

yeeny

®*E?, E s also a path-connected complex submanifold of ®*E?. We also consider a

s s>

subspace ES’ ofgg consisting of (¢, Po, ..., Ps—1, [Po s P15 -+ 5 Pnl)) With

Zo NV Zp(piy,pi) = @

forany 0 <ip < --- <i; < n.Inasimilar way to the proof of Lemma 4.2, any point
of E{ is locally equivalent to E/ and so E/ is path-connected.
Take (¢, ¢, - - -, ds—1, [po s P15+ 5 pal) € E/, where

A.
¢ =Ih<j<r(z — )V = ILi<j<rpj-

Forl <s<n—-2,5<i<j<mand0 < u <s, consider the equality

pe” P p” py”
po - Ps pi Pj
0= . . . . .
p(();+1) p§§+1) PES‘H) p§;+1)
= (_l)vpf,u)'D(P07~~~aﬁV7~-7P57Piap]‘)
v=0
+ (=1 p{ - D(po, ..., ps, pj) + (=1)'p" - D(po, . .., ps, pi)
which are linear simultaneous equations of {D(po, ..., Py, - - -, Ps, Pi> Pj) o<v<s. Put

Wy = D(p()w-'aﬁw-"7p57pi7pj)7
ay = (=1)°p{" - D(po, ..., ps, pj) + (=)' p\" - D(po, . ..., ps, pi).-
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We have
po -+ (=D’ps\ [wo o
py e (D) \ws a
Since the coefficient matrix is regular except at finite points, by Cramer’s formula, we
get
D(p()a s 7PS)W1/
Do e o v (71)51)5
=D
pf)s) R (_l)spgs)

= (_1)V+S{D(P07~ .. 7pvflapiapv+17‘ . ';Ps) 'D(p()v' .. »Ps»Pj)
_D(p07°'~7pvfl7pj7pv+l7"' 7PS) 'D(P07'~~7P57Pi)}~

Note that D(po, . . ., ps) is divisible by 55,1 and w, is divisible by (EZ‘ By the assump-
tion of the induction, the right-hand side is also divisible by ¢;_; - ¢} - ¢;. More-

over, by the assumption of ES’ , 1 1s not a factor of g.D(po, . .., ps). Hence w, can
be divided by ¢} - 1. Thus ¢y is a factor of g.D(po, ..., Py, - - -, ps, pi, pj) for any
j > i > s+ 1. We repeat the procedure and show that any D(po, p;,, ..., Pi., Pi..,)

can be divided by (Zs* - 1. We also repeat this procedure for ¢; with j > 2 to show
thatany D(po, pi,, - - -, Pi,, Piy,) can be divided by ¢s = ¢ - ¢ for ¢5 := ¢. Therefore
E/ = Fiy g andso E! = Flp . isarequired submanifold of Fyg, ., ,,as the

.....

............... s

deg f. That means that

n—2 u

(k—n+Dn—> > "R, >k

u=0 a=0

by which we get k — n > Ry. So we can apply Lemma 4.3 and Proposition 4.7. By
definition, Ff = Holip ($*, CP"), and so we get the first assertion of Theo-
rem 1.1.

For 1 <s < n — 1, the correspondence

2

F: FZ,R0,4..,R , — C}Colds(Sz, Gn+1,s+ 1))

n—
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. . —1
defined by F,(f) = f; is continuous, where d; = (k — s)(s + 1) — E;:o Z:o R,.
Hence

0 .’HOZZR/(SZ, CP") — f}farm;:’s_’R](Sz, CP")

given by & f = f, N f1, is continuous. Here f; = f. When s = ,

9" Holf » ($?,CP") = Hol™, _ (S*,CP")

defined by 9" f = f:-, is also continuous.

Next we will show that &°: Holy  (S*, CP") — Harmy  (S*, CP") is proper. Let
S, be the subspace of PV} consisting of [q ; - - - 5 g] so that {q;}; has the greatest
common divisor ¢ with deg¢ > r. Put

-2 —1pyne
S, = g Sp, C IS PV

for R, = o> o Ra» s = y11Cys1 and consider the map
* 2 " o v n—1 * 2 "
Holy g, (87, CP") — Sg, and  Im® — IIT7) Harmy s, (S°, CP")

defined by ®(f) = {f}s and ¥({f},) = {f N fL,};. Take a sequence {f7};
in Holj  (S*,CP") so that {W o ®(f7)}; converges to {h,},. This is equivalent to
say that {®(f/)}; converges to {g,}, where g, N g;—; = h,. As mentioned in [C],
Holy (§*,CP") is equal to Sy in a compact space PV} and so we can assume that
{f7}; converges to f € PV}"!!. Suppose that f € S,,. Then we get

degdf = (2k —2—Ro(f)) — (k—m) =k —2— Ry = deghy,
EOf) =2(k —m) + (2k — 2 — Ro(f)) — (k—m) =3k — 2 — Ry = E(hy),

and so m = 0, Ro(f) = Ro. We also get

s—1 s—1

degd'f =k—25s— > R,(f) =k—25— ) R, =degh,

u=0 u=0

for2 < s < n— 1. Hence R,(f) = R, forany 0 < u < n — 2 by which f €
Holy g, (S, CP™1). This shows the second assertion of Theorem 1.1.

5 Gluing of Harmonic Maps

We will consider the gluing of harmonic bubble tree maps. We begin with some
lemmas.

Lemma 5.1 Put p(z) = z° + (Rz)™* for any integer s > 0 and any real R > 0. When
0<sp <51 < -1 < s, weget

L2(+1)

D(Psys Psis -+ - s Ps )(Z) = Gsgsyooosy - (1 — Rizz) T,
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where zKqqs,...s,(2) is a polynomial in z for K = s+ - +s, — (0+ 1 +---+ £). In

particular,
1“5
MNz)=2-11---0-(1— —
D(po, p1yeves p)(z) =211+ 01 (1 Rzz) :

Proof When k < s, we get
PP =s(s—1)---(s—k+ 1D F+ (=D s(s+1)--- (s + k — )RSz~ ),

If s < k, the first term vanishes. So we can use the same expression for any k > 0.
Put gi(s) = \/ﬁs_kpgk)(\/ﬁ_l). We have gy(s) = 2, q1(s) = 0 and

Qi(s) =s(s—1)---(s—2k+ 1) +s(s+1)---(s+2k—1)
2t o),

Gk+1(s) =s(s—1)--- (s —2k) —s(s+1)--- (s + 2k)

= 2(52k + C2k7252

= 2(d2k$2k + dzk_252k72 + -+ szZ)

for k > 1, where dyy = —2k(2k + 1) and constants c;, d; are determined by k. For
0<sp<s <--<spand0 < ko <k; <--- <k, put

a(s) == ar(so, 51, .., 50) = (qi(s0), gk(s1), - -+, qr(se))

and
| PR R
(p(ko,...,k[;s): . :\/EO. _ -'. ,
a5, (5) POWR ) e p(VRT

where K, = Z?:o(sj — kj). We get

N

d -1 —K,
dziND(pS())pSl)"'apS[)(\/E ):Z\/E 0'(b(k07"')ki7"')kf;s)7
where k; > i and the summations are taken over 0 < ky < k; < --- < k; with

0+1) _N
2

4
S ki—i)=ko+--+k -
i=0

Starting from ®(0,1,...,¢ ; s), we consider ®(k,...,k; ; s) determined by the
differentiation of D(py,, ..., ps) atz = \/}7271.

Asqi(s) =0,®(0,1,...,k; ; s) = 0foranys. Since g,(s) = 25> and g3(s) = —6s2,
{ay(s),a3(s)} is linearly dependent and so ®(0,2,3,...,k; ; s) = 0. Now suppose
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that we have shown

®(0,2,...,2(k" = 1),2k" = 1, kgrs1, ... ke58) =0

for any k' > 2. Then consider ®(0,...,2(k" — 1),2k’,2k" + 1, k42,

. ,k( 5 S).
Since ay(s) and ay/11(s) are polynomials of degree 2k’, we get a non-trivial b(s)
consisting of polynomials of degree 2k" — 2:

b(s) = 2k’ (2k" + D)agi/ (s) + azer41(s).

Repeating fundamental row operations finitely many times, we get non-trivial c(s)

of degree 2 by making use of ayr41(s), ax/ (), . . ., a4(s). As {c(s), a,(s) } are linearly
dependent,

®(0,2,...,2(k" = 1),2k",2k" + 1, kgrya, ... ke 3 8) = 0.

Repeating this procedure, we get the Vandermonde determinant

2 2 2

, S 5 Sy
®(0,2,...,2058) =21 | NEFAE | G}

C o 0<i<j<e

2o

which does not vanish. So the first non-zero value appears after differentiating
D(ps, psy» -+

s Pst) @ times at v/R . As the expression consists of polynomials
of even degree, this means that

]\

2
D(pS())pSl)"'apS[)(Z):ngsl‘HS[' (1_@) 9
where z0t A0t HD(p L ps,)(2) is a polynomial. Hence gy, ..., i a re-
quired one. Since the degree of z/“*VD(pq, p1, ..., pr) is £(£ + 1), qoi...¢ is a con-
stant K.

Now put N = @ By direct calculation, we get po(z) = 2 and

s+k—1)!
Rz p ()| = (71)1(( )

(s—1)!
for 1 < s,k < /. Since
P P |
. N
D(vaplv'--7pf):2 .. : :K(l—iz) s
) (0) Rz
pl PR p(/'
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we get
o
K= (-1)V2RNZN | : oo
(o o'
P b
1! 2! J4l
o 2 R
=20 .
o Wt =1
0! 1! —1)!
2! 1 i
1 2 ... 4 ... 4
1 3! A 25 ) N (230
=2/ 2 2! 2!
i (er'l)! L. (S+é;l)! o (2[;1)!
a 7 7

Following the above equality, for 1 < j < £, we define x; as the determinant of a
square matrix of order £ — j + 1:

VA0 s |
i J! i
1 U et (!
i = (+1)! (j+1)! (j+1)!
] . . .
i (/411)! L. (5+Z;j)! . (Zé;j)!
[ [l 0!
Then we get
1 = * *
(j+2)! N0
0 1 2% (€= D
Xj = . .
. .26— j—1)!
0o 1 20U (¢ — j&==1
] 2 a
G+ G+
= (- = — Dl'xjn
| @ e
0! 4
4!
and x,_; = ‘ Y| = 1bywhich K =2£1(¢ —1)!---312! 1L, [
0!

Lemma 5.2 Forn>2,if Ry ={2,2,...,2}, then Hol;,  (S*, CP") is non-empty.
~——— ’

n—1
Proof Forany R > 0, define f € Hol,,(S*, CP") by

1

;"';Zn+
Rz

flz)=1[1;---;2+ ].

Rz
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Then, by Lemma 5.1, we get
degfi=02n—s)(s+1) —s(s+1)=2(n—s)(s+1)
for0 <s<n-—1,andsodegdf = 2(n — 2s) for0 < s < n — 1. Hence
R(f)=0f—2-0"f=2

forany0 <s<mn-—2. |

Let Hol(S*,CP") x Hol(S?,CP") be the subspace of the product manifold
Hol (S?,CP") x Hol’(S?*, CP") consisting of pairs (f©, f1)) with & fP(0) =
asf(l)(oo) forany 0 < s < n. In Lemma 5.3, for the case n = 2, see [, 5. Ex-
ample].

Lemma 5.3 Forn > 2, Hol:(S*, CP") x Hol(S?, CP") is a smooth submanifold of
Hol;(S?, CP") x Hol (S*, CP") of R-dimension n(3n + 7).

Proof Let F(C"!) be the flag manifold consisting of sequences of vector spaces
{Vi}o<s<n in C"! satisfying Vo C -+ C V,—y C C"! with dimV; = s+ 1. As
is well known, F(C"™) is isomorphic to the quotient space

Umn+1)/UQ1Q) x---xU(1)

(n+1)—times

as complex manifolds. Hence F(C**!) is a complex manifold of dimension 2**1,

2
Consider the map

®: Hol(S*, CP") x Hol’(S*, CP") — F(C"') x F(C™")
defined by ®(f,g) = ({£(0)}o<s<n—1,{g(00) }o<s<n—1). Since ® is smooth and

transverse to the diagonal A, ®~1(A) = Hol;(S?, CP") x Hol;(S*, CP") is a smooth
manifold of dimension

2x2{(n+1* =1} —n(n+1) =n(Bn+7). n

Let T! = $© v S be a bubble domain tower with the base space S = $? and a
bubble domain SV = 7,71 (0) for 0 € S©. Any f € Hol(S?, CP") * Hol;(S*, CP")
can be considered as a holomorphic bubble tree map f! = f© v f0. I — Cp"
with f© € Hol’(S?,CP") for = 0, 1.

Any fT € Hol};(S*, CP") x Hol(S*, CP") is said to be completely gluable if there
is a sequence { fi }« so that {0’ fi }x converges to

anI _ 85]((0) V. asf(l): T = §@ v s _y cpr

for any 0 < s < n. We show the following proposition.
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Proposition 5.4 Any fl € 3ol (S?,CP") x Hol,(S*,CP") is completely gluable
exactly when a sequence { fi}i>1 in Holyy g, (S*, CP") converges to f'. Here Ry =
{2,2,...,2}.

Proof PutR)={0,0,...,0}. By Lemma2.7,0°f") € f}{czv"mZ’S’R]/(Sz7 CP"). Hence

deg@sf([) =n—2s and E(an“’)) =n(2s+1) — 2s%.
By Lemma 5.2, Hol3,  (§*, CP") is not empty and any f; € Holj, z (S*, CP") holds
deg & fy = 2n — 4sand E(O° fy) = 2n(2s+ 1) — 4s* for 1 < s < n. [ |

Proposition 5.5 When n > 2, there is a holomorphic bubble tree map f' in
Hol(S?, CP") x Hol;(S*, CP") so that & f! is well defined for any s but non-gluable
for some s.

Proof Put R; = {2,...,2}. By Lemma 5.2 and Theorem 1.1, the dimension of
Hol, g, (S*, CP") is equal to

n—2

Cn+1)(n+1)—1-2 Z(n—s— 1) = n® +4n.
s=0
By Lemma 5.3, we get n(3n + 7) — 2(n* + 4n) = n(n — 1) > 0. [ |

6 Examples

Example 6.1 We will show an example of gluing a holomorphic bubble tree map b
p p gluing P p by
doing the procedure given in Lemma 3.2. Let T = §© v §1V)/§@ be a simple bubble
tower domain consisting the base space S and bubble domains S = 77 (0) b
8 1 Y

0 €S9 5@ = 7711) by 1 € S©. Consider the holomorphic bubble tree map
fl=fOv Dy f@. TI 5 CP? defined by

fOL) =22 +z;2+ 1] = [po(2) 5 p1(2) 5 p2(2)],

P2 =052+152"] = [q0(2); 01(2) ; ©2(2)],

fP@)=z—1+(z—1);20z— 1) +1;2(z— 1) = [r(2) ; n(2) ; (2)].

As defined in the proof of Lemma 3.2, we define fX = [pX ; p%; p&] by

1 1 &2 1 1 &
R — p. - 4. _ - .. - 7 _ - 7
pi@ 7p](z)+{R2Z2q](Rz) 2! dzzq](z)} +{R2w2r](RW) 2! dwzr](w)}
where 7j(w) = r;(z) for w = z — 1. Then we get
1 1 1 1
Riy _ [ .2 L2 .
(z) = [z +R222 +R(z—1) 3 2 +Z+E+Rzz2 +R2(z—1)2 ,z+1].

Choose Ry > 0 large enough. When |z| > 1/4/Rq and |z — 1| > 1/4/Ry, the re-
striction of fR converges to the restriction of f¥. By Ry — +00, we can extend the
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convergence of fX to f(). When |z| < 1/v/R, put w = Rz. Then we can get the con-
vergence of fR(w) to f!(w) for |w| < +/R, for R; > 0 large enough. By R, — +00,
we can show the convergence to ). Similarly, if |z — 1| < 1/v/R, putw = R(z — 1).
Then we can get the convergence of fX to f

Example 6.2 We will show another example of gluing a holomorphic bubble tree
map. Let T! = $© v §( v S be a bubble tower domain consisting of the base space
$© and bubble domains S = 7;1(0) by 0 € S© and §? = 7, 1(0) by 0 € SV,
Consider the holomorphic bubble tree map ! = f@v fVv f@: T — CP? defined
by

O =1252;22+1] = [po(2) ; p1(2) 5 pa(2)],

fP2) =22 +152;1+2°] = [q(2) 5 1(2) 5 2(2)],

fP2) = [ +152; 2] = [10(2) 5 11(2) 5 12(2)].

As defined in the proofs of Lemmas 3.2 and 3.3, first define a map

dz
£6) = 40+ { 557152 — 54572}

for S > 1 and then define

1 1
P = p0) +{ iR - 2 g0

for S > R? > 1 large enough. Then we get a well-defined map fzs = [p&° 5 p&S 5
RS] € Hole(S*, CP?), which is given by

1 1 R T
fas(2) = [2 tora TR R T F MY RZZZ}

1
= [ZRzz2 + iR+ Rz+ —  RPA+ R + 1] .

S*R?z2 SRz

For a fixed real Ry > 0 large enough, a sequence of { fgs}z converges to f© on
|z| > 1/4/Ry when R — +00. By Ry — +00, we can extend to get the convergence
to f©. For 1/RVR < |z| < 1/v/R, put w = Rz. Then { fgs}r defined on 1/y/R <
|w| < V/R converges to f!) if R — +oc. Finally, for |w| < 1/+/R, put u = Sw. Then
{frs}s defined on |u| < S/+/R converges to f*'. Considering the degrees, we get
the convergence of { frs}r.s to f! when R — +o0. Thus, choose a sequence {R,S, }»
appropriately so that a sequence { fx,s, } » converges to f'.

Example 6.3 Let T! = S© v SO be the bubble tower domain defined in Proposi-
tion 5.4. Define f1 = fO v f. T — CP? by

fO% =[1;2;22;2"] and fV(2)=[;2%;2;1].
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Put R} = {0,0}. By Lemma 2.7,
e f]-Col;R; (8*,cP?), of ¢ J—Carm;&R; ($*,CP%)

fors =1,2,3and ¢ = 0, 1, where f}{arm;iR;(Sz, CP*) C Hol™ 5(S*,CP?). We also
get
' f0(0) = 0" fV(o0),

and so 0’ f! is well defined for 0 < ¢ < 3. Hence f' € Hol;(S?, CP*)*Holj; (S?, CP?).
Consider

fR(z) =[R2 ; R°Z* + R*Z* ; RP2° + Rz ; R°Z° + 1]

3 1

P
* R3z3 1’

1
= [l;z—i-ﬁ;z +RTZZ 52
which is contained in Holg (S*, CP?) and converges to f! if R — +00. Moreover, by
Lemma 5.1, f* € Holg  (S*, CP*) for R; = {2,2}. Hence, by Theorem 1.1, & fr
converges to a bubble tree map

off = fOveofl: T — cP’
fors=1,2,3.

Example 6.4 Take f € Holy(S?, CP?) represented by f(z) = [1; z ; 2° ; z*]. By
calculations, we get f; € Hols(S?, G(4,2)). Hence Ry(f) = Ry(f) = 0. We also get

D’ f(z) = [2*5 —22° ;225 —1] € Hol_4(S*,CP?)

by which f S j{Ol4’{0’2}(82, CPS)
Now consider f, € Holy(S?, CP?) represented by fi(z) = [1; z; 2° + c2* ;5 2],
which holds Ry(f,) = 0 and &*f, € Hol _5(S?, CP?) represented by

P flz) = [32*zZ +0); —22°(32+4c) ; 62° 5 —3Z — ]

if ¢ # 0. In this case, f. € Holy (o,}(S*, CP?). Since degd*f = —2 and degd* f. =
—1 for ¢ # 0, 0*: Holy 103(S*,CP’) — Harm(S*, CP?) is not continuous. Here
Holy [01(S*, CP?) is the subset of Holy(S*, CP?) consisting of f with Ry(f) = 0.
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