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We focus our attention on some relevant aspects of the beam–plasma instability in order
to refine some features of the linear and nonlinear dynamics. After a re-analysis of the
Poisson equation and of the assumption dealing with the background plasma in the form
of a linear dielectric, we study the non-perturbative properties of the linear dispersion
relation, showing the necessity for a better characterization of the mode growth rate in
those flat regions of the distribution function where the Landau formula is no longer
predictive. We then upgrade the original N-body approach in O’Neil et al. (Phys. Fluids,
vol. 14, 1971, pp. 1204–1212), in order to include a return current in the background
plasma. This correction term is responsible for smaller saturation levels and growth rates
of the Langmuir modes, as result of the energy density transferred to the plasma via the
return current. Finally, we include friction effects, as those due to the collective influence
of all the plasma charges on the motion of the beam particles. The resulting force induces
a progressive resonance detuning, because particles are losing energy and decreasing their
velocity. This friction phenomenon gives rise to a deformation of the distribution function,
associated with a significant growth of the less energetic particle population. The merit
of this work is to show how a fine analysis of the beam–plasma instability outlines a
number of subtleties about the linear, intermediate and late dynamics which can be of
relevance when such a system is addressed as a paradigm to describe relevant nonlinear
wave–particle phenomena (Chen & Zonca, Rev. Mod. Phys., vol. 88, 2016, 015008).
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1. Introduction

A fundamental model of plasma physics consists of the beam–plasma instability,
originally studied in O’Neil & Malmberg (1968), O’Neil, Winfrey & Malmberg (1971),
Mynick & Kaufman (1978) and Tennyson, Meiss & Morrison (1994) (see also Elskens &
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Escande 2003), mainly having in mind real experiments, while it is currently a scenario
to mimic some of the most relevant features of the interaction between fast ions and the
Alfvén spectrum present in tokamak devices (Berk & Breizman 1990a,b,c; Breizman &
Sharapov 2011).

The basic mechanism underlying the beam–plasma instability is the inverse Landau
damping mechanism (O’Neil 1965; Shapiro & Shevchenko 1971; Lifshitz & Pitaevskii
1976), according to which fast particles are able to pump the Langmuir spectrum, up to a
saturation limit, resulting in trapping into the instantaneous potential well. The original
treatment of the problem in O’Neil et al. (1971) is particularly successful because it
reduces the dynamics to a Hamiltonian N-body system, using dimensionless universal
units. Such a model relies on the hypothesis that the beam propagates in a cold background
plasma, feeling its response in the form of a real dielectric and treating the system as
collisionless, de facto neglecting any other reciprocal back-reaction among these two
components. Furthermore, the particle beam is assumed to be tenuous, i.e. the ratio
between the beam and the plasma densities is a small control parameter of the interaction.
However, as discussed in § 3.1, when the beam–plasma system (BPS) (say also the
bump-on-tail instability) is implemented to describe the outgoing radial transport of fast
ions interacting with Alfvén waves (for a precise mapping between the velocity to the
radial space, see Carlevaro et al. (2016b, 2019)), some of the approximations underlying
the original model could result in being inadequate.

In this paper, we start by providing, in § 2, a detailed derivation of the Poisson equation
at the ground of the dielectric approximation for the background plasma, based on a careful
investigation of the instantaneous linear response of the bulk when it is crossed by fast
particles. Although the main ideas of the present derivation were implicitly contained
in O’Neil et al. (1971), nonetheless the present contribution explicitly clarifies which
approximations are required to summarize the plasma response in terms of a dielectric
function. Such an analysis is of interest in order to better clarify the approach developed in
§ 5, where the thermal plasma back-reaction is described via fluid dynamics, and therefore
the emergence of a return current can be described.

Then, after providing in § 3 the standard N-body description of the BPS, in § 4 we
investigate the details of the linear dispersion relation in the case of an initial positive slope
of the beam distribution in the velocity space. In particular, we address non-perturbative
effects and the breakdown of the inverse Landau damping expression where the ratio
between the growth rate and the real frequency shift with respect to the plasma frequency
becomes finite.

In § 5, we analyse the problem concerning the induction of a return current within the
background plasma, by coupling the N-body dynamics with the electrostatic fluctuations
in the plasma, described via a linear fluid representation. We arrive at a revised model, in
which the Poisson equation has memory of the presence of the Langmuir oscillations.
The numerical implementations of this scheme, both for a single mode and for the
so-called quasi-linear model (when many modes are included in a broad spectrum), are
developed. As a result, we demonstrate that the spectrum and the beam distribution
function morphology are similar to those predicted by the original treatment. However,
now it is possible to calculate a return current in the background plasma, whose presence
depresses the saturated spectrum energy and the mode linear growth rates. This is of clear
importance in view of the realistic prediction for relaxed fast-particle profiles.

Finally, in § 6 we investigate the effect of friction on the motion of fast particles, in order
to clarify how their distribution function and the spectrum are affected in the quasi-linear
scenario. The friction we are addressing consists of the interaction of the fast particles
with the bulk of the plasma charges, as integrated at a distance greater than the Debye
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scale. In other words, we neglect the effects of collisions along the fast-particle motion,
because of their extreme dilution, but we account for collective interaction, acting as a
force contrasting the particle dynamics, in analogy to what has already been studied in
the literature for heavy ions (Neufeld & Ritchie 1955). We find the interesting feature of
a resonance detuning, able to significantly deform the particle distribution function and
the mode spectrum on a given time of the nonlinear dynamics. This effect is due to the
loss of energy that the particles undergo under the collective friction of the plasma charges.
Actually, a rather efficient displacement of particles takes place in the phase space towards
the low-velocity region, which depresses those resonant modes at smaller wavelength.
Clearly, after a sufficiently long time, the resonant detuning would result in a depletion of
the spectrum energy, since all particles would essentially be no longer resonant.

2. Derivation of the Poisson equation for the BPS

The BPS (O’Neil & Malmberg 1968; O’Neil et al. 1971) deals with a fast electron beam
injected into a one-dimensional plasma, which is treated as a cold linear dielectric medium
supporting longitudinal electrostatic Langmuir waves. This section is devoted to setting up
the proper form of the Poisson equation for the electric field. Such a construction follows
and clarifies the general ideas contained in O’Neil et al. (1971). In particular, we explicitly
outline how the shift in frequency appearing in the electric susceptivity coincides with
the modulation of the electric field amplitude induced by the interaction with the beam
particles.

Let us now consider the distribution function in the velocity space Fp(v) of the
equilibrium one-dimensional thermal plasma, the associated perturbed plasma electron
distribution function δf p(t, x, v) and the fast electron tenuous beam distribution function
f (t, x, v) (here x is the coordinate of the one-dimensional periodic slab of plasma). The
interaction between the plasma and the beam electrons is mediated by the electric field
E(x, t), according to the Poisson equation

∂xE = −4πe
∫ ∞

−∞
dv( f + δf p), (2.1)

where e denotes the electron charge. The equation above determines the electric field via
the charge density of the external beam and the charge displacement induced in the thermal
plasma. It is worth noting that the charge distribution associated with Fp is cancelled
by the ion neutralizing background, whose dynamics are neglected completely in this
treatment, due to the slow response of ion motion. Expanding in Fourier integral both
E and all the space-dependent distribution functions, the Poisson equation is written, for
each wavenumber k, as

ikEk(t) = −4πe
∫ ∞

−∞
dv( fk(t, v) + δf p

k (t, v)). (2.2)

Neglecting the coupling between different (non-zero) k, δf p
k obeys the following reduced

Vlasov equation:

∂tδf p
k (t, v) + ikvδf p

k (t, v) = e
m

Ek(t)∂v(Fp(v) + δf p
0 (t, v)). (2.3)

Here, we considered only the contribution coming from the zeroth wavenumber because
such homogeneous (x-independent) contribution is the only one containing the equilibrium
distribution function derivative in the particle velocity. All of the other components
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δf p
k would provide an intrinsically nonlinear contribution to the Vlasov equation. If we

additionally consider |δf p
0 | � Fp, this equation describes the linear response of the plasma

as a dielectric structure. The solution of (2.3) reads

δf p
k (t, v) = e

m

∫ t

0
dt′Ek(t′) exp(ikv(t′ − t))∂v(Fp(v) + δf p

0 (t′, v)). (2.4)

Without loss of generality, we can use the following functional form for the electric field:

Ek(t) = Ēk exp
[
−i
∫ t

0
dt′ωk(t′)

]
, (2.5)

where Ēk = const. As a natural consequence, we can also write

Ek(t′) = Ek(t) exp

[
−i
∫ t′

t
dy ωk( y)

]
. (2.6)

Using the general expression of the electric field above, (2.4) can be rewritten as

δf p
k (v, t) = e

m
Ek(t)

∫ t

0
dt′ exp

[
ikv(t′ − t) − i

∫ t′

t
dy ωk( y)

]
∂v(Fp(v) + δf p

0 (t′, v)).

(2.7)
In this expression, in order to focus on resonant-driven Langmuir modes, we can set
kv � ωk � ωp (O’Neil & Malmberg 1968), where ωp = √

4πnpe2/m denotes the plasma
frequency (m is the electron mass). Hence we explicitly set ωk = ωp + δωk, where δωk
is a small complex function. We observe that the integral in t′ contains only one rapidly
oscillating term exp(−ikv(t′ − t)) � exp(−iωp(t′ − t)) multiplied by slow varying terms:
Fp does not depend on time and, for a cold plasma, it is peaked around v � 0, while δf p

0 is
expected to have a typical time scale much larger than 1/ωp. Thus, we can bring out of the
integral in t′ the term in the distribution function derivative. Moreover, the time integral in
t′ is dominated by the values taken in its extremes (where the rapidly oscillating term does
not phase mix), especially at t = t′ where one has no damping due to the imaginary part
of δωk: there, the integral in y gives almost ωk(t)(t′ − t) (see the appendix in O’Neil et al.
(1971)). We finally get

δf p
k (v, t) = e

m
Ek(t)

∂v(Fp(v) + δf p
0 (t, v))

i(kv − ωk(t))
. (2.8)

Substituting this expression in the Poisson equation (2.2), we obtain

ikEk(t)
[

1 − 4πe2

mk

∫ ∞

−∞
dv

∂vFp(v)

kv − ωk(t)

]
≡ ikEk(t)ε(ωp + δωk(t), k)

= −4πe
[∫ ∞

−∞
dvfk(t, v)

]
− ikEk(t)δε(t, k), (2.9)

where ε(ωp + δωk(t), k) is the instantaneous (linear) dielectric function, while the
correction δε(t, k) is defined as

δε ≡ −4πe2

mk

∫ ∞

−∞
dv

∂vδf p
0 (t, v)

kv − ωk(t)
. (2.10)
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In the case of a cold plasma, i.e. ε = 1 − (ωp/ω)2, for a Langmuir wave (ωk � ωp), we
immediately get the relation

ikεEk(t) � ik
2
ωp

δωk(t)Ek(t)

= −2k
ωp

∂tEk(t) − 2ikEk(t), (2.11)

where we made use of the representation (2.5) for the electric field. Finally, if we neglect
the small nonlinear contribution δε, the Poisson equation takes the well-known form

∂tEk(t) = −iωpEk(t) + 2πeωp

k

∫ +∞

−∞
dvfk(t, v). (2.12)

In this derivation, we have outlined the relation existing between the function δωk
appearing in (2.5) and the effective frequency shift of the dielectric function.

3. Hamiltonian description of the beam–plasma interaction

The BPS is here addressed by considering the basic assumption that the beam density
nB is much smaller than that of the background plasma np. We adopt the Hamiltonian
N-body formulation of the problem described in Carlevaro et al. (2015) and Carlevaro
et al. (2016a) and references therein, where the broad supra-thermal particle beam
self-consistently evolves in the presence of M modes at the plasma frequency, i.e. ωj � ωp
for j = 1, . . . , M. This ensures that the dielectric function of the cold background plasma,
i.e. ε = 1 − ω2

p/ω
2
j , is nearly vanishing (O’Neil & Malmberg 1968) and allows casting

the Poisson equation for each plasma oscillation into the form of a simple evolution
equation. In this scheme, particle trajectories are solved from Newton’s law (O’Neil et al.
1971), while one single mode in the fluctuation spectrum is initially set in order to be
resonantly excited (linearly unstable) with a wavenumber k = ω/vr, where vr is a given
initial resonance velocity.

As already discussed, the one-dimensional cold plasma equilibrium is taken as a
periodic slab of length L, and the position along the x direction for each particle is now
labelled by xi while N denotes the total particle number (i = 1, . . . , N). Beam particle
positions are scaled as x̄i = xi(2π/L), and the Langmuir wave scalar potential ϕ(x, t) is
expressed in terms of the Fourier components ϕj(kj, t) (where kj is the wavenumber).
Introducing the parameter η = nB/np, we use the following dimensionless variables:
τ = tωp, ui = x̄′

i = vi(2π/L)/ωp, 
j = kj(2π/L)−1 (integers), φj = (2π/L)2eϕj/mω2
p and

φ̄j = φj e−iτ . The prime denotes τ derivative and barred frequencies and growth rates
associated with the beam–plasma instability are normalized as ω̄ = ω/ωp and γ̄ = γ /ωp,
respectively.

The BPS is governed by the following system:

x̄′
i = ui , (3.1a)

u′
i =

M∑
j=1

(
i
jφ̄j exp(i
jx̄i) + c.c.

)
, (3.1b)

φ̄′
j = −iφ̄j + iη

2
2
j N

N∑
i=1

exp(−i
jx̄i). (3.1c)

For a single mode, we remark that resonance conditions are rewritten 
ur = ω̄. Moreover
we assume that the warm beam is initialized in the velocity space with an assigned
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distribution function F(u) (the time-dependent beam profile is denoted by fB(τ, u) =
f0(τ, u)/nB). In the simulations, we analyse a total of N = 106 particles and we solve (3.1)
using a Runge–Kutta (fourth-order) algorithm. The initialization in the velocity space is
formal and, thus, particles are free to spread in this coordinate, while we set uniform initial
conditions for particle positions in [0, 2π] (we also apply periodic boundary conditions for
x̄i in this range). More specifically, we discretize the adopted initial beam profile in 500
delta-like beams each of them having a single fixed velocity. Each cold beam is initialized
also with random generated positions and with a number of particles provided by the
discretization of the considered initial profile (normalized to N). This provides the initial
2 × N array for (x̄i, ui), which is dynamically evolved in time self-consistently with the
modes. Finally, the modes are initialized at O(10−12), in order to guarantee the initial linear
stage of evolution. For the considered time scales and for an integration step 
τ = 0.1, as
we discuss in detail in § 5, both the total energy and momentum are safely conserved.

3.1. Relevance of the BPS to the tokamak configuration
It is well known that the energetic particle (EP) excitations of global instabilities in burning
plasmas and the corresponding nonlinear transport are multi-scale processes (Chen &
Zonca 2016) and, thus, reduced models for the profile relaxation are often considered in
view of computational savings. When addressing multiple Alfvén eigenmodes (AEs), the
quasi-linear model (Berk et al. 1995, 1996; Ghantous et al. 2012) corresponds to the typical
reduced description (a detailed comparison between reduced and fully nonlinear schemes
for turbulence-driven EP transport can be found in Bourdelle et al. (2016)). As already
stated, in the group of reduced models, the BPS can be considered to face the analysis
of the nonlinear interactions between EPs and Alfvénic fluctuations (Berk & Breizman
1990a,b,c; Chen & Zonca 2013; Zonca et al. 2015). In particular, a comprehensive study
of the applications and specific restrictions is given in Breizman & Sharapov (2011) and
Chen & Zonca (2016).

In the following, with the aim of illustrating the direct implementation of the BPS as a
paradigm for describing the burning plasma scenario, we introduce a mapping technique
between the reduced radial profile of real systems and the velocity coordinate of the BPS.
A validation of this approach can be found in Carlevaro et al. (2019) (see also Carlevaro
et al. 2016b), where the ITER 15 MA baseline scenario is addressed in the presence of the
least damped 27 toroidal AEs, and also in Biancalani et al. (2018) for an application to the
case of EP-driven geodesic acoustic modes.

The relation between the independent variables is a linear correspondence which
preserves the nonlinear EP profile redistribution. In particular, the AE/EP scheme must
be dimensionally reduced (using standard averaged distribution functions) in order
to describe the dynamics as a one-dimensional non-autonomous system (Briguglio
et al. 2014). The map can be defined for a fixed single resonance, starting from the
corresponding resonance condition:

ω̄AE(s) − ω̄AE(sr) = Ω 
(u − ur), (3.2)

where Ω is a normalization constant to be determined during the procedure, and we use
standard nomenclature for the EP/AE scenario.1 This mapping procedure is defined as
local, by using the expansion ω̄AE(s) = ω̄AE(sr) + (s − sr)∂sω̄

AE, which is always valid
when the frequency results in a sufficiently smooth function of the radius over the

1Here, s = r/a is the normalized tokamak radius (with a the minor radius) and the AE frequency reads ωAE and it is
normalized (barred quantity, valid also for the related growth rate) in ωA0 units (ωA0 = vA0/R0, where the Alfvén speed
at the magnetic axis is dubbed vA0 and R0 denotes major radius). As before, the subscript r represents the resonance value
of a quantity.
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resonance region. The procedure can be finalized by implementing the suitable boundary
conditions s = 0 �→ u = umax and s = 1 �→ u = 0, and by introducing a parameter 
1
which substantially fixes the arbitrary periodicity length L for the BPS one-dimensional
slab (cf. the normalization introduced above) and it corresponds to the minimum mode
number that can be analysed. The closed linear link between the radial profile and the
velocity coordinate reads now

u = (1 − s)/
1. (3.3)

In this scheme, multiple modes can be introduced in the dynamics simply by considering
the corresponding resonance conditions written in the radial space: 
j = 
1/(1 − srj).
A real predictive comparison of the two systems can be implemented once the density
parameter of the BPS, i.e. η, is determined. Without entering the details of this step,
η can be evaluated by assuming a direct proportionality between the linear growth
rates (normalized to the mode frequency) of the BPS and the AE/EP scenario. The
proportionality constant can be fixed requiring that the nonlinear transport is preserved
(Biancalani et al. 2018; Carlevaro et al. 2019). Then, the integration of the linear dispersion
relation for the BPS, which is analysed in the next section, directly provides the value of
the density parameter.

This analysis underlines how the BPS can be addressed as a paradigm for describing
specific burning plasma scenarios. The powerful features of this approach can be seen
in the linear link between s and u, and in the very reduced computational demand of
the BPS. In this respect, in the following sections, we analyse some specific aspects of the
beam–plasma instability having in mind their direct outcomes when implemented in the
radial profile of real systems.

4. Linear dispersion relation: non-perturbative effects

In this section, we review and go into more depth of some specific features of the
dispersion relation. The following analysis is valid on a purely linear regime, having the
aim of clarifying the non-local character of the distribution function in the velocity space.

The dispersion relation, in correspondence to electric field perturbations ∝
exp(i(kx − ωt)), is formally written (O’Neil & Malmberg 1968; Lifshitz & Pitaevskii
1976)

1 − ω2
p

ω2
= ηω2

p

k2

∫ +∞

−∞
dv

k∂vF̂(v)

kv − ω
, (4.1)

where the left-hand side corresponds to the cold plasma dielectric function ε(ω) and F̂(v)

is the normalized (to unity) initial beam distribution function in the velocity space.
Since the dielectric is expanded near ω � ωp in (3.1) (O’Neil et al. 1971; Carlevaro

et al. 2015), the left-hand side of the dispersion relation must be consistently rewritten
as ε � 2(ω̄ − 1). In order to study the instability features of one single resonant mode
having mode number 
, we explicitly write ω̄ = ω̄0 + iγ̄L, where ω̄0 contains a small real
frequency shift with respect to the Langmuir mode frequency ωp (the resonance velocity
is, thus, ur = ω̄0/
 � 1/
) and γ̄L denotes the normalized linear growth rate. Using the
proper normalization, we can finally rewrite the dispersion relation as

2(ω̄0 + iγ̄L − 1) − η


M

∫ +∞

−∞
du

∂uF(u)


u − ω̄0 − iγ̄L
= 0, (4.2)

where we transformed F̂(v) → F(u) with M = ∫
duF(u).

https://doi.org/10.1017/S0022377820001142 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820001142


8 N. Carlevaro, M. Del Prete, G. Montani and F. Squillaci

(a) (b)

FIGURE 1. Plot of the linear growth rate γ̄L (a) and of the real part of the frequency ω̄0 (b) as
a function of the mode-number, obtained numerically by integrating (4.2) for the reference case
η = 0.0007. Green dashed line qualitatively depicts (off-scale) the initial distribution function
represented assuming F(u = 1/
).

Equation (4.2) is numerically integrated for different mode number by fixing the
parameter η and, as initial distribution function, we consider a half-Gaussian positive
slope F(u) = 0.5 Erfc[a − b u] (with a � 6.8 and b � 4537).The corresponding resonant
velocities occur in different regions of the distribution function varying from ur � 0.0011
to ur � 0.0019. From the numerical integration plotted in figure 1 and specified for a
reference case η = 0.0007, it emerges how growth rate values increase as the associated
resonant velocity approaches the inflection point of F(u), where, of course, the drive
of the inverse Landau damping ∂uF is maximum. Furthermore, the real part of the
frequency ω̄0 starts to deviate from unity on the right-hand flat profile of the distribution
function. Actually, in that region the local value of ∂uF is essentially negligible and a finite
growth rate (necessarily associated with a real frequency shift with respect to the plasma
frequency) marks the breakdown of the perturbative Landau damping expression.

Let us now compare the obtained results with respect to a standard analytical and a
semi-analytical integration of the dispersion relation. By linearizing (4.2) fixing ω̄0 = 1,
one can get the well-known Landau formula for the linear growth rate (here denoted by
the subscript lin) (Lifshitz & Pitaevskii 1976):

γ̄lin = πη

2
2M
∂uF

∣∣∣
u=1/


. (4.3)

Meanwhile, the dispersion relation can be also analytically integrated in terms of the
Faddeeva function w(x) and residue contributions (Fried & Conte 1961). We easily get
∂uF = A exp[−B2(C − Du)2], and (4.2) provides the following expression (specified using
the subscript F) (Idouakass et al. 2016):

2 (ω̄0F + iγ̄F − 1) − ηA

M

iπ(2e−X − w(X)) = 0, (4.4)

with X = BC − BD(ω̄0F + iγ̄F)/
 (for the sake of completeness, in our specific case, we
have: A = 2559.88, B = 5.89, C = 1.15 and D = 770.0), whose roots can be numerically
determined.

In figure 2, we plot the ratios between the growth rates γ̄ fitted from the time behaviour
of single-mode simulations of (3.1) and the obtained values of γ̄L, γ̄lin and γ̄F from
(4.2), (4.3) and (4.4), respectively, as a function of the analysed mode number for
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FIGURE 2. Ratios between the growth rate γ̄ (fitted from simulations) and γ̄L, γ̄lin
and γ̄F evaluated from (4.2), (4.3) and (4.4), respectively, for different mode numbers
(η = 0.0007).

η = 0.0007. While the perturbative inverse Landau damping expression can deviate
up to 100 %, the predicted γ̄F values from (4.4) appear more precise; nonetheless an
underestimation of the simulated growth rate up to 20 % emerges in correspondence with
the associated ur larger than the inflection point. The γ̄L values calculated from (4.2) almost
perfectly match the numerical simulations.

It is worth nothing that the considered linear problem actually contains a subtle
issue concerning the non-perturbative character of the dispersion relation. The integral
over the whole distribution function and the nonlinear dependence upon the frequency
make the estimate of the growth rate and the real frequency shift with respect to the
plasma frequency intrinsically non-local. In particular, focusing on a region close to the
inflection point of the distribution, the two methods giving γ̄L and γ̄F, respectively, almost
coincide, while the perturbative inverse Landau damping growth rate γ̄lin overestimates the
simulation results by approximately 10 %. This is due to the fact that the residue and the
principal value contribution are of the same order in this region.

We conclude by observing that, when addressing the Landau growth rate expression
(4.3), we evaluate the quantity ∂uF assuming the resonance at u = 1/
, i.e. we impose
ω̄0 = 1 (ω = ωp) without considering the real frequency shift due to the presence of the
beam. Actually, when the beam is tenuous (as in the considered case), we are near the
marginal stability corresponding to γ̄L � 1 and ω̄0 � 1. Thus, neglecting the frequency
shift when evaluating (4.3) is expected to be a good approximation up to the considered
order in γ̄ . This is certainly true when we consider modes resonant with velocities for
which ∂uF is near a maximum value, i.e. near the inflection point of the distribution
function. In fact, if we calculate the correction due to the real frequency shift, it is of
order ∂2

u F|u=1/
(ω̄0 − 1), being clearly of higher order in the addressed velocity region.
This allows us to consider the assumption ω̄0 = 1 as a closed and simple prescription to
describe the inverse Landau damping associated with the presence of a tenuous beam.

However, since we are investigating the dispersion relation in the flat regions of the
distribution function (where ∂uF is very small but ∂2

u F is finite), it becomes important to
evaluate the modification of the Landau growth rate when the real frequency shift is taken
into account as directly evaluated from the exact dispersion relation (4.2). In figure 3, we
plot the ratio between γ̄lin calculated using ω̄0 = 1 and that (dubbed γ̄ ∗

lin) determined using
the numerical frequency shift, i.e. by considering ∂uF|u=ω̄0/
 in (4.3). It is immediately
evident that this ratio is � 1 and the real frequency shift contribution is, thus, unable
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FIGURE 3. Ratio between γ̄lin using ω̄0 = 1 and γ̄ ∗
lin evaluated considering ∂uF|u=ω̄0/
 in (4.3),

where ω̄0 are plotted in figure 1 (η = 0.0007).

to eliminate the discrepancy with respect to the fitted growth rates from the simulation.
This fact is significant because it guarantees that such observed discrepancy is really due
to the non-local contributions coming to the whole profile of the distribution function,
which can never be mimicked by a locally calculated growth rate. It is just the relevant
effect of the non-local nature of the dispersion relation, the main issue of the present
analysis, deepening the pioneering studies in O’Neil & Malmberg (1968); see also Fried
& Gould (1961) for a study of the dispersion relation in a hot plasma (in this latter work,
the existence was outlined of a strongly damped electronic acoustic mode).

5. Return current in the beam–plasma instability

As already discussed, in the original treatment the plasma is considered as a linear
dielectric. The validity of this assumption relies on the condition η1/3 � 1, inasmuch as
nonlinear terms of the expansion of the background charge density are shown to give
higher-order contributions to the Poisson equation (see appendix in O’Neil & Malmberg
1968).

In this section, we provide a derivation of the BPS dynamics based on the description
of the background plasma as a fully ionized fluid. In the magnetohydrodynamic scheme,
its density and velocity are governed by the continuity and Euler equations, respectively.
In the latter, we neglect any dissipative effects, such as friction, which we will separately
examine in the next section. According to the assumption of a cold plasma, we also neglect
the pressure gradient by considering only the electrostatic interaction expressed by the
Poisson equation.

Although we consider only linear perturbations to the background plasma, as in the
linear dielectric approach, the fluid representation allows us to give a quantitative estimate
of the emerging non-zero current in the plasma, consisting of a combination of two effects:
a fast oscillation of the electrons at the plasma frequency ωp, having a small amplitude
and essentially non-relevant impact on the long-time-scale dynamics; and a return current
in the opposite direction to that associated with the beam dynamics. The return current
evolution closely resembles that of the electric field: after an initial exponential growing
phase, its amplitude saturates and starts oscillating around a non-zero value at the bounce
frequency of the plasma electrons in the potential well. Its inclusion affects the growth rate
of the electric field instability, even more markedly in the multi-mode case, where also the
saturation levels are systematically lower.

In the following, n̄e and n̄B denote the plasma electron and the beam densities,
respectively, and ue characterizes the plasma electron fluid velocity. Barred densities are
normalized in units of the uniform density np of the neutralizing ion background, assumed
still.
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In this setting, the equations describing the BPS take the form

n̄′
e + ∂x̄ (n̄e ue) = 0, (5.1a)

u′
e + ue∂x̄ue − ∂x̄φ = 0, (5.1b)

−∂2
x̄ φ − 1 + n̄e + n̄B = 0. (5.1c)

We now look for small perturbations in the plasma electron density and velocity, indicated
by subscript ‘1’, i.e. n̄e = 1 + n̄1 and ue = 0 + u1. Substituting these expressions in the
system above, and retaining only first-order terms, we find the following relation between
n̄1 and n̄B:

(∂2
τ + 1) n̄1 = −n̄B, (5.2)

whose formal solution is given by

n̄1 = ñ1 −
∫ τ

0
dτ ′(sin(τ − τ ′) n̄B(x̄, τ ′)), (5.3)

where ñ1 = A cos(τ + ζ ) is the solution of the associated homogeneous equation,
corresponding to fast Langmuir oscillations at frequency ωp. In the numerical simulations,
we will assume the amplitude A to be spatially constant and random phase ζ ∈ [0, 2π).
The integral term in (5.3) can be rewritten as

− n̄B(x̄, τ ) + η cos(τ ) +
∫ τ

0
dτ ′(cos(τ − τ ′) ∂τ ′ n̄B(x̄, τ ′)). (5.4)

Let us analyse the physical meaning of the expression above. The first term is an
instantaneous neutralization of the net negative charge introduced by the beam in the
system. The second term corresponds to a fast oscillation at the plasma frequency, with
amplitude directly proportional to the density ratio η, which is a small parameter in our
analysis. Finally, the integral term contains the non-trivial interaction between the two
densities (its behaviour will be characterized using numerical simulations at the end of the
section).

Considering now (5.1a), still retaining only linear terms, we find the following
expression for the velocity perturbation:

u1 =
∫

dx̄
[

A sin(τ + ζ ) +
∫ τ

0
dτ ′(cos(τ − τ ′) n̄B(x̄, τ ′))

]
, (5.5)

which also provides, with opposite sign, the first-order plasma current defined as J̄1 =
J1/e = −n̄eue = −u1. As stressed above, also this velocity is a combination of a rapidly
oscillating term, coming from Langmuir waves and giving no net effect, and an integral
term akin to that encountered in (5.4). The latter gives a net contribution that can be
identified as a return current which is directed in the opposite direction to the stream of
the beam electrons.

Let us now perform a numerical study implementing the same approach of O’Neil et al.
(1971), as in § 3. More specifically, we consider the beam density as a sum of particles at
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(a) (b)

FIGURE 4. Single-mode simulation: temporal evolution of the electric potential modulus in the
case without (a) and with (b) back-reaction in logarithmic scale. Dashed lines correspond to the
numerical fit for the linear phase.

coordinates x̄i. By Fourier transforming the space variable, we obtain

n̄B(x̄, τ ) = η

N

M∑
j=0

N∑
i=1

exp(i
jx̄i), (5.6)

where we recall that N is the number of particles and M the number of Fourier modes. The
final system reads

x̄′
i = ui, (5.7a)

u′
i =

M∑
j=1

(i 
j φj exp(i
jx̄i) + c.c.), (5.7b)

φj = 1

2

j

(
ñ1j + η

N

N∑
i=1

exp(−i
jx̄i) + iη
2N

(g+
j − g−

j )

)
, (5.7c)

J̄1j = − i

j

[
A sin(τ + ζ ) − η

2N
(g+

j + g−
j )
]
, (5.7d)

(
g±

j

)′ = ±ig±
j + η

N

N∑
i=1

exp(−i
jx̄i), (5.7e)

where we underline that the final expression of the Poisson equation, (5.7c), is algebraic,
and we have introduced the two auxiliary variables g± simply to obtain a fully differential
system.

As a first step, we study the single-mode case setting 
1 = 666 (associated with a
resonant velocity ur � 1.5 × 10−3) as the only mode included in the dynamics and by
initializing the particles with the positive slope F(u) introduced in the previous section
(also the density parameter η is fixed as 0.0007). The temporal evolution with and without
back-reaction (i.e. (3.1)) of the electric potential is shown in figure 4, while the current
perturbation is plotted in figure 5.

As it emerges from figure 4, after a longer pre-linear stage, the standard linear regime
is clearly recovered and followed by mode saturation (nonlinear phase) and oscillation.
The value of the field at saturation results in being slightly lower if the back-reaction is on
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FIGURE 5. Single-mode simulation: temporal evolution of the first-order current perturbation
(equation (5.7d)) induced in the plasma (η = 0.0007).

FIGURE 6. Single-mode simulation: evolution of the total energy E from (5.8), normalized to
its initial value E0, with (solid line) and without (dashed line) the contribution of the background
plasma current.

(for the analysed set-up, it is lower by a factor of about 0.97), indicating how part of
the total energy is spent on the excitation of the plasma velocity perturbation. More
specifically, the total energy of the system in the presence of back-reaction can be written
as follows:

E = 1
2N

N∑
i=1

u2
i +

M∑
j=1


2
j

η

∣∣φj

∣∣2 +
M∑

j=1

1
η

∣∣J̄1j

∣∣2 = const., (5.8)

where we stress that the first two terms of this expression correspond to the total energy
of the system without back-reaction (O’Neil et al. 1971). In that case, the energy could
only be exchanged between beam electrons and the electric potential, while now the third
term proportional to J̄1 enters the dynamics. This corresponds to the energy of the excited
plasma back-reaction current, whose incidence on the total energy conservation is shown
in figure 6.

To further analyse the energy exchange between the plasma and beam electrons, in
figure 7 we plot the fitted linear growth rates in the single-mode dynamics as a function
of the density parameter η. Of course, in the case with back-reaction, the obtained growth
rates are always below the standard ones leading to relative errors (for the analysed cases)
of the order of 15–20 %. Since the linear growth rate is proportional to the nonlinear
velocity spread of beam particles (Carlevaro, Montani & Zonca 2018), the outlined
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FIGURE 7. Single-mode simulation: growth rate with and without back-reaction (specified in
the plot) as a function of the density parameter η.

FIGURE 8. Multi-mode simulation: mode evolution in the case with (solid lines) and without
(dashed lines) back-reaction. We follow a standard rainbow colour scheme from 
min = 560 (red)
to 
max = 640 (blue).

behaviour underlines the importance of the return current for the transport properties of
the system and the resulting relaxed beam profiles.

Let us now study the case of a broad beam initialized with a full Gaussian F(u) =
exp(−(u − ū)2/2σ)/

√
2πσ , with ū = 1/600 and σ = 5.67 × 10−5. We address M = 21

modes chosen to resonate in the interval 0.00156 � u � 0.00178, i.e. 
min = 560 and

max = 640, having equispaced resonant velocities (η = 0.0007). With the chosen set-up,
the particle velocity spreads associated with the mode saturation allow the beam particles
to move from one resonance to the other. Each mode, due to the limited width of the
velocity spread, overlaps with its neighbours allowing a cascade process of diffusive kind,
i.e. the so-called quasi-linear dynamics (cf. Carlevaro et al. (2016a) and references therein
for a Hamiltonian treatment of this process, in which the back-reaction is neglected).
The evolution of the electric potentials is shown in figure 8, where we also report the
case without back-reaction as reference.The obtained results confirm the previous analysis
outlining the larger energy exchange between particles and modes than in the standard
case (here, it is evident also in the saturation levels). In view of an extension of this
approach towards a non-tenuous beam interacting with a plasma, it is clear that the return
current would play an important physical role, not only because its intensity would be
large, but also because it would be a source (in a two-dimensional configuration) of a
no-longer-negligible magnetic field gradient.
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6. Source of friction and resonance detuning

Up to now, we have considered the BPS as unaffected by dissipation phenomena. In
what follows, we address a dissipative effect on the beam particles, corresponding to the
friction force exerted by the plasma electrons at sufficiently large impact parameter. This
phenomenon has the merit of being suitably modelled in the considered scenario, and it
can be explicitly evaluated assuming that a cylindrical portion of the plasma, with its axis
aligned with the beam trajectory, is removed. The radius of this cylinder is taken larger
than the Debye length of the plasma, so that we are excluding short impact parameter
collisions in the present study. Such a simplification of the friction term clearly disregards
a significant contribution due to local collisions which, however, would unavoidably yield
scattering, thus violating the one-dimensionality of the BPS and requiring an extension of
the model to more spatial dimensions. Furthermore, we are interested in investigating how
friction affects processes like wave–particle resonance and frequency detuning more than
providing a quantitative estimate of the whole friction effect in the plasma.

We observe that, when implementing the BPS in the characterization of the interaction
of fast ions with Alfvénic modes, the presence of sources and sinks is often included
(see Berk & Breizman 1990a,b,c). Furthermore, such interaction is characterized by a
drive, due to the radial gradient of the pressure profile, and a damping rate, due to the
background plasma properties. It is just this damping effect that the following analysis is
able to mimic, since it also deals with the beam–plasma interaction due to the thermal
plasma properties. Thus, in addition to the direct physical interest for the interaction of
the beam particles with large-impact-factor thermal electrons, this scenario offers also an
improved dynamical picture to be used for predicting features of fast ions in real tokamak
devices.

In this respect, to take into account dissipative effects on beam particle dynamics, a new
force term is added to the motion equations. In particular, in Neufeld & Ritchie (1955), it
was suggested to deal with contributions having a short range and long range separately,
and then to consider them in one single force term (there, heavy particles have been
considered). Here, for the sake of consistency with the BPS model, we neglect collisions
with short range and we focus on the collective effects of the far region of the plasma on
the motion of beam particles. As stressed above, such effects are obtained by subtracting
a region of the plasma contained in a cylinder of radius ρmin around the trajectory of the
electron beam, and then by calculating the potential induced by the injected particles in
the far region of plasma, wherein polarization is produced. Then, the field generated by
the polarized plasma region on the trajectories is the cause of the friction force undergone
by each particle. In this way, in accordance with Neufeld & Ritchie (1955), the force term
(specified for the beam electrons) can be expressed as follows:

Ffric = e2ρmin

ωpx′3 K0

(ρmin

x′

)
K1

(ρmin

x′

)
, (6.1)

where K0 and K1 are the second kind modified Bessel functions of order 0 and 1,
respectively. The critical parameter ρmin has to obey the following two restrictions:

p⊥ = 2e2

ρminωpx′ � m〈v2
e 〉1/2, (6.2)

ensuring that the motion of incident beam particles slightly perturbs the plasma
unperturbed electrons (having mean square velocity 〈v2

e 〉) at a certain distance ρmin (here
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p⊥ denotes the momentum gain of the plasma electrons by the passage of the incident
particle), and

ρmin � λD, (6.3)

where λD denotes the Debye length of the plasma.
Considering a cold plasma, i.e. ωpx′ � 〈v2

e 〉1/2, we can assume as reference case ωpx′ =
100〈v2

e 〉1/2 (thus, the minimum value of ρmin is of order 10λD). Finally, the set of equations
in (3.1) can be generalized to include the considered friction effect as follows:

x̄′
i = ui, (6.4a)

u′
i =

M∑
j=1

(
i
j�φj exp

(
i
jx̄i

)+ c.c.
)− A

δ4

u3
i ND

K0

(
B

δ

ui

)
K1

(
B

δ

ui

)
, (6.4b)

φ̄′
j = −iφ̄j + iη

2
2
j N

N∑
i=1

exp(−i
jx̄i), (6.4c)

where A = (2π)4/4π × 10, B = 10 × 2π , δ = λD/L and ND is the Debye number of the
plasma. The parameter δ weights the relevance of the friction term with respect to the
electric force. The range of the values of such a parameter is fixed by the upper bound
δ � 10−5, a consequence of the condition u � 〈v2

e 〉1/2, and by a lower bound due the
computational demand of the simulation.

In figure 9, we plot the spectral evolution for the case of 21 self-interacting modes,
with and without the friction term, assuming an initial Gaussian distribution function
in the velocity space (as represented in figure 11). Other parameters characterizing the
simulation are η = 7 × 10−6, ND = 103 and again 
min � 
j � 
max, having equispaced
resonant velocities. It is worth stressing that several modes are suppressed at large time
scales, but this is not a general feature since some modes remain unaffected. In order
to better understand this feature, we also analyse the behaviour of the spectrum, plotted
in figure 10. First of all, it is notable that, at late times, while the ideal BPS shows a
steady state of the spectrum, the considered dissipative model does not reach this limit. In
fact, Coulomb friction produces a progressive loss of energy in the beam particles, with
kinetic energy transferred to the thermal plasma in the form of a very weak re-heating
effect (we recall that the beam is here a tenuous one). As a result, the resonance between
particles and field is therefore shifted towards lower velocity values, corresponding to
higher wavenumbers in the field spectrum (here, the frequency of the plasma is assigned
as a fixed parameter) and consequently, we observe the deformation of the field spectrum
amplitude, as described in figure 10.

It is easy to realize that the basic mechanism entering the spectral evolution is a
progressive detuning of each resonance due to the particle loss of energy. Clearly, the
modes which are resonant with high-velocity particles are the first to be affected by
this mechanism along the system evolution. Differently, those modes which exchange
power with low-velocity particles are still supported by that amount of them which was
interacting with the previous set of modes. The validity of this conjecture is clearly
confirmed by figure 11, where the distribution function behaviour is shown and the
dragging of particles in the velocity space is outlined. In fact, the distribution function
evolution without friction (upper panels) is characterized by the typical flattening, while,
in the presence of the friction term, a new morphology emerges in which a bump
corresponding to small velocities is present. If the number of available modes at large
wavenumbers were infinite, we would see the particle distribution function progressively
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FIGURE 9. Warm beam, multi-mode simulation: mode evolution without dissipation, (3.1), and
in the case of a friction coefficient δ = 10−5 in (6.4), as indicated in the plots. Colour scheme as
in figure 8.

FIGURE 10. Spectral evolution at different times, as indicated above the plots, with and without
friction (same as figure 9). We note that, as in the previous section, we fixed 
min = 560 and

max = 640, resonating in the interval 0.00156 � u � 0.00178 (see also figure 11).

flatten at low velocity and the kinetic energy of the beam unavoidably dissipated. In this
sense, a real steady state here cannot exist, but the described effect must be considered as a
very slow phenomenon, so that, on the time scale on which the N-body approach remains
valid (see the discussion in Carlevaro et al. (2014) on the so-called quasi-stationary
states), its effect appears negligible, while still playing a significant role in the resonance
phenomenon.

This study is relevant when the BPS model is implemented to mimic the radial transport
in a tokamak device. In fact, if EPs lose energy for specific phenomena taking place in the
tokamak configuration, this can affect the AE spectrum. For instance, in Schneller, Lauber
& Briguglio (2016), it is shown that the low toroidal number modes can be destabilized
via a cascade process. These modes would be, using the mapping procedure addressed
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FIGURE 11. Plots of the temporal evolution of the velocity distribution function at different
instants, as indicated above the graphs, with and without friction (same as figure 9). The green
dashed line denotes the initial beam velocity profile.

in § 3.1, those ones surviving in figure 10. Thus, including friction term in the BPS model
can be important in reproducing specific tokamak features due, for instance, to collisional
effects.

7. Concluding remarks

We analysed different aspects of the beam–plasma instability clarifying which features
of the original treatment have to be improved to adapt this scheme to the interaction
between fast ions and the Alfvénic spectrum in a tokamak device.

As a first step, we gave a reformulation of the Poisson equation for the BPS to outline the
basic hypotheses at the ground of the dielectric assumption which, in the original analysis,
was made for the background plasma.

Then, we studied the so-called non-perturbative effects of the beam–plasma dispersion
relation, showing how the inverse Landau damping formula fails approaching a flat region
of the fast particle distribution function. Actually, in such a condition, a significant
frequency shift is naturally predicted by the distribution function and a non-vanishing
growth rate emerges from the integral nature of the dispersion relation.

After that, we analysed the determination of a return current into the bulk of the plasma
as an effect of the fast particle crossing. In this respect, we treated the interaction of the
beam with the background plasma fluctuations, describing the former still as an N-body
Hamiltonian system, while the latter in terms of linear fluid dynamics. We then arrived
at a restated N-body dynamics, whose Poisson equation is now able to account for the
interaction of fast particles with the Langmuir waves present in the plasma. We showed
how the emergence of a return current implies a suppression of the saturation level of
the spectrum and the obtained mode growth rates. This fact suggests that, in the case of
a non-tenuous beam, the dielectric approximation, if still adopted, must be amended for
effects of the plasma back-reaction that, in turn, influence the beam dynamics and the
resulting beam profile.

Finally, we studied the correction to the BPS when the interaction between fast particles
and plasma particles far from the beam trajectory is taken into account. A friction term
arises due to the plasma charges at scales much greater than the Debye length. This effect
determines a significant displacement of the beam particles in the distribution function
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from high velocities to smaller ones. The resulting field spectrum is initially damped in
correspondence to larger wavelengths, and eventually the whole profile is affected.

We stress that, in both these last analyses, the ions of the thermal plasma are considered
as essentially at rest, so that they behave here simply as a ‘neutralizing background’ for
the system. This hypothesis is well grounded for a sufficiently cold plasma, since the ion
response takes place on a time scale much slower than both the inverse of electron plasma
and bounce frequencies. This scenario is natural for the BPS and easily amendable if the
physical conditions require one to account for ion motion. In other words, we are applying
to plasma physics the so-called Born–Oppenheimer approximation typical of the physics
of matter, when molecular spectra are concerned. In plasma physics, such an assumption
lives on a pure classical sector and it is justified by the mass separation existing between
ions and electrons. However, it is important to distinguish here between the single-electron
velocity, like that of the beam particles, and the electron fluid velocity, characterizing the
background response via a return current. The single-electron velocity is always much
larger that the single-ion one, but the electron fluid, the velocity of which is an average of
the single-particle motion, remains in principle small, as happens in our study, due to the
validity of quasi-neutrality in the unperturbed plasma at the physical scale of interest.

We conclude that, when implementing the results of this study into real tokamak
configurations, the considered effects are not directly relevant: return current and friction
are associated with the motion of fast ion beams, but their description requires a different
setting with respect to the present one, especially because of the radial non-uniformity of
the tokamak equilibrium.

The relevance of the considered deviations from a standard BPS picture lies in the
possibility of mimicking corresponding features of the mapped scheme from the velocity
space to the radial profile of a tokamak. In particular, while the drive of the instability of
fast ions interacting with Alfvénic modes is essentially governed by the radial profile of
the pressure of the hot particle population, i.e. the radial slope of its distribution function,
the damping undergone by the ion beam depends on intrinsic features of the background
equilibrium plasma. The relevance to dealing with a BPS accounting for damping features
relies on modelling this effect when the mapping procedure is implemented.
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