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Abstract For a subset E ⊆ R
d and x ∈ R

d, the local Hausdorff dimension function of E at x is defined
by

dimloc(x, E) = lim
r↘0

dim(E ∩ B(x, r)),

where ‘dim’ denotes the Hausdorff dimension. Using some of our earlier results on so-called multifractal
divergence points we give a short proof of the following result: any continuous function f : R

d → [0, d]
is the local dimension function of some set E ⊆ R

d. In fact, our result also provides information about
the rate at which the dimension dim(E ∩ B(x, r)) converges to f(x) as r ↘ 0.
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1. Introduction and statement of results

For a subset E ⊆ R
d and x ∈ R

d, we define the local Hausdorff dimension function of E

at x by
dimloc(x, E) = lim

r↘0
dim(E ∩ B(x, r)),

where ‘dim’ denotes the Hausdorff dimension. The local packing dimension function of
E at x is defined similarly, i.e. by

Dimloc(x, E) = lim
r↘0

Dim(E ∩ B(x, r)),

where ‘Dim’ denotes the packing dimension. The reader is referred to [2] for the definitions
of the Hausdorff and the packing dimensions. The local Hausdorff dimension function
of a set has recently found several applications in fractal geometry and information
theory (cf. [3, 8]). The purpose of this paper is to apply the results from [4–7] on so-
called multifractal divergence points to give a short proof of the fact that any continuous
function f : R

d → [0, d] is the local dimension function of some set E ⊆ R
d. In fact, our

result also provides information about the rate at which the dimensions dim(E ∩B(x, r))
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and Dim(E ∩ B(x, r)) converge to f(x) as r ↘ 0 (see (1.1) below). For an arbitrary
function f : R

d → R and x ∈ R
d, we let

ωf (x, r) = sup
x1,x2∈B(x,r)

|f(x1) − f(x2)|

denote the modulus of continuity of f at x, and observe that f is continuous at x if and
only if ωf (x, r) → 0 as r ↘ 0.

Theorem 1.1. Let f : R
d → [0, d] be an arbitrary function. Then there exists a set

E ⊆ R
d such that

|f(x) − dim(E ∩ B(x, r))| � ωf (x, r),

|f(x) − Dim(E ∩ B(x, r))| � ωf (x, r),

}
(1.1)

for all x ∈ R
d and all r > 0. In particular, if f is continuous, then

f(x) = dimloc(x, E) = Dimloc(x, E)

for all x ∈ R
d.

It is not difficult to construct discontinuous local dimension functions. Indeed, let C ⊆
R denote the classical ternary Cantor set. If we define f : R → [0, 1] by f(x) = dimC =
log 2/ log 3 for x ∈ C and f(x) = 0 for x �∈ C, then clearly f(x) = dimloc(x, C) for all
x ∈ R. On the other hand, there exist very simple discontinuous functions f : R → [0, 1]
that are not local dimension functions of any sets E ⊆ R. For example, the function
f : R → [0, 1] defined by f(x) = 0 for x �= 0 and f(0) = 1 is easily seen not to be
the local dimension function of any set E ⊆ R. This observation leads to the following
question.

Question 1.2. Find a characterization of those functions f : R
d → [0, d] for which

there exists a set E ⊆ R
d such that f(x) = dimloc(x, E) for all x ∈ R

d.

The proof of Theorem 1.1 is given in § 2. However, before proving Theorem 1.1, we will
indicate why the theory of divergence points is essential in the proof of Theorem 1.1. For
x ∈ R, let [x] denote the integer part of x and write

x = [x] +
∞∑

n=1

dn(x)
2n

for the unique non-terminating binary expansion of x. For a digit j ∈ {0, 1} and a positive
integer n write

Πj(x; n) =
|{1 � i � n | di(x) = j}|

n

for the frequency of the digit j among the first n binary digits of x. A real number x

is called a divergence point if there exists at least one digit j such that the limiting
frequency limn Πj(x; n) does not exist, and multifractal analysis of divergence points
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refers to the study of the Hausdorff and packing dimensions of various sets of divergence
points. For t � 0, we write

∆(t) = {(xk)k ∈ R
d | lim

n
Π0(xk; n) = t for all k}. (1.2)

Next, let h : [0, 1] → [0, d] denote the (entropy) function

h(t) = − d

log 2
(t log t + (1 − t) log(1 − t)).

Observe that h is strictly increasing on [0, 1
2 ], and therefore has an inverse h−1 : [0, d] →

[0, 1
2 ]. For a given function f : R

d → [0, d], we now define the set E by

E =
⋃

0�t�d

(∆(h−1(t)) ∩ {t � f}), (1.3)

and claim that |f(x) − dim(E ∩ B(x, r))| � ωf (x, r) and |f(x) − Dim(E ∩ B(x, r))| �
ωf (x, r) for all x ∈ R

d and all r > 0. To prove this claim we must show that m(x, r) �
dim(E ∩ B(x, r)) and that Dim(E ∩ B(x, r)) � M(x, r), where m(x, r) = infy∈B(x,r)f(y)
and M(x, r) = supy∈B(x,r)f(y). The first inequality is proved in § 2 without any reference
to divergence points. However, the theory of divergence points play a crucial role in the
proof of the second inequality. Indeed, we first show that (the details are given in § 2)

Dim(E ∩ B(x, r)) � Dim
( ⋃

0�t�M(x,r)

∆(h−1(t))
)

. (1.4)

Also, it follows without too much effort from (the packing dimension version of) a classical
result due the Besicovith and Eggleston (cf. [1, p. 139]) that Dim∆(t) = h(t) (the details
are given in § 2), whence

sup
0�t�M(x,r)

Dim ∆(h−1(t)) = sup
0�t�M(x,r)

h(h−1(t)) = M(x, r). (1.5)

Ideally, we would now like to combine (1.4) and (1.5) to obtain the following string of
(in)equalities,

Dim(E ∩ B(x, r)) � Dim
( ⋃

0�t�M(x,r)

∆(h−1(t))
)

= sup
0�t�M(x,r)

Dim ∆(h−1(t))

= M(x, r). (1.6)

However, the argument leading from (1.4) and (1.5) to (1.6) requires that the following
equality holds for all u � 0:

Dim
( ⋃

0�t�u

∆(t)
)

= sup
0�t�u

Dim ∆(t). (1.7)
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Unfortunately, since the packing dimension is not uncountable stable, it is not clear that
equality (1.7) holds. The key result that allows us to prove (1.7) is based on the methods
and techniques from multifractal analysis of divergence points developed in [4–7]. The
details of this argument are presented in § 2.

2. Proof of Theorem 1.1

Theorem 2.1 below is proved in [5] using methods and techniques from [4,6,7] on mul-
tifractal divergence points, and gives the Hausdorff and packing dimensions of some sets
of d-tuples of numbers defined by their N -adic expansion. Theorem 2.1 is the key result
needed to justify equality (1.7) in the proof of Theorem 1.1.

We first introduce some notation. Fix a positive integer N � 2. For x ∈ R, recall that
[x] denotes the integer part of x and write

x = [x] +
∞∑

n=1

dN,n(x)
Nn

for the unique non-terminating N -adic expansion of x. For a digit j ∈ {0, 1, . . . , N − 1}
and a positive integer n write

ΠN,j(x; n) =
|{1 � i � n | dN,i(x) = j}|

n

for the frequency of the digit j among the first n of the N -adic digits of x. Also, let

∆N =
{

(pj)j=0,1,...,N−1

∣∣∣∣ pj � 0,
∑

j

pj = 1
}

denote the family of probability vectors in R
N , and define H : ∆N → R by

H(p) = −
∑

j pj log pj

log N

for p = (pj)j ∈ ∆N . Finally, for a sequence (xn)n in a metric space X, we let A(xn)
denote the set of accumulation points of the sequence (xn)n, i.e.

A(xn) = {x ∈ X | there exists a subsequence (xnk
)k such that xnk

→ x}.

Theorem 2.1. Let Λ ⊆ {1, . . . , d} × {0, 1, . . . , N − 1} and write

Γ =

{
(pk,j)(k,j)∈Λ

∣∣∣∣∣ pk,j � 0,
∑

j
(k,j)∈Λ

pk,j � 1 for all k

}
.

For p = (pk,j)(k,j)∈Λ ∈ Γ define uk(p) = (uk,j(p))j ∈ ∆N by

uk,j(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pk,j , for (k, j) ∈ Λ,(
1 −

∑
i

(k,i)∈Λ

pk,i

)/ ∑
i

(k,i) �∈Λ

1, for (k, j) �∈ Λ.

https://doi.org/10.1017/S0013091503000798 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000798


Local dimension functions of subsets of R
d 217

If C ⊆ Γ is closed and convex, then

dim{(xk)k ∈ R
d | A((ΠN,j(xk; n))(k,j)∈Λ) ⊆ C}

= Dim{(xk)k ∈ R
d | A((ΠN,j(xk; n))(k,j)∈Λ) ⊆ C}

= sup
p∈C

(H(u1(p)) + · · · + H(ud(p))).

Proof of Theorem 1.1. We can now prove Theorem 1.1. Let the sets ∆(t) and E

be defined as in (1.2) and (1.3), respectively. Recall that

m(x, r) = inf
y∈B(x,r)

f(y),

M(x, r) = sup
y∈B(x,r)

f(y),

for x ∈ R
d and r > 0.

Claim 2.2. We have
Dim(E ∩ B(x, r)) � M(x, r).

Proof of Claim 2.2. Write I = [0, h−1(M(x, r))]. First observe that

E ∩ B(x, r) =
⋃

0�t�d

(∆(h−1(t)) ∩ {t � f}) ∩ B(x, r)

=
⋃

0�t�M(x,r)

(∆(h−1(t)) ∩ {t � f}) ∩ B(x, r)

⊆
⋃

0�t�M(x,r)

∆(h−1(t))

⊆ {(xk)k ∈ R
d | A((Π0(xk; n))k) ⊆ Id}.

Hence
Dim(E ∩ B(x, r)) � Dim{(xk)k ∈ R

d | A((Π0(xk; n))k) ⊆ Id}. (2.1)

Next, observe that Theorem 2.1 with N = 2, Λ = {(1, 0), . . . , (d, 0)} and C = Id implies
that

Dim{(xk)k ∈ R
d | A((Π0(xk; n))k) ⊆ Id} � sup

(pk)k∈Id

(H(p1, 1 − p1) + · · · + H(pd, 1 − pd))

= sup
(pk)k∈Id

1
d
(h(p1) + · · · + h(pd))

=
1
d
(h(h−1(M(x, r))) + · · · + h(h−1(M(x, r))))

= M(x, r). (2.2)

Combining (2.1) and (2.2) completes the proof of Claim 2.2. �
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Claim 2.3. We have
m(x, r) � dim(E ∩ B(x, r)).

Proof of Claim 2.3. We clearly have

dim(E ∩ B(x, r)) � dim(∆(h−1(m(x, r))) ∩ {m(x, r) � f} ∩ B(x, r))

= dim(∆(h−1(m(x, r))) ∩ B(x, r)). (2.3)

Next, observe that whether or not a number x belongs to ∆(t) only depends on the
limiting behaviour of the N -adic digits of x. It follows from this observation that
dim(∆(t) ∩ B(x, r)) = dim∆(t). We therefore conclude from (2.3) that

dim(E ∩ B(x, r)) � dim ∆(h−1(m(x, r))). (2.4)

Again, observe that Theorem 2.1 with N = 2, Λ = {(1, 0), . . . , (d, 0)} and C = {(t, . . . , t)}
implies that

dim ∆(t) = sup
(pk)k∈{(t,...,t)}

(H(p1, 1 − p1) + · · · + H(pd, 1 − pd))

=
1
d
(h(t) + · · · + h(t))

= h(t). (2.5)

Finally, combining (2.4) and (2.5) yields

dim(E ∩ B(x, r)) � h(h−1(m(x, r))) = m(x, r).

This completes the proof of Claim 2.3. �

Since dimA � Dim A for all A ⊆ R
d, Theorem 1.1 follows immediately from Claim 2.2

and Claim 2.3. This completes the proof of Theorem 1.1. �
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