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1. Introduction. A block design is a finite set p of elements called points, where \p | = v,
together with certain distinguished subsets of p called blocks, such that

(i) each block contains k points,
(ii) each point is contained in r blocks, and

(iii) two distinct points are contained in precisely X blocks.

If we let b denote the number of blocks, then we have

vr = bk and X{v -1) = r(k -1),

and we say that the design is a («, k, X)-design. If v = b, then we say that the design is
symmetric, and we have

A polarity of a (necessarily symmetric) block design is a mapping p : points <-> blocks,
such that p preserves incidence and p2 = /, the identity mapping. If a point (or block) is
incident with its image under p, then we say that the point (or block) is absolute. In an earlier
paper [3] the concept of planar polarity was introduced (see §2 for the definition of planar)
and it was shown that in certain cases the set of absolute points and non-absolute blocks
themselves form a block design. Except in the case of projective planes, for which all polarities
are planar, there are remarkably few examples of such polarities.

In an attempt to discover new planar polarities it is natural to investigate those designs B
which arise from abelian difference sets, as all such B admit polarities. Abelian difference
sets are studied in §3 of this paper, whilst in §4 we specialize to cyclic difference sets.
Unfortunately, in the latter, we only obtain one new example of a planar polarity, which
occurs in a block design having parameters (37, 9, 2), and in this case the set of absolute
points and non-absolute blocks do not form a design.

In §2 basic definitions and results are given, although for more detailed information the
reader is referred to Baumert [1], Dembowski [2], Hall [5] and Mann [7].

2. Preliminary discussion. We suppose that B is a symmetric (v, k, A)-design, so that
X(v—l)=k(k—l). If B admits a polarity p, the following results give some information
concerning the number of absolute points a(p) of p.

RESULT 1 (see Dembowski [2, p. 64]). a(p) =k+a.(k—A)i, where a is an integer having
opposite parity to v. In particular, ifk—k is non-square, then a{p) =k.

A polarity will be called planar if each absolute point is incident with exactly one absolute
block.

https://doi.org/10.1017/S0017089500002263 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002263


100 MICHAEL J. GANLEY

v-k
RESULT 2 [3]. If p is planar, then a(p) g ———, +1.

(k-X)*
v-k

RESULT 3 [3]. If p is planar, then a(p) = -——i + 1 if and only if the set of absolute
(k — X)

points and non-absolute blocks of p forms a block design. If this is the case, then the design
has parameters

Results 2 and 3 were first proved by Seib [8] in the particular case of X = 1. From
Results 1 and 2 we have the following lemma.

LEMMA 1. IfB admits a planar polarity p and if k — A is non-square (and hence v is odd by
the Bruck-Ryser Theorem), then k ^X2 + X +1.

Proof From Results 1 and 2,
v-k

k-l <
(k-X)*'

i.e. (k-X)(k-\)2<(v-kf,

i.e. X2(k - X)(k -1)2 < X2(v - kf = (k - X)\k - 1 ) 2 ;

so k-X>X2 or k^X2+X + l.

There are few known examples of planar polarities. These include the following:

(i) All polarities of finite projective planes (i.e. when X = 1). (See for instance [2, p. 9].)
(ii) Certain trivial examples; in particular, polarities having no absolute points, and also

when B is a (v, v— 1, v — 2)-design and a(p) =2. (See [3].)
A third example is given by the following theorem.

THEOREM 1. Let PG(d, q) denote the d-dimensional projective space over the finite field
GF(q). Ifd^3, then PG(d, q) admits planar polarities if and only ifd = 3 and q is odd.

Proof. We merely sketch the proof, as it is essentially contained in Dembowski [2,
pp. 41-51]. Firstly note that PG(d, q) is a symmetric block design with parameters

V q-1 ' k q - l ' A q-\ '

The polarities of PG(d, q) are of three possible types, namely orthogonal, unitary or
symplectic; and since for the latter possibility every point is absolute, such a polarity can
never be planar. For unitary polarities, we must have q = s2, and the number of absolute
points is given by

i = d+l
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Straightforward calculation shows that, if d ^ 3, then this number is always greater than

v-k
(fc-A)*+ 1.

In the case of orthogonal polarities [2, p. 46], it is easy to show in the manner indicated
above, that, when q is odd, if such a polarity is planar, then d = 3 and the polarity is of index 1.
In this case the absolute points and blocks are precisely the points and tangent hyperplanes
of some non-degenerate quadric in PG(3, q) and so the polarity must be planar.

Finally, if q is even, by a result in [2, p. 44], the absolute points of an orthogonal polarity
in PG(d, 2e) are precisely the points of some hyperplane in the space, and so

qd-l v-k t
> + 1

and thus p cannot be planar. This completes the proof of the theorem.

REMARKS. It should be pointed out that not all orthogonal polarities in PG(3, q), q odd,
are planar, but only those of index 1 (see Dembowski [2]). In this case a{p) = q2 +1, which
is the maximal number of absolute points attainable. Consequently, the set of absolute
points and non-absolute hyperplanes forms a design with parameters {q2 + l, q+l, q + l).
Any block design with such parameters is known as an inversive plane or Mobius plane
(Dembowski [2, Chapter 6]).

Now suppose that B is any design admitting a polarity p. Then we can construct the
complementary design B* having parameters (v*, k*, A*), where v* = v, k* = v—k and
A* = v—2k+X. The points of B* are the points pu ...,p0 of B, and the blocks of B* are
the point sets bt = p—PiP, for i = 1, 2, ... v. It is clear that B* so defined is a design and
has the parameters stated above. Also B* admits a polarity p*:pi<-+bh and a(p*) = v — a{p).

LEMMA 2. Suppose that B is nontrivial {i.e. k—X> 1) and admits a planar polarity p;
then the polarity p* o/B* is not planar.

Proof If both p and p* are planar, then, by Result 2,

a(p) $J ———. +1 and a(p*) ̂  --r—-r-, +1 = -—r-r +1.

Hence a(p)+a(p*) = v ^ —^ + 2. So (^-2X^-1)* ^ v. Thus either k-X=\ or

v2 ^ 2(v—2)2, which gives v ^ 6; so B is trivial.
As an analagous result to Lemma 1, we have

LEMMA 3. Suppose that k—X is non-square; then, if p* is planar we must have fc^fA+1.
The proof is straightforward and so we shall omit it.

3. Abelian difference sets and planar polarities. In our search for planar polarities it is
natural to look at those (v, k, A)-designs that are determined by abelian difference sets, as
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all such designs admit polarities which can be described very easily. We begin with a little
terminology.

Let ^ be a finite abelian group of order v and suppose that 'S is written additively.
Let £d be a subset of 0 , with \@\= k, such that every non-identity element of 'S can be
represented in the form dl — d2, with d1,d2e@, in exactly A distinct ways. Let n = k—L
Then we say that 3) is a (v, k, X, n)-difference set. A translate of 2>, written @+g, is the set
of elements {d+g:de@} for some element ge'S. Also, if t is an integer, then we define
t3) = {td:de@}. With the elements of 'S as points and the translates of 2) as blocks, it
is easy to see that we obtain a symmetric (v, k, A)-design.

Throughout this section we shall assume that, if B is a (v, k, A)-design, then it has been
obtained, in the manner described above, from a (v, k, X, n) abelian difference set.

LEMMA 4. The mapping pofB given by p:g*^3l — g is a polarity o / B ; moreover, the
point g is absolute if and only if2ge@. In particular, ifv is odd, then a(p) = k.

Proof. The proof is trivial. For the final part, note that the mapping Q:g-*2g is an
automorphism of ^ .

Again, unless otherwise stated, throughout this section we shall assume that the polarity
p of B is of the type described in Lemma 4. We now translate the idea of planar polarity
into the language of difference sets.

DEFINITION. Let 2l be an abelian difference set. We say that Q) satisfies condition P if,
for every pair of distinct elements g, he^ for which 2g, 2he2), we have

LEMMA 5. The polarity p defined in Lemma 4 is planar if and only if Q) satisfies
condition P.

The proof is trivial.

LEMMA 6. If \ IS | = v is odd, then 3> satisfies condition P if and only if $) does not contain
3 elements in arithmetic progression.

Proof. Suppose that ge^ and 2ge2); then there exists de3) with g = \d. Since, if v
is odd, p has k absolute points, then every absolute point is of the form |rffor some de@.
Condition P says that, for all distinct dx, djeSl, $dt+idj42>, i.e. dx + ds^23i. Clearly this is
equivalent to the statement that 2 does not contain 3 elements in arithmetic progression.

That Lemma 6 is not true in the case when v is even can be seen by considering the
following example.

Let ^ be the cyclic group of order 40; then the set

9 = {1, 2, 3, 5, 6, 9, 14, 15, 18, 20, 25, 27, 35}

is a difference set in ^ having parameters (40, 13,4, 9). Simple calculation shows that the
absolute points of p are the points {1,3,7,9, 10,21,23,27,29,30} and that 2i satisfies
condition P. However, $) certainly contains 3 elements in arithmetic progression. The
block design obtained in this case is PG(3, 3), which, as we have already noted, admits planar
polarities.
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DEFINITION. The integer t is said to be a multiplier of S) if tS> = S+g for some gs'S.

RESULT 4 (The Multiplier Theorem; see for instance Baumert [1, p. 54]). Let Si be a
(v, k, X, n) difference set, and let n0 be a divisor of n, where (n0, v) = 1 and n0 > X. If, for
every prime p dividing nQ, there is an integer jp such that plp = t (mod v), then t is a multiplier of
9.

COROLLARY. If v is odd and n = 2V, where w is odd and 2" > X, then 2 is a multiplier of
every difference set S having parameters (v, k, X, n).

THEOREM 2. If | ̂  | = v is odd, and S admits 2 as a multiplier, then S satisfies condition P
if and only if X = 1.

Proof. We need only show that if S) satisfies condition P, then X = 1. By Lemma 6,
every translate of Si must satisfy condition P, and, since the multiplier 2 must fix at least
one translate of S> [7, p. 80], then we may as well assume that 23) = Si. So, from Lemma 6,
we must have that d,+dj$@ for all distinct dh d}eS>. Now if deS) and d^O, then there
exist dhdj€@ such that di—dJ = d, i.e. di = d+dj. However, this is not possible unless
dj = d (and hence dt = 2d) and so d can be represented uniquely as a difference of elements
of S). Hence X = 1, as claimed.

COROLLARY. If V is odd and n = 2"w, where w is odd and 2" > X > 1, then no abelian dif-
ference set with parameters (v, k, X, n) can satisfy condition P.

4. Cyclic difference sets and planar polarities. We continue with the hypotheses of §3
and the additional assumption that <§ is cyclic.

LEMMA l.Ifv is odd, then a(p) = k. Ifv is even, then a(p) — k±(k—X)*.

Proof. See Lemma 4 for the case when v is odd. For v even, we want the number of
elements gs'S for which 2geS. As v is even and ^ is cyclic, then each even residue of Si
gives rise to two absolute points and each odd residue gives rise to no absolute points. Suppose
that 3> contains x even residues, and hence k—x odd residues. By counting the odd residues
in '3, we obtain

i.e. 4x2-4kx + Xv = 0

i.e. x = ${k±(k-X)*),

using X(v— 1) = k(k-1). Hence the number of absolute points of p is k±(k—A)*.

REMARK. In the case when v is even, if p is defined with respect to SJ and a(p) = k—(k—A)*,
then the polarity p' defined with respect to @ + \ has a(p') = A:+(fc-A)*. For instance, in
PG(3, q), where q is odd, we have a(p) = q2 +1, which is the maximum possible for a planar
polarity, and a(p') = (q+\)2, and so p' is not planar. This, in particular, explains why not
all orthogonal polarities in PG(5, q), q odd, are planar, as claimed in the remarks after
Theorem 1.
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LEMMA 8. For 'S cyclic and p planar, we have

(i) k^X2 + Xifvisodd,
.... jk ^ A2 + 3A+1 ifv is even and a(p) = k+(k-Xf,
W \k ^ X2-X +1 if v is even and a(p) = k-(k-A)*.

Proof. The proof of (i) is the same as that of Lemma 1. A similar method for (ii), using
Lemma 7 and Result 2, gives a cubic inequality for (A:—A)* in terms of A, whence (A;—A)* > A
or ^ A-1 according as a{p) = k±(k- A)*, respectively.

Using Lemma 8 we have the following result.

THEOREM 3. Let 3) be a cyclic difference set with parameters (v, k, A, ri), with k ^ 100,
n > 1 and k < \v. Then the polarity p o/B, as described in Section 3, is planar if

( i ) A = l ,
(ii) B = PG(3, q) with q odd and a(p) = k - {k - A)* = q 2 + 1,

or (iii) (v, k, A, «) = (37, 9, 2, 7).

Moreover, with the possible exception of (v, k, A, ri) = (400, 57, 8, 49) or (820,91,10,81),
VM'/A o(p) = 50 and 82 respectively, no other sets Si satisfy condition P. Finally, whenever
k < \v, the polarity p* of the complementary design B* toB is never planar.

Proof. It has been shown [1, p. 145] that the only parameter sets (v, k, A, n) with
k ^ 100, n > 1, k < \v, for which cyclic difference sets can exist are those which appear in
Baumert's table [1, pp. 150-158]. Applying Lemma 8 to these parameter sets, we find that p
can be planar only if (i) A= 1, (ii) (v, k, A, n) ={qi + q2 + q+\, q2 + q+\, q+\, q2) with
q =3, 5, 7 or 9 and a{p) = q2 +1, or (iii) (v, k, A, ri) = (37, 9, 2, 7).

Now all polarities of finite projective planes (i.e. for A = 1) are planar, and those polarities
of PG(3, q), with q odd and a(p) = q2 +1, are also planar, by Theorem 1. As Baumert's table
is complete for k ^ 50, it follows that the only possible exceptions to (ii) are when q = 1 or 9;
i.e., there may exist other designs with parameters (400, 57, 8) or (820, 91, 10), which are not
isomorphic to the corresponding PG(3, q), and yet which arise from cyclic difference sets,
for which the polarity p is planar, with a(p) — 50 or 82 respectively.

For case (iii), all difference sets with parameters (37, 9, 2, 7) are equivalent to the set
90 = {1, 7, 9, 10, 12, 16, 26, 33, 34}. As S)o does not contain 3 elements in arithmetic
progression, it follows from Lemma 6 that the polarity p is planar.

Now consider the polarity p* associated with the complementary difference set Q>* of S>,
having parameters (v, v-k, v-2k+A,ri). If v is odd, then, by Lemma 7, a(p*) = v—k,
whereas if v is even, a(p*) = v—k±(k—A)*. Suppose that v is odd; then, if p* is planar,

k
we have, by Result 2, v-k^ ——-r + 1 . Using the fact that X(v-1) = k(k-1), we have

(A;—A)

Now, if A: < \v, it is clear that A < \k, so that the above equation gives X>{X— 1)A*, i.e.
A>(A-1)2 , i.e. A = l or A = 2.
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If X = 2, then, from above, we have 2 ^ (k-3)(k-2)i, so that k g 4. But then we do
not have A < \k. Hence if X = 2, p* is never planar. Finally, if X = 1, then, by Lemma 2, p*
cannot be planar.

A similar argument for the case when v is even will complete the proof of the theorem.
The difference set having parameters (37, 9, 2, 7) is truly exceptional, as we shall demon-

strate. Let p be a prime of the form p — Ax2 + l, where x is odd; then the biquadratic
residues modulo p form a difference set having parameters

(v, k, X, ri) = (4x2 + \,x2, i(x2-1), IQx2 +1)),

(see Baumert [1, p. 120]), and the difference set with parameters (37, 9, 2, 7) belongs to this
family. We denote by OF the family of designs arising from such difference sets.

THEOREM 4. The only nontrivial member B o / f which admits a planar polarity is the
design having parameters (37, 9, 2).

Proof. We remark first of all that we are now no longer merely considering the polarities
that are associated directly with the difference set, but any polarity of B.

We wish to know when n = k—X = $(3x2 +1) is a square. Suppose that 3x2 +1 = y2,
so that I2x2 + 4 = 4y2. We also have that \2x2 + 3 = 3p, for some prime p, and hence
4y2-1 = 3p, so that 3p = (2y- l)(2y+1), which gives 3 = 2y-1 and p = 2y+1, yielding a
trivial design having parameters (5, 1, 0). Thus we may assume that B has n a non-square.
Hence, from Lemma 1, if B admits a planar polarity, then x2 ^ (l(x2 — l))2+\(x2 —1)+1.
This can only happen if x = 1 or 3. Disregarding x = 1, we obtain the design B having para-
meters (37, 9, 2) and, as we have already seen, this design admits a planar polarity.

We can use a similar proof to that given above to show that in all of the following families
of cyclic difference sets, no polarity of the corresponding block design can be planar. (See
Hall [5, pp. 141-2] for details.)

(i) Quadratic residues in GF{q) (q = 3 (mod 4)), except when q = 7, in which case
we obtain the projective plane of order 2.

(ii) Certain residues modulo a prime of the form p = Ax2 + 27.
(iii) Biquadratic residues, and zero, modulo primes of the form Ax1 + 9, where x is odd,

except x = 1, in which case we obtain the projective plane of order 3.
(iv) Octic residues of primes p = 8a2 +1 = 64b2 + 9, with a and b odd, except when

a = 3 and b = 1, in which case we obtain the projective plane of order 8.
(v) Octic residues, and zero, modulo p = 8a2+ 49 = 6462+441, where a is odd and b

is even.
In the following cases k — X is a square, and so determination of all polarities is rather

difficult. However, it is easy to show that the polarity directly associated with the difference
set is never planar.

(vi) Twin prime difference sets.
(vii) Whiteman's generalizations of the twin prime difference sets,

(viii) The Gordon-Mills-Welch multiply-inequivalent difference sets, in the case of
k—X being a square. If k—X is non-square then none of the polarities are planar.
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Finally, the polarities of the block designs derived from the other known family of
cyclic difference sets, namely the Singer difference sets, have already been discussed in
Theorem 1.

5. Planar polarities with the maximum number of absolute points. Clearly, if we have
a (v, k, A)-design B admitting a planar polarity p, then the most interesting case is when

v-k
a(p) = ——^Ti+1 (see Result 3), as in this case the absolute points and non-absolute blocks

(k—A)

of p themselves form a block design, say °U, having parameters I ———i+1, (k—A)* + 1 , A J.
\(k— /.) j

Note that °tt is necessarily non-symmetric provided that v > 4.
By Result 1, if this maximum number of absolute points is to be attained, we must have

(*-A)±^-

where a is an integer having opposite parity to v.

Thus (fc- l ) ( k - A)*+ a(k-X) = v-k,

i.e. l(k -l)(k- A)*+aA()fc - A) = A(u - £ ) = ( £ - l)(k - A);

so (fc-A)*|A(fc-l),

i.e. (fc-A)*|A(A-l). (i)

Write (A:-A)* = m, and let
A(A-l) = ww. (ii)

From above
aAm = (m—A)(fc—1) (Hi)

and so
ocA = fc—1 — u—km. (iv)

Thus A|(fc- l-u) or A | ( m 2 - l - u ) . (v)

Since X{v- l)=k(k-1), and so A | it(A:-1), then (v) gives

AI M(M +1). (vi)

These equations are very restrictive on the parameters (v, k, A) for which the maximum
number of absolute points can be achieved. In some cases we can say more:

v—k
LEMMA 9. If m > 1 and A = pr, where p is a prime and r > 0, then if a{p) = —i + 1,

we must have either ^ '

(a) p is odd, a = 0and (v, k, A) = (A3 +2A2, X2+X, A), or
(b) p = 2, a = - 1 and(v, k, A) = (A3-2A2 + 2A, A 2 - A + l , A).
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Proof. Suppose that/>s||H. From (vi), one possibility is that 5 = 0 and A|(w + 1). In
this case, (ii) gives that u | (A — 1); so we must have A = u +1, and hence X = m. So A: = A2 + A,
v = A3 + 2A2 and a = 0. Thus v, and hence A, are odd and we are in case (a).

The other possibility from (vi) is that s > 0, and so s _ r. From (ii), s = r and so
WJ|(A—1). From (v) A|(m— l)(/w+1) and so either A|(m+1) or else -£A|(w + l), in which
case p = 2. Using also the fact that m | (A— 1), we see that the first of these possibilities gives
A = m + \ and we are in case (b). Otherwise, if -J-A | m— 1, we have that m = 3 and A = 4,
which has already been covered, whereas, if \X | (m+1), we again have A = m+1.

Using Lemma 9, together with equations (i)-(vi), we can quickly obtain the following
list as the only possibilities for nontrivial (v, k, A)-designs B with A < 10 that can admit a
planar polarity having the maximum number of absolute points.

A
(i) A = l

(ii) A = 3
(iii) A = 4
(iv) A = 5
(v) A = 6

(vi) A = 6
(vii) A = 6

(viii) A = 6
(ix) A = 7
(x) A = 8

(xi) A = 9

B
(iS4_|_.s2+l) j 2 + l ; 1)

(45, 12, 3)
(40, 13, 4)
(175, 30, 5)
(16, 10, 6)
(156, 31, 6)
(1856, 106, 6)
(8856, 231, 6)
(441, 56, 7)
(400, 57, 8)
(891, 90, 9)

(.^ + 1,5+1,
(12, 4, 3)
(10, 4, 4)
(30, 6, 5)
(4, 3, 6)
(26, 6, 6)
(176,11,6)
(576, 16, 6)
(56, 8, 7)
(50, 8, 8)
(90, 10, 9)

Concerning this list of possibilities we make the following remarks.

(a) Case (i) occurs in desarguesian, and certain non-desarguesian, projective planes of
order s2. Block designs with parameters (s3 + l, $+1 , 1) are known as unitals. (See, for
instance, [4].)

(b) Cases (iii), (vi) and (x) occur in PG(3, 3), PG(3, 5) and PG(3, 7), respectively
(Theorem 1), and the corresponding <% are the classical miquelian inversive planes. (See
Dembowski [2, Chapter 6].)

(c) For cases (ii), (iv), (ix) and (xi), there do not exist cyclic difference sets with para-
meters (v, k, A, «) (see, e.g., [1]), although they can occur in the abelian case (McFarland
[6]), though it is easy to prove that none of the abelian difference sets described in [6] can
satisfy condition P.

(d) There does not appear to be anything in the literature concerning cases (vii) and
(viii), although no cyclic difference set with parameters (1856, 106, 6, 100) exists, from
Baumert [1, Theorem 2.17]. However, R. L. McFarland (in a private communication) has
shown, by considering the homomorphic image in the cyclic group C29, of order 29, that
there is no abelian difference set with these parameters. Similarly, by considering C41, no
abelian difference set with parameters (8856, 231, 6225) can exist.

(e) Finally, case (v) cannot occur. We outline the proof below; we attempt to construct
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an incidence matrix. Let pi,---,Pi6 be the points of B, and let bt = ptp (i = 1 , . . . , 16) be
the blocks of B. The required matrix is then symmetric. Let pu..., pA be the absolute points
of p; then, by Result 3, the points PU--->PA

 a n <l the blocks b5,..., bl6 form a design with
parameters (4, 3, 6). Using this fact, and also the fact that p is planar, we are able to fill
in the first 4 rows and the first 4 columns of the matrix as shown below.

Pi

Pi

Pz

PA

Ps

Pe

Pi

Ps

bi

1
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0

b2
0
1
0
0
1
1
1
1
1
1
0
0
0
1
1
1

b3
0
0
1
0
1
1
1
0
0
0
1
1
1
1
1
1

*4

0
0

o
1
0
0
0
1
1
1
1
1
1
1
1
1

bs
1
1
1
0
0
1
0
1
1
0
1
1
0
1
1
0

be
1
1
1
0
1
0
0
1
0

1
0
1
1
0
1

bi

1
1
1
0
0
0

ba
1
1
0
1
1
1

b9
1
1
0
1
1
0

bio

1
1
0
1
0
1

bu

1
0
1
1
1
1

bl2
1
0
1
1
1

0

&13

1
0
1
1
0
1

bn
0
1
1
1
1
1

bis

0
1
1
1
1

0

he
0
1
1
1
0
1

PlO
Pu
Pl2
Pl3
Pl4
Pl5
Pl6

Next, column 5 can be completed, by using the fact that bs is non-absolute and has
precisely 6 points in common with each of the blocks bl, b2, b3 and 64. This enables us to
complete column 5 in an essentially unique manner, as shown. Row 5 follows by symmetry.
Similarly, row 6 and column 6 can be completed as shown and we can then check that it is
impossible to complete column 7 subject to the required conditions.
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