
RADIAL LIMITS OF QUASICONFORMAL FUNCTIONS

D. A. STORVICKυ

Beurling and Ahlfors [1] answered a fundamental question concerning the

boundary correspondence induced by a quasiconformal mapping when they

proved that the correspondence need not be given by an absolutely continuous

function. They proved this by characterizing the boundary correspondences

of quasiconformal mappings of the upper half-plane Im(z)>0 onto the upper

half-plane Im(w)>0 under which the boundary points at infinity correspond.

They proved that a necessary and sufficient condition that the strictly mono-

tone increasing function μ(x) carrying the real axis onto itself be the boundary

correspondence induced by such a quasiconformal mapping is that μ(x) should

satisfy a p-condition

for some constant p and all real x and t. In addition they showed that if the

p-conditίon is fulfilled there exists a quasiconformal mapping whose dilatation

does not exceed p2 and every mapping with the boundary correspondence μ(x)

must have a maximal dilatation greater than or equal to 1 + A log p where A

is a certain numerical constant ( = .2284). For a given mapping μ(x) of the

real axis denote by p(μ) the smallest value of p such that the p-condition (1)

is fulfilled. Beurling and Ahlfors showed the stronger result that there exists

a quasiconformal mapping of the half-plane onto itself whose boundary corre-

spondence is given by a completely singular function μ(x) with p(μ) arbitrarily

close to one. Because of this result and its function-theoretic consequence that

the distinction between sets of zero and positive harmonic measure is not pre-

served under quasiconformal mappings, it follows that the analogue of Fatou's

theorem does not hold for quasiconformal functions. The purpose of this note
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is to show that the boundary correspondence induced by a quasiconformal

mapping is absolutely continuous and an analogue of Fatou's theorem is valid

if one requires that the dilatation quotient in addition to being bounded, tends

to one sufficiently swiftly as the boundary is approached.

Let ιv = f{z) denote a sense-preserving homeomorphism of a domain Ω in

the z = x -f iy plane onto a domain Ω' in the w = u + iv plane. Let D be any

Jordan domain contained together with its boundary curve within Ω> and let zu

£2, Z3, Zi be any four distinct boundary points of D which lie in this order on

the positively oriented boundary curveυ. By means of a conformal mapping,

map D onto a rectangle:

0 < £ < l , 0<y<h in the C = ξ + iy

plane sending the points Zu 22, z3i 24 onto 0, 1, l + ih, ih respectively. The

number h which is uniquely determined by D and the {zi) is defined as the

modulus of D. We shall assume that there exists a constant K^>1 such that

for all Jordan domains D c J2, the modulus of f{D) is less than or equal to the

modulus of D '

(2) mod /CD) ̂  Kmoά (D).

Such a transformation w = f(z) is a K-quasiconformal mapping of the domain.

It has been proved by Mori [7] that a iΓ-quasiconformal mapping is totally

differentiable at almost all points in Ω and at every point at which it has a

total differential,

(3) max\DQw\2^K-J(z)
Θ

where D^w - (uxcos θ -f uy sin θ) + i(υx cos 0 + υy sin θ) and J(z) = uxvy — υxuy ί> 0

and for almost all y =jy0, w = /(# + ry0) is absolutely continuous in # on any

closed interval contained in the intersection of y =jyo and Ω.

At points where the mapping is totally differentiable there is defined the

dilatation quotient, QLf(z)l, which describes the local distortion of the mapping;

(4)

^ Some authors call such a configuration, Z> and the points {z, }, a quadrilateral, see
[5] and [7].
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and

(5) Qϊf(z)l£K.

We now prove a theorem giving conditions under which the boundary corres-

pondence induced by a quasiconformal mapping is differentiable.

THEOREM:

Let w •= f(z) be a K-quasiconformal mapping of the upper half-plane Im(z)

>0 onto the upper half-plane lm{w)>0. Let there be an essentially bounded

measurable function κ{x) such that for all z = x+iy for which QLf(z)l exists,

(6) QZf(z)l-l£κix) y.

Then at every point z = x on the real axis, the mapping w = f(z) has a complex

derivative

(7)
dz

= lim P
Δz-+O L

ImAzΞzO
z-x

Δz

which is different from 0 and °°.

Proof. The mapping w^f(z) can be extended to give a homeomorphism

between Im(z)>0 and Im(w)>0 which is real and monotonically increasing on

the real axis. Defining f(z) in the lower half-plane by the formula f(z) =f{z),

one obtains a quasiconformal mapping of the complex plane onto itself.

Let us now consider w = f(z) in U I < 1 and the image A of | z | < l under

f(z). We map Δ in a 1-1 conformal fashion onto |Ci<l by means of C =

g(w), normalized so that g (/(0))-0, g'(f(0))>0. The composition mapping

C = F(z) -g(fiz)) is a K'quasiconformal mapping of UI<1, one-to-one onto

|C| <1, with F(0) =0. Since the dilatation quotient is a conformal invariant, it

follows that for the mapping C = F(z), the dilatation quotient satisfies the same

inequality as Q[/U)], i.e.,

for almost all points in Λ:2 + .V 2 <1. From the symmetry of the integrandr it

follows that for r<l,

Γί2

•̂  (WO

-dpdψ
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The function H(x) is the product of an essentially bounded measurable function

and an integrable function and is therefore integrable. From the absolute con-

tinuity of the integral \ H(x)dx it follows that there exists a function λ(r)
J o

where λ(r)^0 as r->0 and

P

From a recent result of Lehto [6] it follows that there exists a constant r'> ΐ'

= 0̂, °°, such that lim—— = γf. Since C^g(w) is a conformal mapping, there
z-*0 Z

exists a constant r = rf/gf(f(0)) such that l im-— = γ. By means of a prelimi-

nary linear fractional transformation, the above technique can be modified to

apply to any point on the real axis and the theorem is proved.

Let w =• f(z) be an interior transformation in the sense of Stoϊlow in an

arbitrary domain Ω, i.e. w-f(z) is continuous and single-valued in Ωt takes

open sets in Ω into open sets in the w-plane and does not take any continuum

into a single point of the u -plane. The set of all pairs of points (zf f(z)) forms

a Riemann surface R, the Riemannian image of Ω under f(z). It follows from

the work of Stoϊlow [13] that f(z) can be represented in the form f(z)*=

φ{T(z)) where C = T(z) is a homeomorphism of Ω onto a new domain Ωf in the

C-plane and w = ψ(C) is an analytic function in Ωf. A complex valued function

of a complex variable, w = f(z) which is either a constant or an interior

transformation in the sense of Stoϊlow for which the function C= T(z), in the

factorization w = /(z) = φ(T(z)), is a iΓ-quasiconformal mapping will be called

a i£-quasiconformal function.

The above definition, that a function w = f(z) is a if-quasiconformal function

if it admits a representation as w = f(z) = ψ{T(z)) where C = Tiz) is $ iΓ-quasi-

conformal homeomorphism and /(C) is an analytic function, is not as artificial

as it first appears. Indeed, it is possible to give geometric and analytic charac-

terizations of i£-quasiconformal functions. The following theorems which we
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merely state are examples of such characterizations.

THEOREM: (Geometric characterization of quasiconformal functions)

Let w = f{z) be a sense-preserving interior transformation in the sense of

Stoϊlow in a domain G such that whenever a quadrilateral Q, Qc:G is mapped

topologicaίly by w-f(z) onto a quadrilateral Q' then mod (Qf) <*K mod (Q),

then w = f(z) is a K-quasiconformal function in G.

THEOREM: (Analytic characterization of i£-quasiconformal functions)

Let w = f(z) have L2-derivatives in a domain G, and let max I Dof(z) \2^KJ{z)
Θ

almost everywhere, then w-f(z) is a K-quasiconformal function in G.

We now prove an analogue of Fatou's theorem for iΓ-quasiconformal

functions.

THEOREM :

If w = f(z) is a bounded K-quasiconformal function in the upper half-plane,

Im(z)>0, \f(z)\^M, and if there exists an essentially bounded measurable

function κ(z) such that for almost all z-xΛ-iy,

(11)

then the limit, lim f(x+ iy) = /*(#), exists for all real numbers x except possibly

for an exceptional set of linear measure zero.

Proof: Since the Riemannian image R of Itn(z) > 0 under w = f(z) is of hyper-

bolic type, let ζ = ψ"1(w) be the function which maps R one-to-one conformally

onto 7m(C)>0. The inverse function w = ψ(C) is a bounded analytic function

in Im(ζ) >0. Setting C = ψ'Kw) = ψ~ι{f{z)) = T(z), we obtain the factorization

of w = f(z) = ψ(T(z)). The mapping C^T(z) is a if-quasiconformal mapping

of Im(z)>0 onto Im(ζ)>0 such that

By Fatou's theorem [83, we know that the limit, limψ(ξ-\iη) exists for
η-> o

all ξ except for a possible set E of points on the ξ axis of measure zero. Be-

cause of an extension1* of Lindεlόfs theorem, it follows that lim fix+ iy) exists

for all points xφ F = T~\E). In order to prove that F has linear measure zero

*> The proof given in [14] for pseudo-analytic functions can be easily modified to
give the same result for the slightly more general class of K quasiconformal functions.
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we have only to note (a well-known fact) that on the real axis the homeomor-

phism C = T(z) which is a real-valued monotone increasing function with a non-

zero finite derivative at each point is absolutely continuous on any closed inter-

val La, b2 and hence the image of a set of measure zero is of measure zero.1*

In addition to studying the question of existence of radial limits for a quasi-

conformal function it is also of interest to investigate "how large" the set of

radial limit values is. If w = f(z) is a bounded Z-quasiconformal function in

the radial limits must exist on a set of points everywhere dense on

In 1938, I. I. Privalov2) proved the following theorem concerning the set of

radial limit values of a meromorphic function.

THEOREM :

Let w = f(z) be a non-constant meromorphic function in UI<1 and let A

be an arc of \z\ = 1. // w=^f(z) possesses radial limits on a set B of M = 1

for which B Π A is both of the second category and metrically dense on the arc

A, then the set of radial limit values of f(z) contains a set of positive loga-

rithmic capacity.

Cartwright and CoUingwood [2] have employed the theory of cluster sets3)

to extend this result of Privalov and we shall now show how their techniques

can be modified to apply to quasiconformal functions.

THEOREM:

Let w = f{z) be a quasiconformal function defined in \z\<l. If the set of

points et9 on \z I = 1 at which the complement of the radial cluster set is non-

empty is of the second category on some arc A of \z\ -1, then, unless f(z) is

identically constant, the set of radial limit values of f(z) on the arc A is of po-

sitive linear measure.

Proof: If e0 is a point of A for which the complement of the cluster set

C(f, e0) is non-empty, since the cluster set is a closed set, the complement

contains an open disk A- \w~ cc\<δ or (\w\>δ) and therefore there exists a

neighborhood VPU*) of e* of radius p such that if \z-eiβ\<p9 then \f(z) - cc\

D Cf., for example [12], Saks: Theory of the Integral, p. 127, §9, Chapter IV.
2) See Privalov [10] and [11].
3) See Noshiro [9] for a systematic treatment of the boundary behaviour of analytic

functions.
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>i(\f(z)\<δ). Thus there is an arc £ on |z | = 1, B = [ei6\ \eiθ ~ ei?\ <-£} and

a radius p' such that if etQ e Z? and r>(o
/ then

Let us assume that f(z) itself is bounded in some neighborhood of the arc

By i.e., \f(z)\>δ rather than considering the auxiliary function τ-r- since
J \Z) — OC

the two cases are the handled in the same fashion. On the arc B, there exist

two points e*h and eIθa such that thelradial limits

lim/(rβ ί θ l)=/*(β ί θ 2) and Urn f(rei0) = /*(^θί'2) exist and f*(eiOί) ••

This is the case because in the factorization f(z) = giT(z)) where T(z) =η is

a quasiconformal mapping and w = g(-η) is a bounded analytic function, the

radial limits of g{y) exists almost everywhere on the arc BΆ (J9η is the image

of the arc B under -η = T(z)) and cannot be constant on a set of positive

measure. Thus there exist two points τ?i, τ?2 on |τ?| = 1 such that g*( ηi) *?g*(y2).

From the extension of Lindelδfs theorem cited above, it follows that /*(e ίθ ι)

*f*(έ9') where T(ei9l)=vu and T(^ 0 2)=τ ? 2.

Since w = g(τ}) is a bounded analytic function in |τ?|<l, the projection on

the open straight line L between Wi = ̂ *(^i) and ^2 = ̂ (^2) of the set of radial

limit values g*(τ}) with y between τ?i and τ?2 on |τ?| = 1, includes all points of L2\

the set of all radial limit values of f(ret0) for θχ<6<θ2 is of positive linear

measure.

The theorem is proved then if it can be established that there exists at

least one point et? on the arc A for which the complement of the cluster set

C(f, e?) is non-empty. Coliingwood1' proved that for an arbitrary continuous

function (real or complex valued) defined in U 1 < 1 the radial cluster set

CP(/, £lθ) coincides with cluster set C(f, etQ) in a residual set of points eίQ

(i.e., the complement of a set of the first category) on \z\ = 1. Hence if on the

arc A the set of points at which the complement of the radial cluster set is

non-empty is of the second category, the set of points where the complement

of the cluster set is non-empty is also of the second category and therefore is

not empty, and the proof is complete.

1> We shall denote the?radial^limitlvalue of a function f(reiθ) by f*(eiQ).
2> See Lemma 4 page 103 of [4].
3> See Theorem 1 in [3].
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