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1. Introduction. 

1.1. If a group satisfies the maximal condition for normal subgroups, then 
all its central factors are necessarily finitely generated. In [2], Hall asked 
whether there exist finitely generated soluble groups which do not satisfy 
the maximal condition for normal subgroups but all of whose central factors 
are finitely generated. We shall answer this question in the affirmative. We 
shall also construct a finitely generated group all of whose subnormal sub­
groups are perfect (and which therefore has no non-trivial central factors), 
but which does not satisfy the maximal condition for normal subgroups. 
Related to these examples is the question of which classes of finitely generated 
groups satisfy the maximal condition for normal subgroups. A characterization 
of such classes has been obtained by Hall, and we shall include his result as 
our first theorem. This, in turn, is related to our second theorem, which gives 
examples of classes of groups having unique maximal i^-closed subclasses. 
Before we can state either of these results, we must define R0. 

1.2. By a class 36 we mean a family of groups, which contains all groups 
of order 1, and which has the property that G Ç 36 and G\ = G together 
imply that G\ G 36. Given any class 36, we define another class R0% as follows: 

G G Ro%iî and only if G has a finite number of normal subgroups iVi, . . . , Nm 

whose intersection is 1 and G/Nt G 36 (i = 1, . . . , m). If 36 = Ro%, we say 
that 36 is i^o-closed. Then R0 is a closure operation in the sense of Hall [4, §§ 1-3]. 

It follows from Zorn's Lemma that every class 36 has one or more maximal 
J?o-closed subclasses. For let 36« be the class of all 36-groups of cardinal at most 
K«. Then the number of isomorphism classes of groups in 36a is a well-defined 
cardinal number so that Zorn's Lemma coupled with the fact that the union 
U\€A §)x of any nested system of i^o-closed classes g)x is again i^-closed, 
(A being a set), shows that every i^-closed subclass of 36« is contained in a 
maximal i^-closed subclass of 36«. Thus 3 = U« 3«> where 3<*+i is a maximal 
i^o-closed subclass of 36«+i containing £a

 a n d Su = U«<M 3« for a limit 
ordinal /x, is a maximal i£0-closed subclass of 36. 

Certain classes, however, contain a unique maximal i?0-closed subclass, 
and Hall's result states that the class © of all finitely generated groups gives 

Received November 18, 1968. 

176 

https://doi.org/10.4153/CJM-1970-021-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-021-x


GROUPS 177 

an example of this phenomenon. We shall adopt the notation of [2], and use 
max-n to denote the maximal condition for normal subgroups. 

THEOREM 1 (P. Hall). The class of finitely generated groups which satisfy 
max-n is the unique maximal Ro-closed subclass of @. 

1.3. We shall find other examples of classes which have a unique maximal 
i^o-closed subclass. If £ is any class, we say that 36 is Q-closed if every quotient 
of an £-group is in Ï, and we define the class %~Q of £ perfect groups by the 
condition that G £ H~Q if and only if G has no non-trivial quotients in 36. 

For example, if 91 is the class of abelian groups, then %~Q consists of all 
perfect groups. We shall denote by C% the class of all X~Q groups with no 
non-trivial central factors in 36, and we shall prove the following result. 

THEOREM 2. If 36 is any Q-closed class, then C% is the unique maximal R0-closed 
subclass of H~Q. 

1.4. The next result gives the example quoted at the beginning of this 
introduction. 

THEOREM 3. There is a finitely generated soluble group which does not satisfy 
max-n, but all of whose central factors are finitely generated. 

In view of Theorem 1, this has the following immediate corollary. 

COROLLARY. The class of finitely generated soluble groups, with all their central 
factors finitely generated, is not Ro-closed. 

A subgroup K is said to be subnormal in a group G if there is a finite chain 
of the form K = K0 <\ K\ < . . . <\ Kn = G. If 3£ is any class, we define an 
3£ pluperfect group G to be one all of whose subnormal subgroups are ï perfect; 
this implies that G Ç C .̂ A group will be called a Camm group if it is a finitely 
generated simple group containing an infinite cyclic subgroup; such groups 
have been constructed in [1]. Finally, a {Q, Sn}-closed class 36 is one with the 
property that every quotient, and every subnormal subgroup of an 36-group 
is in 36. With these definitions, we can state our last result. 

THEOREM 4. Let X be any {Q, Sn} -closed class, and suppose that 36 does not 
contain every Camm group. Then there is a finitely generated 36 pluperfect group 
which does not satisfy max-n. 

By taking 3£ to be the class of all abelian groups, we obtain the following 
result. 

COROLLARY. There exists a finitely generated group, all of whose subnormal 
subgroups are perfect, but which does not satisfy the maximal condition for 
normal subgroups. 

Another consequence of Theorem 4, in view of Theorem 1, is the following 
result. 
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COROLLARY. The class of finitely generated Ï pluperfect groups is not R0-closed. 

1.5. The classes X~Q and the class © are closed under the operations of 
taking extensions and quotients. In the notation of [4] this means that they 
are {E, Q}-closed. This prompts the question: Is there an {E, Q)-closed class 
which does not have a unique maximal inclosed subclass? 

We are very grateful to Professor P. Hall for permission to include 
Theorem 1. 

2. Proof of Theorem 1. In showing that a class 3c is jRo-closed, it is clearly 
sufficient to suppose that H and K are normal subgroups of G such that 
H Pi K = 1, G/H G $, and G/K G £, and to prove that G G X. 

LEMMA 2.1. The class of all groups satisfying max-n is Ro-closed. 

Proof. Let H and K be two normal subgroups of G such that G/H and G/K 
both satisfy max-n, and H C\ K = 1, and suppose that Mi S M2 ^ M% ^ . . . 
is an ascending chain of normal subgroups of G. Since G/H satisfies max-n, 
there is an integer i such that MtH = Mi+rH for all r > 0. Similarly, 

(Mj r\ H)K = (Mj+r H H)K 

for some j and all r > 0 ; then the fact that K P\ H = 1 implies that M3 C\ H = 
Mj+T r\ H. Thus Mk = Mk+r for all r > 0, where k = max (i,j). 

LEMMA 2.2. The class of finitely generated groups satisfying max-n is Ro-closed. 

Proof. Suppose that G/H and G/K are both finitely generated and satisfy 
max-n, and assume that H C\ K = 1. Lemma 2.1 shows that G satisfies 
max-n, and hence it is sufficient to prove that G G ©. Since G/H and G/K 
are both finitely generated, there exists a finitely generated subgroup L of G 
such that G = LH = LK. Also G satisfies max-n, and thus H = (aiG,. .. , an

G), 
where n is a finite integer, and &i, . . . , an are suitably chosen elements of H. 
But [H, K] = 1, and it follows that H = (a^, . . . , an

L). Thus 

G = (L, ai, . . . , On) G ®, 
as required. 

We can now prove Theorem 1. Because of Lemma 2.2, we have only to 
show that if X = î 03£ ^ ©, then every 36-group satisfies max-n. Suppose, on 
the contrary, that there is an ï-group G containing a normal subgroup K 
which cannot be generated by a finite number of conjugacy classes of G. 
Let D = Gi X G2 be the direct product of two copies G\ and G2 of G, and let 
G* = {(a, a): a G G} be the diagonal subgroup of D. If i£x and K2 are the 
normal subgroups of Gi and G2 which correspond to K in G, then 
KxG* = i£2G* = H, say, and K1C\K2 = 1. Also i l /Xx ^ iJ/.K2 ^ G* ^ G, 
and hence if G Ro£. 
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Since 3E ̂  ©, we have H = (xi, . . . , xm), where m is finite and Xi, . . . , xm 

are suitable elements of H. Also G* G ©, and thus G* = (3/1, . . . , yn), where 
n is finite, and yi, . . . , yn are suitable elements of G*. Now if = KiG*, and 
thus we can write xt = utVi with #* Ç Z"i and z/* Ç G* (i = 1, . . . , m). 
Hence H = (uh . . . , um, yh . . . , yn). Since i£i < if and Xi H G* = 1, it 
follows that Kx = {uiG , . . . , um

G*), or equivalently Z i = (^iGl, . . . , um
Gl). 

This contradicts the hypothesis that K is not generated by a finite number of 
conjugacy classes of G, and thus completes the proof of Theorem 1. 

3. Proof of Theorem 2. If G is any group, we write (G) for the class 
consisting of all groups isomorphic to G, together with all groups of order 1. 

LEMMA 3..1. IfGis any group, then every central factor of G occurs as a quotient 
of some group in the class Ro(G). 

Proof. Let D = Gi X G2 be the direct product of two copies Gi and G2 of 
G, and let G* = {(a, a) : a Ç G} be the diagonal subgroup of D. Suppose 
that L/M is any central factor of G, and let Li, Mi and L2, M2 be the subgroups 
of Gi and G2 corresponding to L, M in G. Then LiG* = L2G* = R say, and 
Li and L2 are normal subgroups of R with i?/Li ^ i?/L2 = G* •— G. Also 
Li H L2 = 1, so that 2? G i?o(G). 

Since L/M is a central factor of G, we have [L*, R] ^ Af *, i = 1,2. This 
implies that MiG* = M2G* = 5, say, is normal in R) further, 

R/S ^ Lt/M! ^ L2 /M2 . 

Thus L/M is a homomorphic image of R and Lemma 3.1 is proved. 

LEMMA 3.2. If 3É w a?ry Q-closed class, then C% = i^oC*. 

Proof. Let G/H and G/.K be C^-groups, with H C\ K = 1, and suppose 
that L/ilf is a central factor of G, and that L/M 6 ï . Then 

L/M(L n<H) = I / ( L H Mff) ^ LH/MH, 

so that LH/MH is a central factor of G/jfi, and also an X-group. Therefore 
L = M(L H H). 

Again ilf (L H H ) / M È ( L H H ) / ( M H H) ^ (L C\ H)K/(M H JET)iT; 
this latter group is a central factor of G/X and at the same time a member of 
Ï . Hence Jfcf (L H if ) = ikf, and hence L = M(L H H) = M. Thus G has 
no non-trivial central factors in 36. 

To prove the lemma, it is now sufficient to show that G £ 3£_Q. Suppose 
that N < G and G/iV G ï . Then G/iVif and G/iVZ are both ^-groups, and 
hence NH = NK = G. Therefore [G, fT] = [NK, H] = [JV, i l ] , and thus 
-ff/[iV, if] is a central factor of G. Since [iV, if] ^ N f\ H, this implies that 
H/(N C\H) is also a central factor of G; but G/N 9^ H/(H C\ N), and it 
follows that G/N is a central factor of G, and at the same time an ï-group. 
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We have already shown that G has no non-trivial central factors in £, and 
we can therefore deduce that G = N. The proof of Lemma 3.2 is now complete. 

These lemmas enable us to prove Theorem 2. By Lemma 3.2, C% = RoC%. 
On the other hand, if G has a non-trivial central factor in £, then Lemma 3.1 
shows that we can find a group in R0(G) which has a non-trivial quotient in 
X. Thus R0(G) $ X~Q, and Theorem 2 follows. 

4. Proof of Theorem 3. The technique used in constructing the group 
needed for the proof of Theorem 3 comes from [2] ; as in that paper, we shall 
abbreviate the maximal condition for subgroups to max. 

Let r be a soluble group satisfying max-n but not max; for instance, we 
could take the wreath product of two infinite cyclic groups. (T is necessarily 
finitely generated.) Let C be a cyclic group of order p and consider the standard 
wreath product W = CI V. If Fp is the field of p elements, and R is the group 
algebra of T over Fp, then W may be regarded as the split extension of the 
additive group of R by T, with the elements of V acting on R as right 
multipliers. Then the right ideals of R coincide with the normal subgroups 
of W contained in R. Hence W satisfies max-n if and only if R satisfies the 
maximal condition for right ideals. 

With every subgroup H of I\ we associate a right ideal 

H* = (Qi - 1)2?: h £ H) 

of R. If S — {Siy ^2) • • '\ is a transversal to H in T, then H* has 

{(ft - l)s: 1 5* h e H, se S} 

as an additive basis; for if 

52 ^ijihij — l)st = 0, 
ij 

where X^ G FP, htj G H, and htj 7e- hik whenever j 9^ k, then the definition 
of S implies that 

£ x„(&fi - l) = 0 

for all i, and this in turn implies that X^ = 0 for all i and j . 
Suppose that Hi < H2 ^ I\ and let Hi* and H2* be the corresponding 

right ideals of R. If h G H2 and h & Hh then h - 1 G H2* but h - 1 g Hi* 
since a transversal to Hi in H2 forms part of an additive basis of Hi*. Thus 
if r does not satisfy max, then R does not satisfy the maximal condition for 
right ideals, so that W does not satisfy max-n. 

Now let p be an odd prime, and write D for the additive group of R. Since 
D is abelian, it admits an automorphism t of order 2 which maps every element 
of D to its inverse. We take T = (t) .T may also be considered as a subgroup 
of the group of automorphisms of D and when this is done, V C\ T = 1. 
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Moreover, if £ 6 T, then £~H~lty acts as the identity automorphism, and thus 
r and T generate a group isomorphic to the direct product TXT. 

Every subgroup of D is invariant under T. Since W does not satisfy max-n, 
this implies that the group G = DVT does not satisfy max-n either. It is 
also clear that G is soluble. It remains to show that if L/M is a central factor 
of G, then L/M is finitely generated. 

Using the definition of t, we have: 

L r\ D = [L r\ D, T] ^ [L, r] r\ [D, T] ^ M r\ D ^ L n D, 

and thus LC\D = M C\D. Since 

(L C\ DM)/M È ( i n D)M/M ^ ( L H Z>)/(M H £>), 

it follows that L Pi Z>7kf = M. Hence 

L / M = L / ( i n DM) ^ LD/MD 

which is a central factor of G/Z>; but G/D is isomorphic to TT which satisfies 
max-n since T satisfies max-n by hypothesis. 

Hence L/M is finitely generated, as required. 

5. Proof of Theorem 4. The construction which follows is an elaboration 
of that used to prove [3, Theorem 7]. Let if be a Camm group with H $ X, 
and for each positive integer i, take a group Ht isomorphic to H, and an 
isomorphism from H onto Ht. If h G H, we write ht for the image of h under 
this isomorphism. We regard Hi, H2, . . . as permutation groups by taking 
their regular representations, and we define W to be the wreath product 
Hi l H2 \ . . . . Using the notation of [5], this is Wr Hu i Ç A, where A is the 
set of positive integers in their natural order. 

Let K be another isomorphic copy of H} and consider the standard complete 
wreath product W l~ K. Our notation for this will be as follows. We write 
E for the group of all unrestricted functions from K into W, with the 
multiplication of two elements/, g G E given by (fg)(x) = f(x)g(x), x G K. 
Then W \~ K is a split extension of E by K, where the automorphism of E 
induced by an element y Ç K is defined by 

f(x) = / t o " 1 ) , feE,x£K. 

Since K is a Camm group, it contains an infinite cyclic subgroup (t)\ we 
fix t for the rest of the argument. Corresponding to each element h £ H, 
we define a function h Ç E by 

( l otherwise, 
and we take 

S = {h: h 6 H). 

It is easy to verify that the map h —> h (h £ H) is an isomorphism from 
H onto H. We shall show that the subgroup G of W\~ K generated by H 
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and K satisfies the conditions of Theorem 4. We note immediately that 
G G ®, since H and K are both finitely generated. 

We take C = G C\ E, and we use D to denote the subgroup of E formed 
by the restricted functions from K to W; in other words, / G D if and only if 
{%: f(x) 9^ 1} is finite. 

LEMMA 5.1 D S C. 

Proof. If u G W, we can define a function /M Ç D by 

r , \ _ Ju if # = 1, 
M*; - ^ otherwise< 

Then the map u—>fu (u G W) is an isomorphism from T7 into D, and we 
identify W with its image under this isomorphism. Clearly, D is generated 
by the conjugates Wv (y G K) of Wy and it is therefore sufficient to show that 
W S C. 

Suppose that A G H and n ^ 1, and let / = t2nht~2n and g = t2n+1 ht~2n+1. 
Then / G C and g G C and we have: 

A, if* = J*"2* (i ^ 1), 
fix) = 

JK U otherwise, 

K*) {j-
if X = t ( j ^ 1), 
otherwise. 

We look for elements x f l for which fix) ^ 1 y£ g(x). Any such element 
arises from positive integers i and j such that 2* — 2W = 2 ; — 2n+1, or 
equivalently 2j — 2l = 2W+1 — 2W. The only solution of this equation is 
given by i = n and j = n + 1, which corresponds to the case when x = 1. 
It follows that the values of the function [/, g] are given by 

rf J U _ ) [hn, K+i] if x = 1, 
L / , ^ J W l l otherwise. 

This is the function which we have identified with the element [hn, hn+i] of 
W, and thus A»"1*»*»-»-1 = [An> A„+i] G C for all A G ̂  and all » è 1. 

Suppose that h, k £ H and » M . Then the commutator 

L'% ri/n > Kn Kn J 

lies in C, since each of its components does. These components also lie in the 
subgroup Hn \ Hn+i of W. Now the normal closure of Hn in Hn \ Hn+i is the 
direct product of the conjugates Hn

z (z G Hn+i). Thus hn~
l and kn~

l are in 
the same direct factor, but if A and k are distinct and non-trivial, then hn

hn+1 

and kn
kn+1 lie in different direct factors. Hence 

\jln lln , Kn Kn J = = [/% , /% J = [lî , AG J w , 

where A and & are arbitrary distinct non-trivial elements of H. Therefore 
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Hn = Hn ^ C. This holds for all positive integers n, and hence W ^ C, 
as required. 

Using Lemma 5.1, we can show that G does not satisfy max-n. For each 
i ^ 1 we define Bt and B t to be the normal closures ol Hil H2l . . . I Ht in 
W and W l~ K, respectively. It is clear from the result in [5] that 
Bi < B2 < . . . is a strictly ascending chain of normal subgroups of W. 
Moreover, if i ^ 1, then Bt is the direct product of the groups Bt

v (y £ K), 
and thus B\ < 5 2 < . . . is a strictly ascending chain of normal subgroups 
of W \~ K. Since each group Bt is contained in D, it follows from Lemma 5.1 
that G does not satisfy max-n. 

LEMMA 5.2. G/D ^ H I K . 

Proof. Since DH/D ~ H ~ H, it is sufficient to show that the normal 
closure of DH/D in G/D is the direct product of the groups DHV/D (y Ç K)\ 
but H is simple, and thus we can do this by supposing that y £ K,y j* 1, and 
proving that DH/D commutes elementwise with DHV/D. Thus what we must 
verify is that [h, kv] G D whenever h, k Ç H. 

Now all the elements x G K with h{x) ^ 1 lie in (/), whereas the elements 
with ky(x) 5* 1 lie in the coset (t)y. If y g (*), this implies that [h, ky] = 1. 
If y Ç (t), then an argument like that used in the proof of Lemma 5.1 shows 
that there is at most one element x £ K such that h(x) ^ 1 ^ kv(x). This 
implies that [h, ky] 6 D, and thus proves Lemma 5.2. 

LEMMA 5.3. / / H is {Q, Sn}-closed and H (I 36, then W is 36 pluperfect. 

Proof. Suppose that U is a subnormal subgroup of W, and that U/ V is a 
non-trivial quotient of £7 lying in 3£. Since 

it follows that if -Bo = 1, then 

v = (ur\BQ)v =~ (censor = ... 
is an ascending chain whose union is U. Since V < U, there must be some 
* = 0 s u c h t h a t ( C / n i 3 < ) V r < (Un Bi+1)V.Then (UC\ Bi+1)V/(U(^ Bt)V 
is a quotient of a normal subgroup of U/V, and hence is a non-trivial 36-group. 
However, it is isomorphic to (Bi+i P\ U)Bi/(Bi+i P\ F)-Bi which is a quotient 
of a subnormal subgroup of Bi+1/Bt. This latter group is a direct product of 
conjugates of BiHi+1/Bu which are all isomorphic to the simple group H. 
Hence (U C\ Bi+\)V/ (U C\ Bt)V is isomorphic to a direct product of copies 
of H. Since it is also a non-trivial 3t-group, while H (? X by hypothesis, this 
gives a contradiction, which is sufficient to prove Lemma 5.3. 

We are now ready to complete the proof of Theorem 4; the only fact left 
to prove is that G is 36 pluperfect. We suppose, by way of contradiction, that 
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L is a subnormal subgroup of G, and that L/M is a non-trivial quotient of 
L lying in 3£. Then 

(*) M ^ (LC\D)M S (LC\C)M S L and M<L 

so that at least one of these inclusions is proper. 
Assume first that M < (L C\ D)M, and suppose that the elements of the 

countable group K are x\, x2, . . . . For each i ^ 1, we define 

Nt = (Wxi, . . . , W**), 

and we take No to be 1. Then 1 = No ^ Ni ^ . . . is an ascending chain 
of subgroups of D such that Uzœ=i Nt = D. 

Hence M = (L P No)M ^ (L Pi iVi)Af ^ . . . is an ascending chain of 
subgroups of L whose union is (L P\ D)M. We can therefore find a number i 
such that (L C\ Nf)M < ( L H Ni+1)M. Then (L H Ni+1)M/{L Pi iV,)ikT is 
a quotient of a subnormal subgroup of L/M, and hence is a non-trivial 
ï-group. On the other hand, it is isomorphic to (Ni+i P\ L)NJ {Ni+i C\ M)Nt 

which is a quotient of a subnormal subgroup of Ni+i/Ni. This latter group is 
isomorphic to W, and hence we have a contradiction to Lemma 5.3. 

Suppose next that (L Pi D)M < (L P C)M. Then (L P C)M/(L P 2?)M 
is a non-trivial quotient of a normal subgroup of L / M and is therefore an 
ï-group. Moreover, 

(LC\ C)M/(LC\D)M^ {Cr\L)D/(CC\M)D 

which is a quotient of a subnormal subgroup of C/D\ but Lemma 5.2 implies 
that C/D is a direct product of copies of H, so that we obtain a contradiction 
as before. 

The final possibility allowed by (*) is that L P CM = (L P C)M < L. 
Then L/(L P CM) is a non-trivial ï-group, and is also isomorphic to CL/CM 
which is a quotient of a subnormal subgroup of G/C. Since G/C is isomorphic 
to the simple group K, we conclude that L/ (L P CM) ^ X. But K ^ H, 
and H ^ Hby hypothesis. This contradiction completes the proof of Theorem 4. 
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