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THE STRONG PERFECT GRAPH CONJECTURE FOR 
PLANAR GRAPHS 

ALAN TUCKER 

1. Introduction. A graph G is called 7-perfect if X(H) = y(H) for every 
vertex-generated subgraph H of G. Here, \(H) is the clique number of H 
(the size of the largest clique of H) and y(H) is the chromatic number of H 
(the minimum number of independent sets of vertices that cover all vertices 
of H). A graph G is called «-perfect if « (H) = 6(H) for every vertex-generated 
subgraph H of G, where « (H) is the stability number of H (the size of the largest 
independent set of H) and 6(H) is the partition number of H (the minimum 
number of cliques that cover all vertices of H). For an arbitrary graph, we 
observe that \(H) ^ y(H) and a(H) ^ 6(H). A graph is called perfect if it 
is both 7-perfect and «-perfect. Berge [1; 2; 3] has examined perfect graphs 
extensively. Many familiar classes of graphs, e.g., bipartite graphs, are perfect. 
Moreover, «-perfect graphs and 7-perfect graphs have great importance in 
several fields. Shannon [7] has shown that graphs G such that «(G) = 6(G) 
represent perfect channels in communication theory. Naturally, 7-perfection 
is important in colouring problems, both in pure colouring problems and in 
applied ones in block design or operations research (for a recent application 
of the theory of perfect graphs to a problem in refuse collection, see [8]). 
Moreover, the equations \(G) = 7(G) and «(G) = 6(G) are of substantial 
interest in their own right, since they are complementary equations involving 
the complementary concepts of clique and independent set. That is, a clique 
in G is an independent set in Gc, the complement of G, and so \(G) = a(Gc) 
and y(G) = 6(GC). Berge [3] has conjectured the following theorem. 

STRONG PERFECT GRAPH CONJECTURE. The following conditions on a graph G 
are equivalent: 

(a) G is perfect, 
(b) G is y-perfect, 
(c) G is a-perfect, and 
(d) G and its complement Gc contain no odd-length primitive (chordless) 

circuits besides triangles (for short, no OPC's). 

By complementarity, it suffices to show (d) => (b) or (d) => (c) (the con­
verse is trivial). Omitting condition (d), we have the Weak Perfect Graph 
Conjecture. Here, it suffices to show that (b) => (c) or (c) =» (b). Fulkerson [4] 
has generalized the ideas of «-perfection and 7-perfection to anti-blocking 
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pairs of polyhedra and has proved what he calls the Pluperfect Graph Theorem. 
He posed the Weak Perfect Graph Conjecture in terms of pluperfect graphs. 
Recently, Lovâsz [5] extended Fulkerson's work to obtain a proof of the 
Weak Perfect Graph Conjecture. 

In this paper we shall prove that the Strong Perfect Graph Conjecture is 
valid for planar graphs. Observe that the complement of a planar graph G 
cannot contain an OPC of length ^ 7, since the complement of such a circuit 
is not planar. Further, the complement of an OPC of length 5 is another OPC 
of length 5. Thus we shall be proving the following theorem. 

THEOREM 1. The following conditions on a planar graph G are equivalent: 
(b) G is y-perfect, 
(c) G is a-perfect, and 

(d') G contains no OPC. 

If G contains an OPC, then the subgraph consisting of just the OPC is 
easily seen to be neither 7-perfect nor a-perfect. By Lovasz's result, it suffices 
to show that (d') implies (b) or (c). We shall prove both implications since 
either method of proof might suggest a solution to the general problem. 
Actually we shall prove that for any planar graph G, (d') implies X(G) = 7(G) 
and a(G) = 6(G) (if G does not contain an OPC, then no subgraph H will 
either, and thus \(H) = y(H) and a(H) = 6(H)). In section 3 we prove (d') 
implies X(G) = 7(G) using basically a case-by-case argument. In section 4 
we prove (d') implies a(G) = 6(G) through a set of lemmas, some of which 
apply to non-planar graphs. 

2. Preliminaries. We represent a graph as a pair (V, A) where V is a finite 
set of vertices and A is a symmetric, irreflexive relation, called the adjacency 
relation (in a figure, we represent xAy with an edge between x and y). For 
disjoint (non-empty) subsets Vi, V2 ^ V, we say Vi is adjacent to V2 if 
aAb for some a £ V\ and b £ V2. For any subset Vi C V, G — V\ is the 
subgraph G generated by restricting A to V — V\. When Vi is of small size, 
say Vi = {x,y}, we write simply G — x — y. For a vertex x £ F, we define 
N(x) = {y £ V : y Ax) and N*(x) = N(x) KJ x. Let the degree of x, deg(x), 
be |7V(x)|. A path P is a sequence of distinct vertices (xi, x2, . . . , xn) such 
that XiAxi+i, for i = 1, 2, . . . , n — 1. A circuit is a path in wThich xnAx. A 
path is primitive if ~XiAxj for i + 1 < j , except xtAxn in a primitive circuit. 
For any given path P from x to y, a primitive path P' from x to y can be 
obtained from P be deleting certain vertices. We use the abbreviation OPC 
to denote an odd-length primitive circuit other than a triangle. If x and y 
are vertices on the path P , let (x, P,y) be the path from x to y following P . 
Thus we will define paths of the form (x, y, P i , z, r, P2 , s). 

A clique is a set of mutually adjacent vertices and an independent set is a 
set of mutually non-adjacent vertices. Let IS(G) denote the family of maximal 
independent sets of G. If the vertices of a graph are assigned colours so that 
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xAy implies x and y have different colours, then all the vertices of a given 
colour form an independent set. We use numbers as names of the colours. 
So we speak of a 3-vertex, i.e., a vertex with colour 3. An i-j path (i =̂  j) in 
a coloured graph is a path whose vertices are alternatingly colour i and colour 

j . An i-j component is a component of the subgraph generated by vertices with 
colours i and j . An i-j interchange at the ^-vertex x is a recolouring involving 
the vertices in C, the i-j component containing x; namely, the vertices in C 
exchange colours (thus x becomes a j-vertex). If 7i and 12 are disjoint inde­
pendent sets of G, we speak of (Ii & 72)-paths, etc. 

If G is a planar graph, we shall assume it has a given planar drawing (i.e., 
without edges crossing). Thus it makes sense to speak of z, y Ç N(x) being 
consecutive vertices (about x) in N(x). We assume the following facts about 
a planar graph G (see [6] or any basic text): 

(i) X(G) ^ 4, and 
(ii) G contains a vertex x with deg(x) ^ 5. 

3. y-perfection. We shall prove by induction that X(G) = y(G) for any 
planar graph G with no OPC's. This equality is trivial if the graph has one or 
two vertices. The proof of the induction step involves a case-by-case argument 
using the following two lemmas. 

LEMMA 1. Suppose G is a graph with no OPC's and G — xis properly coloured. 
If there is an i-j path in G — x between a (with colour i) and b (with colour j) 
such that a, b are the only vertices of the path in N(x), then aAb. 

Proof. If P is such a primitive i-j path from a to b, then (a, P, b, x) is an 
OPC unless aAb. 

LEMMA 2. Let G be a planar graph in which three vertices of G form a triangle 
(3-clique) T such that G has at least one vertex inside T and one vertex outside T. 
If G — x can be k-coloured for every vertex xy then G can be k-coloured. 

Proof. By picking an x inside T, we can get a &-colouring of T and the ver­
tices outside it. By picking an x outside T, we get a ^-colouring of T and the 
vertices inside it. Matching the colours on T in the two colourings, we can then 
compose the two colourings to get a colouring of G. 

Assume we have a planar graph G with no OPC's in which x is a vertex of 
lowest degree (deg(x) ^ 5) and G — x has been coloured with colours 
numbered 1,2, . . . ,k, where k = \(G). By Lemma 2, we can assume that 
no non-consecutive vertices of N(x) are adjacent. If \(G) = 1, the result is 
trivial. If \(G) = 2, then G is bipartite since it contains no triangles (3-cliques) 
and no OPC's. Thus G can be 2-coloured. If \(G) = 3 but deg(x) ^ 2, then 
obviously x can be coloured. 
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\(G) = 3; deg(x) = 3. In this case, let N(x) = a,b, c be coloured 1, 2, 3, 
respectively. Vertices a and b must be joined by a 1-2 path or else we do a 1-2 
interchange at a and x is coloured 1. Then by Lemma 1, aAb. Similarly we 
obtain a Ac and bAc. Then N*(x) is a 4-clique, but \(G) = 3. 

\(G) = 3; deg(x) = 4. In this case, let N(x) consist of a, b, c, d in counter­
clockwise order about x. Remember that we assume no non-consecutive 
vertices of N(x) are adjacent. If N(x) uses only two colours, x can be easily 
coloured. There are two subcases to consider when N(x) contains three 
colours. In the first subcase, shown in Figure 1, we observe that there is no 
2-3 path between a and c, for otherwise Lemma 1 implies a Ac. Thus we can 
do a 2-3 interchange at a and then colour x with 2. In the second case, shown 
in Figure 2, we assume that aAd or else Lemma 1 implies a 2-3 interchange 

FIGURE 1 FIGURE 2 

X(G) = 3 ; deg(x) = 4 subcase one \(G) = 3 ; deg(x) = 4 subcase two 

at d does not affect a (and then we colour x with 3). Also we assume aAb or 
else as before we do a 1-2 interchange at a. Similarly we can assume cAd. We 
now prove two lemmas which prohibit this situation as well as some similar 
ones in the cases where deg(x) = 5. 

LEMMA 3. Let G be a planar graph with no OPC's, and let G — x be properly 
coloured. Let a, b, c, d, e, x have the adjacencies and colours shown in Figure 3 
{possibly a = e). Let P2 be a 1-2 primitive path from b to c and P 3 a 1-3 primitive 
path from b to c. Possibly P2 or P 3 (or both) contain one other vertex of N(x), the 
1-vertex / , where ~fA(N(x) — f). Then there exists a primitive even-length 
path R from b to c such that a is adjacent to only b on R, d to only c, and e, if 
e 9^ a, is not adjacent to any vertex of R. 

Proof. Observe that a is adjacent to only b on P 2 (and hence a is not on P2) 
or else we get a 1-2 path from a to c ( o r / ) and Lemma 1 would imply a Ac 
(or aAf ). Similarly e is not adjacent to P 2 and d is adjacent to only c on P 3 . 
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FIGURE 3 

Perhaps a = e; see Lemma 3 

Consider the path R' from b to c obtained from P 2 and P 3 by starting from b 
along the inside (closer-to-x) path of the pair P 2 and P 3 and, whenever the 
paths intersect, continuing towards c on whichever path is the inside one. Let 
R be a primitive path formed from R'. Observe that the only non-terminal 
vertices of R to which a, d, or e might be adjacent are the 1-vertices where 
P 2 and P 3 intersect, but since such vertices are on both paths none of a, d, or e 
can be adjacent to them. If R were odd-length, then (b, R, c, x) would be an 
OPC (or if/ is on R, then either (b, R,f, x) or (/, R, c, x) must be an OPC). 

LEMMA 4. Let G be a planar graph with no OPC's and letG-x be Z-coloured 
Suppose a, b, c, d in N{x) have colours 2, 1, 1, 3, respectively, and aAb, cAd, 
dAa are the only adjacencies among a,b,c,d (see Figure 2). Possibly N(x) 
contains one more vertex e which is positioned between b and c and is not adjacent 
to a or d. Then G can be 3-coloured if one of the following conditions hold-

(i) N(x) = a, b, c, d; 
(ii) N(x) = a, b, c, d, e and e is a 1-vertex; or 

(iii) N(x) = a, b, c, d, e where e is a 2-vertex (2,-vertex) and there is a 1-2 path 
(1-3 path) between b and c not containing e. 

Proof. Assume one of the three conditions apply. Suppose there exist a 
primitive 1-2 path P 2 from b to c and a primitive 1-3 path P 8 from b to c. If 
(iii) holds, then P 2 (or P3) is chosen so as not to include e. By Lemma 3, there 
is an even-length primitive path R from b to c such that (a, b, R, c, d) is an 
OPC. So not both P 2 and P 8 can exist. By symmetry, we can assume P 2 does 
not exist, and so any primitive 1-2 path from a to c cannot contain b. It now 
follows from Lemma 1 and ~aAc that a and c are in different 1-2 components. 
Then perform a 1-2 interchange at c (c gets colour 2 and a is still 2). Next do 
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a 1-3 interchange at b (b gets colour 3 but from Lemma 1 and ~bAd it follows 
that d is unaffected). If (i) holds, then x gets colour 1. If e exists, then we 
observe ~aAe or ~bAef for otherwise (a, b, e, c, d) is an OPC. By symmetry, 
we assume ~bAe. If the above interchanges result in e now having colour 
2 or 3, then x gets colour 1. If e now is colour 1, then perform a 1-3 interchange 
at e (e gets colour 3 but as before b and d are still 3). Now x is coloured 1. 

\(G) = 3; deg(x) = 5. In this case there are five subcases to consider. The 
first subcase is shown in Figure 4. Observe that there is no 2-3 path from c to e 

e,V d,3 

FIGURE 4 

\(G) = 3 ; deg(x) = 5 subcase one 

FIGURE 5 

\(G) = 3 ; deg(x) = 5 subcase two 

or else by Lemma 1, cAe. Now we do a 2-3 interchange at e (c is unaffected) 
and x gets colour 3. The second subcase is shown in Figure 5. Observe dAe 
or else we do a 2-3 interchange at d (which leaves e unaffected) and x gets 
colour 3. Similarly we have eAa and dAc. Now we are finished by Lemma 4 
(case (ii)). The third subcase is shown in Figure 6. Lemma 1 implies there is 
no 1-3 path from e to b or c. Then we do a 1-3 interchange at e and let x gets 
colour 3. The fourth subcase is shown in Figure 7. For the usual reason, we 
assume aAb and aAe. Suppose ~cAd. Now by Lemma 1, there is no 1-2 path 
from b or c to d or e. Then a 1-2 interchange at b can affect only b and c. If 
after such an interchange at b, c as well as b becomes colour 2, then x gets 
colour 1. If just b becomes colour 2, we now have the situation of the first 
subcase. Next suppose cAd. If there is no 1-2 path between b and c, we do a 
1-2 interchange at b and get the first subcase again. So we assume there is a 
primitive 1-2 path P2 between b and c. If there is no 1-3 path between b and c, 
we do a 1-3 interchange at c and now we have the situation of the third sub-
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FIGURE 6 FIGURE 7 

\(G) = 3 ; deg(x) = 5 subcase three \(G) = 3 ; deg(x) = 5 subcase four 

case. So we assume there is a primitive 1-3 path P 3 between b and c. By sym­
metry, we can assume there is a primitive 2-1 path Qi and a primitive 2-3 path 
Qz both between d and e. By two applications of Lemma 3, we obtain even-
length primitive paths R and 5* such that (a, b, R, c, d, S, e) is an OPC. 

The fifth subcase is shown in Figure 8. For the usual reason, we assume aAb 
and aAe. Further assume that b, c, d, e are all in the same 1-2 component, or 
else a 1-2 interchange at b will yield one of the previous subcases. Consider 
now the form of a primitive 1-2 path P from b to e. It must include c or d, for 
otherwise Lemma 1 implies bAe. One possibility is P = (b, c, d, e), but then 

FIGURE 8 

\(G) = 3 ; deg(x) = 5 subcase five 

FIGURE 9 

\(G) = 4; deg(x) = 4 
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(a, bj c, d, e) is an OPC. A second possibility is P = (6, Q, d, e), where Q is 
a primitive 1-2 path from b to d, and now Lemma 4 (case iii) applies. The last 
possibility is P = (&, c, Q, e)> where Q is a primitive 1-2 path from c to e, 
and again Lemma 4 (case iii) applies. This finishes the proof when \(G) = 3. 

X(G) = 4. If deg(x) ^ 3, the result is obvious. If deg(x) = 4, we need 
only worry about the case shown in Figure 9. By Lemma 1, there can be no 
1-3 path between a and c. Then do a 1-3 interchange at a and give x colour 1. 
When deg(x) = 5, the same argument works (the two possible configurations 
are shown in Figures 10 and 11). This completes our inductive proof that 
X(G) = 6(G) if G is a planar graph with no OPC's. 

FIGURE 10 

\(G) = 4 ; deg(x) = 5 subcase one 

FIGURE 11 

\(G) = 4 ; deg(x) = 5 subcase two 

4, a-perfection. In this section we shall prove by induction that a(G) = 6(G) 
for any planar graph G with no OPC's. For a graph G with one or two vertices, 
it is obvious that a(G) = 6(G). Now let G = (F, A) be a planar graph with 
no OPC's such that: 

(*) a(G - 7i) = 6(G - Vi) for any non-empty Fi C V. 

If a(G) = a(G — x) + 1 for some x, then using (*) we get 

6(G) ^ 6(G - x) + 1 = a(G - x) + 1 = a(G). 

However a(G) S 6(G), and so a(G) = 6(G). Thus we are finished if we can 
show that G cannot satisfy the following condition: 

(**) a(G) = a(G - x) = 6(G - x) = 6(G) - 1 for all x in G. 
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We first prove several lemmas. Then a case-by-case analysis shows that G 
cannot satisfy (**). 

LEMMA 5. For any graph G satisfying (*) and (**), a(G) = a(G — C) where 
C is any clique of G. 

Proof. Clearly a(G) ^ a(G - C) + 1. So let a(G) = a(G - C) + 1. 
Since by (*), a(G - C) = 6(G - C), then 6(G) ^ 6(G - C) + 1 = 
a(G — C) + 1 = <x(G), contradicting (**). 

LEMMA 6. 7w any graph G satisfying (*) and (**) <md /or a^j distinct 
x, y in G, there exists an I £ IS(G — 3/) SWC/Ê JftaJ x Ç 7. 

Proof. Recall IS(G — 3O is the family of maximal independent sets of 
G — y. Let 5 be a minimal clique covering G — x and let C be the clique in 5 
containing y. Then using (*) and (**), a(G — x — C) = 6(G — x — C) = 
6(G — x) — 1 = a(G — x) — 1 = a(G) — 1. However by Lemma 5, 
a{G — C) = «(G). So a(G — x — C) = a{G — C) — 1. This equality implies 
x is in every IS(G — C). Since«(G — C) = a{G — y), IS(G — C) C IS(G — 3>). 

For any independent set 7, let /^ = I C\ N(x). 

LEMMA 7. For a?ry vertex x in the graph G and for any 7 G IS (G — x), 
h * 0. 

Proof. By (**), any 7 G IS (G — x) is of size a(G). If Ix = 0, then I KJ x 
is an independent set of size a(G) + 1. 

COROLLARY 7.1. If G is a graph satisfying (*) and (**), then N*(pc) is not a 
clique for any x in G. 

Proof. If N*(x) is a clique, then by Lemma 5, IS(G - N*(x)) £ IS(G). 
However for 7 Ç IS(G — N*(x)), Ix — 0, contradicting Lemma 7. 

LEMMA 8 (Berge). If G satisfies (*) and contains a clique C such that G — C 
is not connected, then 6(G) = a(G) (this is a weakened form of Lemma 2 in [2]). 

COROLLARY 8.1. If G is a planar graph satisfying (*) and (**), then for any 
vertex x, no non-consecutive vertices a, c in N(x) can be adjacent. 

Proof. Suppose a Ac. Since G — a — c — x is not connected, then by 
Lemma 8, 6(G) = a(G), but this contradicts (**). 

LEMMA 9. Let G be a graph with no OPC's and satisfying (*) and (**). Let 
x be a vertex and let 7, V (E IS(G) be such that ~aAb or a = b for any a £ Ix, 
b G IJ. Then there exists I" £ IS(G) such that Ix" = Ix C\ Ix . 

Proof. Consider the (7 & F)-components of G. Observe that we can get a 
new pair of independent sets by doing an (7 & 7')-interchange (like a 1-2 
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interchange) in one or more, but not all, (I & If)-components. Observe that 
any such interchanges produce new maximal independent sets, for if / " and 
V" are the independent sets resulting from such interchanges and \I"\ < a(G), 
then |J" ' | must be greater than a(G). 

If c G / Pi I\ then c must be an isolated point in the (/ & /^-subgraph. We 
claim that if an ( /& / '^component C (with more than one vertex) contains 
a vertex a in Ix, then C contains no vertices of Ix. Suppose there exists 
b (z C C\ Ix. Since a 9e b (for otherwise C consists of only a), there exists a 
primitive (/ & J')-Pa th P from a to b of odd length k (k > 1 since by assump­
tion ~aAb). Assume b is the only vertex of Ix on P (if not, pick a new b and 
shorten P). Similarly, we assume a is the only vertex of Ix on P. Then 
(a, P , b, x) is an OPC, and the claim follows. Now in all non-isolated (I & I')-
components containing vertices of Ix, do an (I & P)-interchange. This turns / 
into a new maximal independent set / " where Ix" = Ix C\ Ix . 

COROLLARY 9.1. Let G be a graph with no OPC's and satisfying (*) and (**). 
Let x be any vertex of G. There cannot exist / , / ' G IS (G — x) such that ~aAb 
and a 9e b for any a G Ix, b G Ix . 

Proof. If such I and V exist, then by Lemma 9 there exists V G IS (G — x) 
where Ix" = Ix C\ Ix = 0. Then V' violates Lemma 7. 

COROLLARY 9.2. Let G be a graph with no OPC's and satisfying (*) and (**). 
For any vertex x of G, some pair of vertices in N(x) is adjacent. 

Proof. Suppose no pair of vertices in N(x) is adjacent. For each a G N(x), 
pick Ia G IS(G — x — a) C IS(G) (inclusion follows from Lemma 5). Then 
by multiple application of Lemma 9 to the Ia ,s, we obtain / G IS (G — x) 
with Ix = C[a£N(x)Ixa = 0- This violates Lemma 7. 

LEMMA 10. Let G be a planar graph with no OPC's and satisfying (*) and (**). 
Then for any vertex x with deg(x) S 5 and for any I G IS (G — x), \IX\ ^ 2. 

Proof. By Lemma 7, 1̂ 1 ^ 1. Suppose that / G IS (G — x) can be chosen 
so that Ix = a for some a G N(x). Suppose deg(x) = 5 and let N(x) be 
arranged as in Figure 12, but the adjacencies shown there need not hold (we 
omit the proof when deg(x) < 5; it is similar but much less involved). Recall 
that by Corollary 8.1, no non-consecutive vertices of N(x) are adjacent. 
Observe that by Corollary 9.1, for any I ' f IS(G — a — x), a is adjacent to 
Ix'. If ~aAb, then for any I' G IS (G - a - x), or / ' G IS (G - a - e - x) if 
aAe, a is not adjacent to Ix . Hence aAb, and similarly aAe. Pick 
Ie G IS (G - a -b - x) and I& G IS (G - a - e - x). Then for a to be 
adjacent to Ix

e and iV, it follows that e G Ix
e and & G i*&. 

Consider the (P & Ie)-component B containing b. Then e G B, for otherwise 
an (P & Ie)-interchange at b turns P into an P G IS (G — a — x) such that 
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a is not adjacent to Ix . Thus there is a primitive (P & Ie)-path Q from b to e 
in B. From Lemma 1 it follows that Q = (b, c, d, e), or Q = (b, P , d, e), 
where d G 7 / and P is a primitive even-length path from b to d, or finally 
Q = (&, c, P , e), where c G 7x

e and P is a primitive even-length path from 
c to e. We eliminate the first possibility since if it were true, (a, b, c, d, e) would 
be an OPC. By symmetry, we can assume Q = (&, P , d, e). Now consider the 
(I & P)-component C containing a and b. We claim d Q C. If d G C, then 
there is a primitive even-length (I & P)-path P ' from fr to d. We now apply 
Lemma 3 where the vertices of I are considered 2-vertices, the vertices of 
P 1-vertices and the vertices of Ie 3-vertices. Then by Lemma 3, there exists 
an even-length path R from b to d such that (a, b, R, d, e) is an OPC. This 
proves our claim that d $ C. 

FIGURE 12 

See Lemma 10 

Now an (I & I6)-interchange in C turns I into a new P G IS (G — x) with 
IJ = b. Since Ix

e must be adjacent to Ix
f (by Corollary 9.1), it follows that 

c G Ie
x a n d &̂ 4c (so c (£ Ix

b). Consider the (I & Ie)-component D containing e 
(and a) and the (P & Ie)-component D' containing c (and b). If c G A then 
there exists a primitive even-length ( /& Ie)-path P from c to .̂ U e £ D', 
then there exists a primitive even-length (P & Ie)-path P ; from c to e. If both 
P and Pf exist, then by Lemma 3 (Ie is 1-vertices, P is 2-vertices, / is 3-
vertices) there exists a path R from c to e such that (a, &, c, P , e) is an OPC. 
Thus either c Q D or e Q D'. If c £ A then an (I & Ie)-interchange in D 
turns I into a new P' G IS (G — x) with Ix" = £, but now I J and J / ' are not 
adjacent as required by Corollary 9.1. If e g D'', an (I & Ie)-interchange in 
£>' turns P into a new P " G IS (G - x) with P / " = c, but now 7* and I"' 
are not adjacent. This finishes the proof when deg(x) = 5. 

Now we are ready for a case-by-case proof that a planar graph cannot 
satisfy (*) and (**) and still have no OPC's. We examine different possible 
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adjacencies among N(x) when deg(x) ^ 5. In each possibility we aim to 
produce an 7 G IS (G — x) with \IX\ S 1, and then we are done by Lemma 10. 
By Corollary 8.1, we assume that no non-consecutive vertices of N(x) are 
adjacent. The arguments for deg(x) = 1, 2, 3 and 4 are fairly direct and are 
left to the reader. 

Suppose deg(x) = 5 and N(x) consists, in counterclockwise order, of 
a, b, c, d, e. We assume aAb by Corollary 9.2. We consider three subcases: 

Case 1. The only adjacency in N(x) is aAb. 
Case 2. No vertex of N(x) is adjacent to more than one other vertex of N(x), 

yet N(x) has another adjacency besides aAb. 
Case 3. A vertex of N(x) is adjacent to both possible neighbouring vertices 

oi N(x). 
We give the argument for Case 3 only. In this case, not all consecutive pairs 

are adjacent, for otherwise (a, b, c, d, e) would be an OPC. Without loss of 
generality we can assume aAb, aAe and ~dAe. Suppose cAd. Then for an 
I £ IS(G — c — d — x), Ix = a or = b, e. So assume Ix = b, e. Now for 
V G IS (G — a — e — x), Ix

f = b, c or = b, d (or else \IX\ ^ 1). Now apply 
Lemma 9 to I and I'. Next suppose ~cAd. Pick I G IS (G — c) such that: 
a Ç Ix (such an / exists by Lemma 6). Then Ix = a or Ix = a, d. Similarly, 
pick V G IS (G — d) such that a G Ix', and so Ix = a or Ix = a, c. Now apply 
Lemma 9 to I and / ' to obtain an I" Ç IS(G) with \IX"\ = 1- This violates 
Lemma 10. 

This completes the proof that if G has no OPC's, then a(G) = 6(G). 
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