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FIXED POINTS OF AUTOMORPHISMS OF COMPACT 
RIEMANN SURFACES 

M. J. MOORE 

1. I n t r o d u c t i o n . In his fundamental paper [3], Hurwi tz showed t h a t the 
order of a group of biholomorphic t ransformations of a compact Riemann 
surface 5 into itself is bounded above by 84 (g — 1) when 5 has genus g ^ 2. 
This bound on the group of au tomorphisms (as we shall call the biholomorphic 
self-transformations) is a t ta ined for Klein's quar t ic curve of genus 3 [4] and, 
from this, Macbea th [7] deduced t h a t the Hurwi tz bound is a t ta ined for 
infinitely many values of g. 

After genus 3, the next smallest genus for which the bound is a t t a ined is 
the case g = 7. T h e equat ions of such a curve of genus 7 were determined by 
Macbea th [8] who also gave the equat ions of the t ransformations. T h e 
equat ions of these t ransformations were found by using the Lefschetz fixed 
point formula. If the number of fixed points of each element of a group of 
au tomorphisms is known, then the Lefschetz fixed point formula may be 
applied to deduce the character of the representat ion given by the group 
acting on the first homology group of the surface. In this paper we shall 
determine the number of fixed points of each element of a cyclic group of 
au tomorphisms of a compact Riemann surface whose genus is a t least two. 

2. F u c h s i a n g r o u p s . We shall approach the problem using the concept 
of Fuchsian groups. Detai ls of the theory are to be found in [5; 1]. A Fuchsian 
group is a discrete subgroup of the hyperbolic group L F ( 2 , R) of linear 
fractional t ransformations 

w = —- (a, b, c, d real, ad — be = 1), 
cz + a 

each such t ransformation mapping the complex upper half-plane D into itself. 
If r is a Fuchsian group and z £ D, then the images of z under T form a 
Y-orbit and the orbits, with the identification topology, form the orbit space, 
denoted by D/T. Since we shall only be concerned with the s i tuat ion where 
D/T is compact , we shall use the t e rm Fuchsian group to mean a discrete 
subgroup of L F ( 2 , R) which has a compact orbit space. T h e orbit space is 
given an analyt ic s t ruc ture such t h a t the projection mapping p: D -+D/T 
is holomorphic. 

If K is a normal subgroup of a Fuchsian group T, then the factor group 
G = T/K acts as a group of au tomorphisms of the Riemann surface D/K 
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for, if x e r and 2 Ç D, then xK G r/if , if2 Ç D/K and we have 
(xK)(Kz) = ifx2. This is easily seen to be independent of the choice of x 
in its if-coset and the choice of 2 in its if-orbit. 

Conversely, if S is a compact Riemann surface of genus g ^ 2, then 5 can 
be identified with D/K, where if is a Fuchsian group acting without fixed 
points in D. Moreover, if 5 admits a group of automorphisms G, there is a 
Fuchsian group T, with if as a normal subgroup, such that G = T/K and 
the action of G on 5 coincides with that described above. 

When a Fuchsian group T has a compact orbit space, then it is known to 
have the following structure: 

generators: Xi, X2, . . . , xr, ai, &i, . . . , a7, 67, 

relations: xx
wl = x2

m2 = . . . . = xr
mr = 1, 

(1) 
XiX2 . . . XrYi CLibidi Xbi l = 1. 

The integers mi, ra2, . . . , mT are called the periods of T, and 7 is the genus 
of the orbit space D/T. An element of T has a fixed point in D if and only if 
it has finite order and it is then conjugate to some power of precisely one 
of the XiS. A Fuchsian group which has no fixed points in D, and hence no 
periods, is called a Fuchsian surface group. 

3. Fixed points of automorphisms. Let G be a group of automorphisms 
of order n of a compact Riemann surface 5 of genus at least two. We identify 
S with D/K, where if is a Fuchsian surface group and take T to be the 
Fuchsian group such that T/K = G. We have a projection map p: D —> S 
and a homomorphism p*: T —> G with kernel if, such that 

p{xz) = p*(x)p(z) 

for x Ç r and z Ç D. Thus p maps a T-orbit in D onto a G-orbit in S. If 
2 É D i s fixed by some element x G T, then xz = 2, so that p*(x)p(z) = £(z) 
and p maps fixed points to fixed points while £* maps the stabilizer of z 
to the stabilizer of p(z). In fact, p* induces an isomorphism between 
stabilizers; for, if p' denotes the restriction of p* to stab(2), then p' is one-to-
one since ker p' = ker p* Pi stab (z) = if H stab (2) = {1} since if has no 
fixed points. To show that p' is onto, let y = p(z) and suppose that ty — y 
for t G G. Choose x G (p*) - 1(0 and let Z\ = xz. Then 

£(*i) = P(xz) = P*(x)p(z) = ty = y = £(2). 

Hence, there is a & G if such that &21 = 2 and so 

&X2 = kZi = 2. 

Thus ybt € stab(2) and£*Ox) = p*(k)p*(x) = 1. t = t since fe G if = ker £*. 
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If Ri is a fundamental region for the Fuchsian group T with presentation 
(1), then the non-Euclidean measure of Ri is given by 

If R2 is a fundamental region for K, then a union of n copies tR2 is a 
fundamental region for T when the elements t form a complete system of 
representatives of cosets Kt of K in T. Since the measure is invariant under 
LF(2,R), we have 

n(Ri) 2ir(2g - 2)  
n = order of G = 

^ " 4 — s 0-£»' 
where g is the genus of 5 and 7 is the genus of T. We thus have a form of 
the Riemann-Hurwitz relation: 

(2) 2g-2 = n{2y-2 + ±(l-±-)}. 

The points of D with non-trivial stabilizers in T fall into r T-orbits 
Fi, F2, . . . , /V, such that every point belonging to F/ has a stabilizer 
which is cyclic of order ra*. When we project by p, the points of S with non-
trivial stabilizers fall into r G-orbits F\, F2, . . . , Fr where Ft = p(F/). 
Since the projection of stabilizers is an isomorphism, the stabilizer of y, for 
y G Fti is cyclic of order ra*. 

Let F = FiKJ F2\J . . . U FT and take A to be the subset of G X F 
given by 

A = {(t,y): 1 set e G, ty = y). 

Then the number of elements in A is given by 
r 

2 (number of (/, y) € A such that y Ç Ft) 
T  

= ^2 ]C (number of / 9^ 1 with ty = y) 
1=1 yÇF% 

= i, z o»« -1) 
r 

= 23 (ra,- — 1) (number of elements in Fi). 
i=l 

Since the order of G is n, by the orbit stabilizer relation, 

(number of elements in Fi) X mt = n, 

and so the number of elements in A is 

z (« i - i )—=»z( i - —y 
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However, the number of elements in A is also given by 

]T) (number of y such that ty = y). 

Thus, if we denote the number of fixed points of an element t £ G by N(t), 
we have 

£ N(t)=ni,(l-—) (3) 

Substituting (2) in the expression (3) yields 

(4) Z W) = 2g-2- n(2y - 2). 

If we consider the case where n is prime, then G is a cyclic group and all 
the elements of G, distinct from the identity, have the same fixed point set. 
Thus we can obtain the number of fixed points of any element of G as (4) 
becomes 

(5) (n - l)N(t) = 2g-2 - n(2y - 2) 

for any t £ G, t ^ 1. 
In the case n ^ g (n not necessarily prime) there are only two possibilities 

for 7, namely 0 and 1. For, if we assume y > 1, then, from (2), we obtain 
2g — 2 ^ 2n, contrary to n ^ g. 

For prime n, n ^ g, we thus have two cases to consider: 
(a) 7 = 1. In this case (5) reduces to N(t) = 2(g - \)/{n - 1). If n > g, 

then we have 0 < N(t) < 2, and so N(t) = 1. In this case let y0 be the unique 
fixed point of t; then there is a single T-orbit of fixed points in D so that T 
has only a single period. Thus T is given by generators t', a, b and relations 
t'n = t'abar^-1 = 1. Then p*(t') = p*(bab^ar1) = 1 since G is abelian. 
Thus t' 6 K, which contradicts the fact that K is a surface group. Hence the 
only possibility is that n = g, in which case 

n — 1 

so 

(b) 7 = 0. If n = g, then, from (5), (n - l)N(t) = 2n - 2 - n{-2) and 

N(t) = 2 + - ^ . 
n — 1 

Since this must be an integer, the only possibilities for n are two and three. 
Since these are both prime, the two cases can occur and 

n = g = 2 yields N(t) = 6, 

while 

n = g = 3 yields N(f) = 5. 
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When n > g, 

(6) 2g + 2 w - 2 _ 2 ^ 
n — 1 n — 1 

whence iV(0 > 2 and, since 2g + 2w — 2 < \n — 2, 

iV(/) < — — f = 4 + —^- r < 5 since n ^ 3. 
» — 1 w — 1 ~~ 

Hence 2 < iV(0 < 5 so that N(t) = 3 or 4. 
If iV(0 = 3, then, from (6), this is equivalent to n = 2g + 1 while iV(7) = 4 

is equivalent to n = g + 1. 
Thus we have shown the following. 

THEOREM 1. There are only two possible prime orders greater than g for a 
group of automorphisms G of a Riemann surface S of genus g. 

(i) n = 2g + 1: each element of G has three fixed points. 
(ii) n = g + 1: each element of G has four fixed points. 

This agrees with the results obtained by Lewittes [6] for the case where 
S is a hyperelliptic surface. 

All the cases mentioned do occur and for each case we give a Fuchsian 
group T and a homomorphism 6 from V onto Zn, the cyclic group of order n. 
Then N, the kernel of 6, will be seen to be a surface group and 5 = D/N 
will be a surface with Zn as a group of automorphisms. 

Let z be a generator of Zn and let y be the genus of T. 

y = 1, w = g. r : Xin = x2
n = XiX2aba~1b~1 = 1; 

0(xi) = z, 0(x2) = s""1, 0(a) = 0(ô) = 1. 

y = 0, n = g = 2. T: Xi2 = x2
2 = x3

2 = x4
2 = x5

2 = x6
2 = 1̂X2X3X4X5X6 = 1; 

6(xt) = z, 1 S i ^ 6. 

y = 0, w = g = 3. T: Xi3 = x2
3 = x3

3 = x4
3 = x5

3 = xiX2x3x4X5 = 1; 

e(xt) = z, 1 ^ i ^ 4, 0(x5) = z2. 

y = 0, w = 2g + 1. T: Xiw = x2
n = xz

n = XiX2x3 = 1; 

0(xi) = 0(x2) = z, 0(x3) = zn~\ 

y = 0, n = g + 1. r : Xiw = x2
n = x3

w = x / = Xix2x3x4 = 1; 
0(xi) = 0(x2) = z, 0(x3) = 0(x4) = zn~\ 

In each case no element of finite order lies in the kernel of 0 and so, for 
N = ker 0, we have that N is a surface group. If the genus of the orbit space 
D/N is gf, then it is straightforward to verify that g' = g using relation (2) 
for r and N. Thus, in each case, 5 = D/N is a surface of genus g with the 
required property. 

4. Cyclic groups. We now use equation (4) to investigate the case when 
G is a cyclic group of automorphisms of the surface 5 of order n. Necessary 
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and sufficient conditions for the existence of a homomorphism 0 from a 
Fuchsian group T onto a cyclic group Zn, having a surface group as its kernel, 
were given by Harvey [2, pp. 36-37]. 

If t is any element of G whose powers exhaust G and, if d is any divisor of 
n, then td generates a subgroup of G of order d' = n/d. Denoting this subgroup 
by G a', there is a subgroup IV of T corresponding to Gd>, of genus yd> say. 
We may form the orbit space S/Gd> in the same manner as for orbit spaces 
of D. Then D/Td> ~ (D/K)/(Td>/K) ~S/Gd> so that yd, is the genus of 
S/Gdf. Applying (4) to this subgroup, the elements distinct from the identity 
in Gd> have a total number of fixed points given by 

(7) E W") = 2g-2- d\2yd, - 2). 

LEMMA 1. If (m, n) = mf is the highest common factor of m and n, then 

N(tm) = N(tm'). 

Proof. Let F(ta) denote the set of points fixed by ta; then, clearly, 

F(ta) C F(tP°) 
for any integer p. 

Thus, for m = am'', n = fim', we have 

F(tm') C F(tam') = F(/w). 

Since a and 0 are co-prime, by the Euclidean algorithm, there are integers 
X and fx such that 

\a + M/3 = 1. 

Then £Xm = tXam' = r / ( 1~^ ) = T ' • r" n = r ' . Hence, F(tm) C F(^w) = F(f*') 
so that F ( r ) = F(tm') and N(/m) = iV(r ' ) , as required. 

We now consider the sum 

(8) - E n(d)[2g - 2 - d'(27*' - 2)] 

for dd' = n, where n(d) is the Môbius function defined by /x(l) = 1, ix(d) = 0 
if d has a squared factor, and M(PIP2 • . . Pi) = ( — 1)* if all the primes p^ are 
distinct. Using (7), the sum (8) is equal to 

\?±d\n i= l 

so that if 1 < m < n and (m, n) = m' y£ 1, then each fixed point of tm is 
counted — S i ^ l m ' M ( ^ ) times. Then, since ]C<zlm' M(^) = 0, each is counted 
only once. If mf = 1, then the fixed points of tm are not counted in the sum. 
Thus the total number of fixed points of G is given by 

(9) E N(t) - Z n(d)[2g ~ 2 - d'(2<y, - 2)]. 
(m,n)=l l^d\n 
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Now, from Lemma 1, each tm such that (ra, n) = 1 has the same number 
of fixed points as t. The number of such m is given by the Euler function 

<p(n) = nYl I 1 — ~ ) (p prime). 
P\n \ P / 

The total number of fixed points of G is also given by 2g — 2 — n(2yn — 2), 
so that equating this with (9) yields 

<p(n)N(t) - E »(d)[2g - 2 - d'(2yd> - 2)] = 2g - 2 - n(2yn - 2). 

Hence <p(n)N(t) = Xa\n »(d)[2g - 2 - d'(2yt> - 2)] and, since 

we have 

(10) W) = ~rZdfix(d){2 - 2T,0. 
<PW din 

For tm we have N(tm) = N(tm'), where m' — (m, n) and /m' generates the 
subgroup Gn/m; thus by applying (10) to this group we have the following 
result. 

THEOREM 2. Let G be a cyclic group, of order n, of automorphisms of a compact 
Riemann surface S of genus g ^ 2 and, for d\n, let yd denote the genus of the 
orbit space S/Gdl where Gd is the subgroup of G of order d. For t a generator of 
G, the number of fixed points of tm is given by 

N ^ = "T^T S <W)(2 - 27„0, 
<P\K ) dd'=n' 

where n' — n/ (m, n). 
We may alternatively compute the number of fixed points of an element of 

G using the periods of the Fuchsian group T. Let rd be the number of periods 
nti of r such that mt = d. Since the projection of stabilizers is an isomorphism, 
if rd 9

e 0, then d must divide n. Since the ordering of the periods of T is 
immaterial, we may suppose that T has generators 

# 2 1 , #22, • • , %2r2i #31 , • • • , #w— l,7-n-i> Xnli • • • #nrn> aU ^1» • • • , ayi by 

and relations 

Xtj = 1 (7 = 1, 2, . . . , r^; i = 2, 3, . . . , »), 
n n y 

E[ n null akfrkP^biT1 = 1. 
1=2 j=l k=l 

For convenience, i has been allowed to take all values from 2 up to n although, 
for example, rn-i will always be zero since (n — 1, n) = 1. 

As before, we take / to be a generator of G and for d\n we denote f/d by 
td so that /d has order d. 
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Suppose that y G S is a fixed point of G and that the stabilizer of y in G 
has order q. If y is a fixed point of /d, for d > 1, then /d G stab (3/) and so 
d|g. The fixed points of the elements of G can be divided into classes Cq 

characterized by the order q of the stabilizer. Now, for y G CQ, there is an 
element tr, of order q, such that t'y = y and t' generates the subgroup Gg 

of G. Since tq G GQJ there is an integer ft such that t'$ = tq and hence tqy = 3/ 
so that tq, being of order g, generates the stabilizer of y. Any point in the 
G-orbit of y has a conjugate stabilizer, and hence is also a member of Cq. 

Let \xqi) denote the conjugacy class of xqi in T. Then xqi fixes a point 
z £ D and, for x G I\ xxqix~l fixes x(z) and p{x(z)) = p*(x)p(z) so that if 
2' is the fixed point of a conjugate of x< ,̂ then p(z') belongs to the G-orbit 
of p(z). Since the stabilizer of z has order q, so has the stabilizer of p(z), 
and hence p(z) G Cq. Conversely, if y G Cqy then, for s G £-1Cy)> s n a s a 

stabilizer of order q and stab (z) is a finite cyclic subgroup of T, which thus 
has a generator conjugate to xqi for some i. 

LEMMA 2. The G-orbits of fixed points of class Cq are in one-to-one 
correspondence with the conjugacy classes of the xqU i = 1, 2, . . . , rq. 

Proof. Define f({xqi}) = Gyi, where yx = p(z\) is the projection of the 
fixed point Z\ of xqi in D; then, by the above remarks, / is a well-defined 
mapping onto the G-orbits in Cq. 

Suppose that f({xqi}) = f({xgj}); then, if z2 is the fixed point of xqj in D, 
there is a t1 G G such that 

^ (21) = Pfe) . 

Take x G (i>*) - 1(0; then ^(x(2i)) = t'p(zi) = ^ f e ) , and so there is a 
k £ K such that &x(si) = 22. Thus 

(^x)_1xff^x(si) = (kx)~1xqj(z2) = (^x)-1(s2) = z\ 

and (^x)_1x5^x G stab(zi). 
Now stab(21) is generated by xqi so that xqj is conjugate to some power of 

xqi and the only way that this can happen is for xqi = xqj. T h u s / is one-to-one 
and yields the correspondence asserted. 

By the orbit stabilizer relation, the number of points in the G-orbit of 
y G Cq is n/q = q', say. The number of conjugacy classes in T of elements 
of order q is rq. Thus the number of points in Cq is q

rrq. 

THEOREM 3. Let rq denote the number of periods mt of T such that mi = q. 
Then if d'\n, d' ^ n, the number of fixed points of td' for t a generator of G is 
given by 

N(f) = S ô'rôd, 

where ddf = n. 
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Proof. Now, if f fixes a point y <E Cq, then td> = td Ç stab (3/) and we have 
seen that tQ generates stab (3;), and so every point of Cq is fixed by td. Conversely, 
if d\q, say q = ad, then 

and for each g, such that d\q, there is a class of fixed points Cq of td. Hence 
the total number of fixed points of td is given by 

N(ta) = £ «V„ 
ç: d |ç |w 

where qqf = w. 
If we now letô' = q', then since d|g, 3f = qr\d' and we take b given by <5<5' = d' 

so that 
g'ôd = Ô'ôd = d'd = n 

and so q = &/. Thus 

# (O = £ avw. 
85'=d' 

For a cyclic group of automorphisms G of a Riemann surface S we thus 
have two expressions for the number of fixed points of an element of G; one 
in terms of the genera of factor spaces of S by subgroups of G and the other 
in terms of the periods of the Fuchsian group V covering G. 

Then, for 5 > 1 such that s divides n, by Theorem 2, 

W.) = - ^ E dti(d')(2-2y(l) 
<P\S) dd'=s 

and by Theorem 3, 
N{ts) = S ô'rBs for ss' = n. 

Equating these two expressions yields: 

(11), E < W ) ( 2 - 2yd) = <p(s) Z * ' ' „ . 
dd'=s ôô'=s' 

Write X(s) = < (̂s) 2^5'=*' 5VÔ5 for 5 > 1, s\n, and let X(l) = 2 — 2g; we 
regard the equation 2 — 271 = X(l) as ( l l ) i . Then, if d(n) is the number 
of divisors of n, we have d(n) possible orbit genera yd. 

Define 
ixsd = dii(dr) if d\s, ddf = s, 

= 0 otherwise. 

Take M to be the matrix (jusd), where the rows and columns of M are labelled 
with the divisors of n. Let y be the column vector with elements (2 — 2Y^) 
and let à be the column vector with elements \(s). Then the equations (11)5 

may be rewritten My = X. 
Let 

jLt*/ = 1/d if e\d, 

= 0 otherwise, 
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and take M' to be the matrix (nde
f) labelled in the same manner as M. 

LEMMA 3. M' is the inverse of M. 

Proof. The 0, e) element of MM' is 

2^/ VsdVde • 
d\n 

Now [xal = 0 unless e\d and fxsd = 0 unless d\s. Hence, if e does not divide s, 
Hd\n VsdVde = 0 while, for e\s, 

22 VsdHae' = 2 dy\ - ) • -
d\n e\d\s \"V # 

e|d|s W 

= E *.(*/-)• 
d/e\s/e \ e / e ' 

Hence, for s/e > 1, the (5, e) element of MM' is zero, while, for s = e, it is 
unity. Thus itOf' is the unit matrix and M' is the inverse of M. 

We now have y = Mr,X or, re-written, 

s\n s\d a 

Thus 
d(2 - 27.) = 2 - 2g + £ *(*) £ «v„ 

= 2 - 2g - £ «v. + £ *>(*) £ *v,,. 
bb'=n s\d bb'=s' 

If ds = by then, taking bb! = w, the coefficient of rb in the second summation is 

£ «»(«)«'= E <p(s)b' = b' E «>(*) = &'(M), 
s |6 ,*ld s | (6,d) s\(b,d) 

where (b, d) is the highest common factor of b and d. Hence 

d(2 - 27*) = 2 - 2g - X 5V, + E ft'(6, ^)r, 

= 2 - 2 g + £ i ' r , [ ( M ) - l ] . 
66 '=n 

In the case d = n, since (6, w) = 6, this reduces to 

»(2 - 2r») = 2 - 2g + Z w 6 ( l - j) 

which is equivalent to (2). 
We have thus proved the following result. 

THEOREM 4. Let G be a cyclic group of automorphisms of order n acting on a 
Riemann surface S of genus at least two. Suppose that the Fuchsian group 
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covering G has rb periods b, for each b dividing n, and, for d\n, let Gd be the 
subgroup of G of order d. Then the orbit space S/Gd has genus yd, given by 

7a = 1 + \ & ~ !) - Yd Itn
b'rbl(b' d) ~ 1L 

where (6, d) denotes the highest common factor of b and d. 
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