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ASYMPTOTIC VALUES ALONG JULIA RAYS 

P. M. GAUTHIER AND J. S. HWANG 

L e t / be a function meromorphic in the finite complex plane C. If for some 
number 6, 0 ^ 6 < 2w, the family, fr(z) = f(rei9z), is not normal at 2= 1, 
then the ray arg z = 6 is called a Julia ray. Such a ray has the property that 
in every sector containing it, / assumes every value infinitely often with at 
most two exceptions. Many authors have taken this property as the definition 
of a Julia ray. 

A function / is said to have an asymptotic value w along an unbounded set F 
if f{z) tends to w a s z tends to infinity along F; F is called an asymptotic set 
for/. 

Consider now the following three problems: 

(i) Can an entire function have one exceptional finite value for one Julia ray 
and another exceptional finite value for another Julia ray? 

(ii) Can an entire function have one finite asymptotic value along one 
Julia ray and another finite asymptotic value along another Julia ray? 

(iii) Can a meromorphic function have one exceptional and asymptotic 
value along one Julia ray and another exceptional and asymptotic value 
along another Julia ray? 

Problem (i) was posed by C. Rényi (see [4, p. 10]) and solved by K. F. Barth 
and W. J. Schneider [4]. In this note we solve the related problems (ii) and 
(Hi). 

Let A (F) denote as usual the set of functions continuous on F and holo-
morphic on the interior F°. A closed set . F C C is called a set of asymptotic 
approximation (see [5]) if for each g G A (F) there is an entire function/ such 
that 

x(/(z), g(*0) -* 0, as z -> oo on F, 

where % denotes the chordal metric on the closed plane C* = C U {oo }. 

THEOREM. (Arakelian [1]). A closed set F C C is a set of asymptotic approxi­
mation if and only if C*\F is connected and locally connected. 

We shall call an unbounded closed set F a strong Julia set for an entire func­
tion/provided for every sequence {fn} tending to oo on F, the family fn(z) = 
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/ ( f nz) is not normal a t z = 1. Any ray whose intersection with F is unbounded 
must be a Julia ray. The following shows tha t without further restrictions, this 
notion is uninteresting. 

COROLLARY. Every unbounded closed set is a strong Julia set for some entire 
function. 

We could easily prove this from Arakelian's theorem, however this is un­
necessary. I t w^as shown in [7] tha t C is itself a strong Julia set, and the 
proper ty is clearly hereditary. 

When we take our closed set to be C in the corollary, we have an entire 
function for which every unbounded curve is a Julia curve. Faced with such 
pathology (or equidistribution if we're optimistic) we are remined of W. Gross' 
example [8] of a meromorphic function / which maps every unbounded curve 
onto a dense subset of the plane. Such curves are called Weierstrass curves or 
curves of total indétermination for / . 

These two phenomena, though similar, are fundamentally different. If F is 
a Jul ia set for / , then every value (with perhaps two exceptions) is assumed 
infinitely often near F; whereas if F is a Weierstrass set, every value is merely 
approached, but on F itself. I t is because of this difference tha t a Julia ray can 
also be an asymptot ic ray as in problems (ii) and (iii). 

Anti thetically to Weierstrass behaviour, an unbounded closed set F is called 
a set of non-uniqueness if there is a transcendental entire function with zero 
(or finite) asymptot ic value along F. 

T H E O R E M 1. A closed set is a set of non-uniqueness if and only if it is contained 
in a proper set of asymptotic approximation. 

For details we refer to [5] where a similar result is proved for the disc ra ther 
than for C. Since the difficulties are purely topological (by Arakelian's theorem), 
the arguments carry over. 

We consider now those Julia sets which are sets of non-uniqueness and hence 
are very far from being Weierstrass sets. 

T H E O R E M 2. Let F be an unbounded set of asymptotic approximation. Fhenfor 
each g G A (F), there is an entire f such that x(f(z), g(z)) ~~* 0> as z —> co on F, 
and such that dF is a strong Julia set for f. 

In particular, the answer to Problem (ii) is affirmative. In fact, we have the 
following: 

COROLLARY. Suppose S is a set of first category on [0, 2ir] and v is a continuous 
complex-valued function on [0, 2ir] (with v(0) = v(2w)). Fhen there is an entire 
function f such that for each 6 £ S, arg z — 6 is an asymptotic Julia ray for f 
with asymptotic value v(d). 

Proof of Corollary. We may assume: 5 = U ^ A , where each Sn is closed and 
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nowhere dense. We set 

Fn = {reie : r ^ n, 0 £ Sn}, 

and 

F = U Fn. 
7 1 = 1 

Also set g(reie) = v(6), reie £ F. The corollary now follows directly from the 
theorem. 

The corollary is in some sense best possible, for if 5 is not of first category, 
and / has asymptot ic value zero on each ray arg z = 6, 6 £ S, then we may 
write 

oo 

s = u s», 
n = l 

where 

5 „ = {8 £ S: \f(re«)\ g l , r ^ n\. 

Since 6* is of second category, Sn is dense in an interval \6U 02] for some n. T h u s 
/ is bounded in the sector B\ S arg z S 62, and hence has no Julia rays in 
this sector. 

Proof of Theorem 2. Choose sets PCF and Q C (C\F) discrete bu t so 
" th i ck" tha t for each sequence {fn} tending to co on dF, 

(1) dG- n- ip , l ) - » 0 and ^ ^ , 1 ) ^ 0 , 

where d denotes Euclidean distance. Set F = F \J Q. For each q (z Q, let p(q) 
be a point of P a t minimal distance from q. Now extend g to a function f on F 
by sett ing 

(2) 2(g) = g(p{q)) + 1, g G Ç -

Now F is a set of asymptot ic approximation. Hence there is an entire / 
such tha t 

(3) x ( / ( * ) , 2 ( z ) ) - > 0 , z - > o o o n £ 

Let {fn} be any sequence tending to 00 on dF. Then from (1), (2) and (3), 
the family fn(z) = f(Çnz) cannot be equicontinuous a t z = 1 and hence cannot 
be normal there. This completes the proof. 

Example. We shall now construct a function which resolves Problem (iii) 
in the affirmative. Indeed, we construct a meromorphic / which has 00 as an 
exceptional asymptot ic value on the Julia ray z > 0 and zero as exceptional 
asymptot ic value along the Julia ray z < 0. 

Firs t choose an entire function h whose zeros are precisely the sequence 

https://doi.org/10.4153/CJM-1976-121-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-121-1


JULIA RAYS 1213 

n + i, n = 1, 2, . . . , and set ^f(z) = h(z)/h( — z). By Arakelian's theorem 
there is an entire function <p with 

(4) 

(5) 

<?(x) - log 

<?(x) - log 

X 

* (x) | 

1 
| ^ (x )x | 

< 1, x ^ 1 and 

< 1, x ^ - 1 . 

Actually, we d idn ' t need the full s trength of Arakelian's theorem; Carleman's 
theorem [6] would have been sufficient. 

Now s e t / = e*^. From (4) and (5) it follows t h a t / tends to oo along z > 0 
and to zero along z < 0. S i n c e / has zeros close to the positive real axis and has 
poles close to the negative real axis, the argument invoked in the proof of 
Theorem 2 shows tha t both are Julia rays. S i n c e / has the same zeros and poles 
as SP", it is also obvious tha t oo is an exceptional value for the Julia ray arg z = 0 
and zero is exceptional for arg z = w. Thus / has all the properties required in 
Problem (iii). 

R e m a r k s a n d o p e n p r o b l e m s . 1) We have defined a Julia ray for / in such 
a way t h a t / has a "Picard t ype" behaviour in every sector about the ray. A 
stronger notion wrould replace sectors by parallel strips about the ray. This 
and even stronger types of Picard behaviour have been studied. The questions 
in this paper could be treated in these contexts also, and all of the techniques 
wrould carry over. 

2) Similarly we could successfully carry on this investigation in the uni t disc 
ra ther than on C. 

3) By looking a t sets of non-uniqueness, we have characterized those sets 
along which a transcendental entire function can have a finite asymptot ic 
value. Infinity is different because of the maximum modulus principle. There 
remains the following: 

Problem (iv). Characterize those sets along which a transcendental function 
can tend to oo. 

This problem natural ly breaks into four par ts depending on whether we are 
considering functions in the plane or in the disc and whether we are considering 
meromorphic or holomorphic functions. When considering the unit disc, re­
place the word " t ranscendenta l" by "non-constant" . 

The plane meromorphic case is solved by the following Runge theorem for 
closed sets. 

T H E O R E M (Roth [11]). Let F be any closed set in C. Then for each g holomorphic 
on F and. e > 0, there is an f meromorphic on C such that \f(z) — g(z)\ < e, 
z e F. 
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COROLLARY. Let F be a closed set in C with unbounded complement. Then there 

is a transcendental meromorphic function with asymptotic value GO along F. 

Proof. Let zn. —> GO outside of F and set g(z) = z on F and g(zn) = 0, 
n = 1, 2, . . . . By Roth ' s theorem, there is a m e r o m o r p h i c / with: 

| / (2) -g(z)\ < 1, ZG F U J Z ^ . ! 

T h u s / is the required function. 

The si tuation in the unit disc A is quite different. If / is to exist, we must 
surely insist t ha t A\.F has every point of the uni t circle dA as limit point. But 
even this is not enough. For we can construct such an F having the proper ty 
tha t for each eie in a set of positive measure on dA, F contains a Stolz angle 
with vertex a t eld. By a well-known uniqueness theorem [10, p. 72], a non-
constant meromorphic function cannot tend to a value as \z\ —» 1 along F. 
T h u s Problem (iv) is unresolved for meromorphic functions in the unit disc. 

For holomorphic functions, Problem (iv) becomes interesting when C\F is 
not connected, tha t is, when we cannot solve it trivially by approximat ion 
theorems as we did in the meromorphic case. We s ta te a var ian t of Problem 
(iv). 

Problem (v). Let G = C or A and let {Dn} be a sequence of disjoint discs in 
G, accumulat ing a t every point of the boundary of G. Set F = G\{Jn=\L>n. 
Characterize those sequences for which there is an / tending to GO on F. 

For t ranscendental meromorphic / o n C we have already solved the more 
general problem (iv). 

For e n t i r e / the problem is open, bu t we merely point out t ha t some sequences 
work and some don ' t . Take a cannonical product / whose zeros grow very 
quickly. Then if the Dn are centered on the zeros and shrink rapidly, / tends 
to co on F. This sequence works. 

Baker and Liverpool [3] have constructed a sequence of discs {Dn} whose 
union is a Picard set. From the definition of a Picard set, any / with three 
Picard exceptional values in F reduces to a constant . Hence this sequence 
won ' t work in Problem (v). 

From our discussion of Problem (iv), it is clear t ha t in the uni t disc A some 
sequences don ' t work for Problem (v) . 

In the uni t disc A some sequences do work for Problem (v) . Bagemihl, 
Erdôs , and Seidel [2] have constructed a function / holomorphic in A which 
tends to oo outside of a sequence of disjoint discs. 
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