
JFP 30, e1, 11 pages, 2020. c© Cambridge University Press 2020 1
doi:10.1017/S0956796819000200

PhD Abstracts

G R A H A M H U T T O N
University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service to the
community, twice per year the Journal of Functional Programming publishes the abstracts
from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any paywall.
They do not require any transfer of copyright, merely a license from the author. A disser-
tation is eligible for inclusion if parts of it have or could have appeared in JFP, that is, if it
is in the general area of functional programming. The abstracts are not reviewed.

We are delighted to publish ten abstracts in this round and hope that JFP readers will
find many interesting dissertations in this collection that they may not otherwise have
seen. If a student or advisor would like to submit a dissertation abstract for publication in
this series, please contact the series editor for further details.

Graham Hutton
PhD Abstract Editor

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000200
mailto:graham.hutton@nottingham.ac.uk
https://doi.org/10.1017/S0956796819000200


2 G. Hutton

Computational Semantics of Cartesian Cubical Type Theory

CARLO ANGIULI
Carnegie Mellon University, USA

Date: September 2019; Advisor: Robert Harper
URL: https://tinyurl.com/tk87llc

Dependent type theories are a family of logical systems that serve as expressive func-
tional programming languages and as the basis of many proof assistants. In the past decade,
type theories have also attracted the attention of mathematicians due to surprising con-
nections with homotopy theory; the study of these connections, known as homotopy type
theory, has in turn suggested novel extensions to type theory, including higher inductive
types and Voevodsky’s univalence axiom. However, in their original axiomatic presenta-
tion, these extensions lack computational content, making them unusable as programming
constructs and unergonomic in proof assistants.

In this dissertation, we present Cartesian cubical type theory, a univalent type theory
that extends ordinary type theory with interval variables representing abstract hypercubes.
We justify Cartesian cubical type theory by means of a computational semantics that
generalizes Allen’s semantics of Nuprl to Cartesian cubical sets. Proofs in our type the-
ory have computational content, as evidenced by the canonicity property that all closed
terms of Boolean type evaluate to true or false. It is the second univalent type theory
with canonicity, after the De Morgan cubical type theory of Cohen, Coquand, Huber,
and Mörtberg, and affirmatively resolves an open question of whether Cartesian interval
structure constructively models univalent universes.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/tk87llc
https://doi.org/10.1017/S0956796819000200


PhD Abstracts 3

Learning Proof Search in Proof Assistants

MICHAEL FÄRBER
University of Innsbruck, Austria

Date: November 2018; Advisor: Cezary Kaliszyk
URL: https://tinyurl.com/wbpguu6

Proof assistants are programs that verify the correctness of formal proofs. They can
increase the confidence in results from domains such as mathematics, informatics, physics,
and philosophy. However, it requires extensive labour and expertise to write proofs
accepted by proof assistants. In this thesis, we improve proof automation in proof
assistants.

Automated theorem provers are programs that search for proofs automatically. Our goal
is to find proofs in proof assistants using automated theorem provers. However, this is
not directly possible when the logic of an automated theorem prover and that of a proof
assistant differ.

In this case, the integration of the automated theorem prover into the proof assistant
requires the translation of statements to the logic of the automated theorem prover and the
translation of proofs to the logic of the proof assistant. To restrict the search space of the
automated theorem prover, only a selection of facts relevant to the current conjecture is
translated. The success rate of the automatic proof search in proof assistants depends on
the various translations, the selection of relevant facts as well as on the automated theorem
prover itself.

We improve the integration of automated theorem provers into proof assistants. Among
others, we learn from previous proofs to select relevant facts as well as to guide auto-
mated theorem provers to make good decisions. Furthermore, we create automated proof
translations for several automated theorem provers for which such a translation was not
previously available. Finally, we evaluate different implementation methods, such as
continuation-passing style and lazy lists, to create efficient and compact automated the-
orem provers in functional languages. All the implementations in the thesis are written in
functional languages (mostly OCaml and Haskell), and are publicly available.

Our work increases the success ratio of proof search in proof assistants.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/wbpguu6
https://doi.org/10.1017/S0956796819000200


4 G. Hutton

Typed Concurrent Functional Programming with
Channels, Actors, and Sessions

SIMON FOWLER
University of Edinburgh, UK

Date: July 2019; Advisor: Sam Lindley and Philip Wadler
URL: https://tinyurl.com/volljq8

The age of writing single-threaded applications is over: to develop scalable applica-
tions, developers must make use of concurrency and parallelism. Unfortunately, writing
concurrent code is prone to issues such as race conditions and deadlocks, and moving to
the distributed setting introduces the possibility of failure.

To cope with the problems of concurrent programming, language designers have pro-
posed communication-centric programming languages, which eschew shared memory in
favour of message passing. The focus of this thesis is on typed communication-centric
functional programming languages, using type systems to provide static guarantees about
concurrent programs. We investigate two strands of work: the relationship between typed
channel- and actor-based languages, and the integration of asynchrony, exception handling,
and session types.

In the first strand, we investigate two particular subclasses of communication-centric
languages: channel-based languages such as Go, and actor-based languages, such as
Erlang. We distil the essence of the languages into two concurrent lambda-calculi: lambda-
ch for simply-typed channels, and lambda-act for simply-typed actors, and provide type-
and semantics-preserving translations between them. In doing so, we clear up confusion
between the two models, give theoretical foundations for type-parameterised actors, and
provide a theoretical grounding for frameworks which emulate actors in channel-based
languages. By extending the core calculi, we note that synchronisation simplifies the
translation from channels into actors, and show an encoding of Erlang’s selective receive
mechanism.

In the second strand, we integrate session types, asynchrony, and exception handling in
a functional programming language. Session types are a type system for channel endpoints,
allowing protocol conformance to be checked statically. We provide the first integra-
tion of exception handling and asynchronous session types in a core functional language,
Exceptional GV, proving that it satisfies preservation, global progress, and that it is con-
fluent and terminating. We demonstrate the applicability of the approach by extending the
Links web programming language with exception handling, providing the first implemen-
tation of exception handling in the presence of session types in a functional language. As
a result, we show the first application of session types to web programming, providing
examples including a two-factor authentication workflow and a chat application.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/volljq8
https://doi.org/10.1017/S0956796819000200


PhD Abstracts 5

Advanced Logical Type Systems for Untyped Languages

ANDREW M. KENT
Indiana University, USA

Date: October 2019; Advisor: Sam Tobin-Hochstadt
URL: https://tinyurl.com/uf7p8gh

Type systems with occurrence typing—the ability to refine the type of terms in a control
flow sensitive way—now exist for nearly every untyped programming language that has
gained popularity. While these systems have been successful in type checking many
prevalent idioms, most have focused on relatively simple verification goals and coarse
interface specifications. We demonstrate that such systems are naturally suited for com-
bination with more advanced type theoretic concepts—specifically refinement types and
semantic subtyping—with both formal mathematical models and experiences reports from
implementing such systems at scale.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/uf7p8gh
https://doi.org/10.1017/S0956796819000200


6 G. Hutton

Non-Reformist Reform for Haskell Modularity

SCOTT KILPATRICK
Universität des Saarlandes, Germany

Date: October 2019; Advisor: Derek Dreyer
URL: https://tinyurl.com/qs37gt9

Module systems like that of Haskell permit only a weak form of modularity in which
module implementations depend directly on other implementations and must be processed
in dependency order. Module systems like that of ML, on the other hand, permit a stronger
form of modularity in which explicit interfaces express assumptions about dependencies
and each module can be typechecked and reasoned about independently.

In this thesis, I present Backpack, a new language for building separately-typecheckable
packages on top of a weak module system like Haskell’s. The design of Backpack is the
first to bring the rich world of type systems to the practical world of packages via mixin
modules. It’s inspired by the MixML module calculus of Rossberg and Dreyer but by
choosing practicality over expressivity Backpack both simplifies that semantics and sup-
ports a flexible notion of applicative instantiation. Moreover, this design is motivated less
by foundational concerns and more by the practical concern of integration into Haskell.
The result is a new approach to writing modular software at the scale of packages.

The semantics of Backpack is defined via elaboration into sets of Haskell modules and
binary interface files, thus showing how Backpack maintains interoperability with Haskell
while retrofitting it with interfaces. In my formalization of Backpack I present a novel type
system for Haskell modules and I prove a key soundness theorem to validate Backpack’s
semantics.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/qs37gt9
https://doi.org/10.1017/S0956796819000200


PhD Abstracts 7

Type Systems for Systems Types

LIAM O’CONNOR
University of New South Wales, Australia

Date: October 2019; Advisor: Gabriele Keller, Christine Rizkallah and Gernot Heiser
URL: https://tinyurl.com/uns8byh

This thesis presents a framework aimed at significantly reducing the cost of proving
functional correctness for low-level operating systems components, designed around a
new programming language, Cogent. This language is total, polymorphic, higher-order,
and purely functional, including features such as algebraic data types and type inference.
Crucially, Cogent is equipped with a uniqueness type system, which eliminates the need
for a trusted runtime or garbage collector, and allows us to assign two semantics to the lan-
guage: one imperative, suitable for efficient C code generation; and one functional, suitable
for equational reasoning and verification. We prove that the functional semantics is a valid
abstraction of the imperative semantics for all well-typed programs. Cogent is designed to
easily interoperate with existing C code, to enable Cogent software to interact with exist-
ing C systems, and also to provide an escape hatch of sorts, for when the restrictions of
Cogent’s type system are too onerous. This interoperability extends to Cogent’s verifica-
tion framework, which composes with existing C verification frameworks to enable whole
systems to be verified.

Cogent’s verification framework is based on certifying compilation: For a well-typed
Cogent program, the compiler produces C code, a high-level representation of its semantics
in Isabelle/HOL, and a proof that the C code correctly refines this embedding. Thus one can
reason about the full semantics of real-world systems code productively and equationally,
while retaining the interoperability and leanness of C. The compiler certificate is a series
of language-level proofs and per-program translation validation phases, combined into one
coherent top-level theorem in Isabelle/HOL.

To evaluate the effectiveness of this framework, two realistic file systems were
implemented as a case study, and key operations for one file system were formally verified
on top of Cogent specifications. These studies demonstrate that verification effort is
drastically reduced for proving higher-level properties of file system implementations,
by reasoning about the generated formal specification from Cogent, rather than low-level
C code.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/uns8byh
https://doi.org/10.1017/S0956796819000200


8 G. Hutton

Specification and Verification of
Actor Protocols with Finite-State Machines

JONATHAN SCHUSTER
Northeastern University, USA

Date: August 2019; Advisor: Olin Shivers
URL: https://tinyurl.com/qsssmd5

Many programmers use the actor model to build distributed systems. The communica-
tion aspects of such systems are notoriously hard to implement correctly, however, leading
programmers to spend more time debugging protocol implementations and less time focus-
ing on application logic. Furthermore, the common approach of specifying a protocol as
a finite-state machine and verifying that the program implements this protocol is insuffi-
cient, because standard FSMs do not account for the dynamic, evolving communication
topologies in actor programs.

To address this problem, this dissertation defines a specification language that augments
finite-state machines with the ability to describe address-passing aspects of actor protocols.
Additionally, the dissertation develops a series of proof techniques for such specifications,
as well as a model-checking algorithm that verifies whether a program conforms to its spec-
ification. When applied to realistic actor programs and specifications, the model checker
can both detect protocol-violating bugs and prove conformance in a reasonable amount
of time.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/qsssmd5
https://doi.org/10.1017/S0956796819000200


PhD Abstracts 9

A (Co)algebraic Approach to
Programming and Verifying Computer Networks

STEFFEN JUILF SMOLKA
Cornell University, USA

Date: December 2019; Advisor: Nate Foster
URL: https://tinyurl.com/sut55qr

As computer networks have grown into some of the most complex and critical
computing systems today, the means of configuring them have not kept up: they remain
manual, low-level, and ad-hoc. This makes network operations expensive and network
outages due to misconfigurations commonplace. The thesis of this dissertation is that
high-level programming languages and formal methods can make network configuration
dramatically easier and more reliable.

The dissertation consists of three parts. In the first part, we develop algorithms for
compiling a network programming language with high-level abstractions to low-level
network configurations, and introduce a symbolic data structure that makes compilation
efficient in practice. In the second part, we develop foundations for a probabilistic net-
work programming language using measure and domain theory, showing that continuity
can be exploited to approximate (statistics of) packet distributions algorithmically. Based
on this foundation and the theory of Markov chains, we then design a network verifica-
tion tool that can reason about fault-tolerance and other probabilistic properties, scaling to
data-center-size networks. In the third part, we introduce a general-purpose (co)algebraic
framework for designing and reasoning about programming languages, and show that it
permits an almost linear-time decision procedure for program equivalence. We hope that
the framework will serve as a foundation for efficient verification tools, for networks and
beyond, in the future.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/sut55qr
https://doi.org/10.1017/S0956796819000200


10 G. Hutton

Shared-Environment Call-by-Need

GEORGE WIDGERY STELLE
University of New Mexico, USA

Date: July 2019; Advisor: Darko Stefanovic
URL: https://tinyurl.com/ujo2tzs

Dissertation Abstract: Call-by-need semantics formalize the wisdom that work should
be done at most once. It frees programmers to focus more on the correctness of their code,
and less on the operational details. Because of this property, programmers of lazy func-
tional languages rely heavily on their compiler to both preserve correctness and generate
high-performance code for high level abstractions. In this dissertation I present a novel
technique for compiling call-by-need semantics by using shared environments to share
results of computation. I show how the approach enables a compiler that generates high-
performance code, while staying simple enough to lend itself to formal reasoning. The
dissertation is divided into three main contributions. First, I present an abstract machine,
the CE machine, which formalizes the approach. Second, I show that it can be implemented
as a native code compiler with encouraging performance results. Finally, I present a ver-
ified compiler, implemented in the Coq proof assistant, demonstrating how the simplicity
of the approach enables formal verification.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/ujo2tzs
https://doi.org/10.1017/S0956796819000200


PhD Abstracts 11

Improving Haskell Transactional Memory

RYAN YATES
University of Rochester, USA

Date: October 2019; Advisor: Michael L. Scott
URL: https://tinyurl.com/tx66gfe

The Haskell programming language is an active laboratory for cutting edge ideas. Early
in the evolution of transactional memory (TM), Haskell included language support and
quickly grew a community of TM users. Since TM’s inclusion in Haskell, a flurry of
research has brought significant developments in TM in non-Haskell contexts including
improved understanding of TM semantics, higher-performance implementations, and sup-
port for TM in commodity hardware. The community of Haskell TM users has continued
to grow, largely due to composition and blocking features that are included in Haskell’s
TM but are typically missing from TM implementations in other languages. In this the-
sis we connect Haskell with new developments from the TM research community while
preserving Haskell’s rich TM features. We explore the challenges of integrating new
ideas, including Transactional Locking II and hardware TM (HTM) into a pure functional
programming language, and evaluate the performance of our developments. Achieving
good cache performance, particularly avoiding speculative overflow, is critical to realiz-
ing benefits from HTM in its current form. To this end we implement a TM that removes
indirection and allows for multiple transactional fields in a single heap object. To enable
access to these features, we extend the Haskell language, implementing support for muta-
ble constructor fields. Together these changes yield an implementation with significantly
better performance than the original TM. We also explore the potential of using Haskell’s
advanced type system to decrease the cost of unused features. We argue that this can be
achieved while still maintaining the existing API. More static information can be used
both by the compiler to improve code and by users to better understand the performance
characteristics of their code.

https://doi.org/10.1017/S0956796819000200 Published online by Cambridge University Press

https://tinyurl.com/tx66gfe
https://doi.org/10.1017/S0956796819000200

	PhD Abstracts

