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THE PSEUDOPOWER DICHOTOMY

TODD EISWORTH

Abstract. We investigate pseudopowers of singular cardinals and deduce some consequences for
covering numbers at singular cardinals of uncountable cofinality.

§1. Introduction.

1.1. Overview. We use pcf theory to establish some equalities between various
pseudopowers at a singular cardinal, and use these to derive some ZFC conclusions
in cardinal arithmetic. Our proofs rest on a principle we call the Pseudopower
Dichotomy. This generalization of Fact 1.9 on page 324 of [12] tells us that an
arbitrary singular cardinal falls into one of two classes: either it is a strong limit in a
very weak sense, or it is not. The majority of the paper is concerned with obtaining
results in pcf theory that will allow us to derive meaningful conclusions in both
situations.

Our main application of the dichotomy is a ZFC result about the behavior of
covering numbers at singular cardinals of uncountable cofinality. The result is
quite general, but a typical special case (in which the parameters are chosen for
amusement), tells us, for example, that if � is a singular cardinal of cofinality ℵ6,
then

cov(�, �,ℵ9,ℵ2) = cov(�, �,ℵ7,ℵ2) + cov(�, �,ℵ9,ℵ6). (1.1.1)

We1 will also use recent work of Gitik [5] on the Shelah Weak Hypothesis to provide
complementary consistency results, showing us that in many such equations both
terms on the right-hand side are required.

This equation (1.1.1) is unlikely to mean much to someone unfamiliar with
Shelah’s Cardinal Arithmetic [12], so our goal for the remainder of this introductory
section is lead a reader with a basic knowledge of pcf theory to the point where the
preceding paragraphs are understandable.
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1Although the parameters were chosen for amusement, they are not chosen randomly. We shall see

that this particular equation needs cf(�) to be less than ℵ� , and that the ℵ7 and ℵ6 appearing on the
right-hand side are cf(�)+ and cf(�), respectively.
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1.2. Basic pcf theory. So what do we consider to be “a basic knowledge of pcf
theory”? Certainly the material covered in Abraham and Magidor’s chapter [1] in the
Handbook of Set Theory [4] is more than enough. We use their work as a starting
point, and any notation that we neglect to define comes from their presentation.
The book [8] is an comprehensive account of the same material, and both Kojman’s
unpublished [9] and the classic paper of Burke and Magidor [2] provide ample
coverage of the background material as well. The author’s paper [3] also addresses
of some of the topics under consideration here. Most of the pcf material we need
has to do with properties of the ideals J<�[A] and associated pcf generators. More
precisely, we will need to use some results of Shelah showing that well-structured
sets of generators can be found in certain circumstances.

1.3. Covering numbers. Our equation (1.1.1) expresses an equality between
covering numbers at a singular cardinal. These covering numbers are cardinal
characteristics introduced by Shelah [12] in his analysis of cardinal arithmetic, and
they arise naturally when one considers structures of the form ([�]<κ,⊆). Indeed,
these covering numbers are a refinement of the idea of cofinality in such structures.

Definition 1.3.1. Suppose �, κ, �, and � are cardinals satisfying

2 ≤ � < � ≤ κ ≤ �. (1.3.1)

A �-cover of [�]<� in [�]<κ is a familyP ⊆ [�]<κ with the property that every member
of [�]<� can be covered by a union of fewer than � elements drawn from P , that is,

(∀X ∈ [�]<�)(∃Y ⊆ P)
[
|Y | < � and X ⊆

⋃
Y

]
. (1.3.2)

The covering number cov(�, κ, �, �) is defined to be the least cardinality of a �-cover
of [�]<� in [�]<κ.

We assume (1.3.1) in order to avoid uninteresting cases. Since it is clear that

cov(�, κ, �, 2) = cov(�, κ, �,ℵ0), (1.3.3)

we may as well assume that all four parameters are infinite cardinals. Note as well that
cov(�, κ+, κ+, 2) is just the cofinality of the structure ([�]κ,⊆), so covering numbers
refine this familiar notion. Section 5 of Chapter II in [12] contains a comprehensive
list of basic properties satisfied by covering numbers.

Our work in this paper focuses on covering numbers in which the first two
arguments are the same, so we take� equal to κ. Such covering numbers describe the
way in which [�]<� sits inside of [�]<�. This is interesting only in the case where � is
singular: if � is regular, then the initial segments of � will automatically cover [�]<�

so the covering number is just �. Furthermore, we assume � ≤ cf(�) < � to avoid
similar trivialities. Shelah has shown that general covering numbers can be computed
from those where the first two components are the same, so our restriction is done
without loss of generality. It is the behavior at singular cardinals that is important.

1.4. Pseudopowers. One of Shelah’s many surprising discoveries in cardinal
arithmetic is that covering numbers can often be computed using pcf theory, and
we exploit this link to obtain results like (1.1.1). The connection occurs through
pseudopowers of singular cardinals. Pseudopowers are best thought of as pcf-
theoretic versions of cardinal exponentiation. Computing a pseudopower at a
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singular cardinal � involves examining the cardinals that can be represented in
specific ways as the cofinality of reduced products of sets of regular cardinals cofinal
in �. The following definition and subsequent discussion fix our vocabulary.

Definition 1.4.1. Suppose � < � are cardinals with � singular and � regular. A
representation of � at � is a pair (A, J ) where:

• A is a progressive (that is, satisfying |A| < min(A)) cofinal subset of � ∩ Reg .
• J is an ideal on A extending the bounded ideal J bd[A].
• � is the true cofinality of the reduced product

∏
A/J , that is, there is a sequence

〈fα : α < �〉 in
∏
A such that

α < 	 < � =⇒ fα <J f	, (1.4.1)

and

(∀g ∈
∏
A)(∃α < �) [g <J fα] . (1.4.2)

We abbreviate this by writing � = tcf(
∏
A/J ).

• � = max pcf(A).

A cardinal � is representable at� if such a representation exists. More generally, given
cardinals � < � ≤ � with � regular, we say � is Γ(�, �)-representable at � if there is
a representation (A, J ) of � at � with |A| < � and �-complete ideal J.2 We say that
|A| is the size of the representation, and the completeness of the representation is
the completeness of the ideal J, that is, the least cardinal 
 such that 
 is not closed
under unions of size 
.

When speaking about Γ(�, �)-representability at a cardinal �, we will always
assume� ≤ cf(�) < � (as otherwise things degenerate), and that� and � are regular.
This is reminiscent of the assumption (1.3.1), and it will guarantee that the associated
pseudopowers obey some useful rules.

Moving on, we come to the actual definition of the pseudopower operation:

Definition 1.4.2. Suppose � is singular, and � ≤ cf(�) < � ≤ � with � and �
regular. We define

PPΓ(�,�)(�) := {� : � is Γ(�, �)-representable at �}, (1.4.3)

and the Γ(�, �)-pseudopower of �, ppΓ(�,�)(�), is defined by

ppΓ(�,�)(�) := sup PPΓ(�,�)(�). (1.4.4)

There are a few notational variants used in the literature, all due to Shelah. For
example,

pp�(�) := ppΓ(�+,ℵ0)(�) (1.4.5)

(so in this case we are computing the supremum of all cardinals that can be
represented at � using a set of size at most �), and

ppΓ(�)(�) = ppΓ((cf �)+,�)(�), (1.4.6)

2To highlight a point of potential confusion, note that � may be larger than ℵ1, so we are not using
“�-complete” as a synonym for “countably complete.”
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(which computes the supremum of the set of cardinals that can be represented at �
using a �-complete ideal on a set of size cf(�)). Finally, the pseudopowerpp(�)of�
is defined by

pp(�) := ppcf(�)(�). (1.4.7)

A little discussion may help the reader digest the preceding definitions. First, we
note the obvious monotonicity property: if � ≤ �′ < � ′ ≤ � are regular cardinals
and � is singular with cofinality in the interval [�′, � ′), then

PPΓ(�′,�′)(�) ⊆ PPΓ(�,�)(�). (1.4.8)

Given a singular cardinal �, a well-known theorem of Shelah on the existence of
scales at successors of singular cardinals provides us with a cofinal subset A of
� ∩ Reg such that

• |A| = cf(�) and
• tcf(

∏
A/Jbd[A]) = �+, where Jbd[A] is the bounded ideal on A.

The bounded ideal is trivially cf(�)-complete, so this means that �+ is Γ(cf(�))-
representable, and then an appeal to (1.4.8) shows us that in fact �+ is Γ(�, �)-
representable at � for all relevant � and �. Thus, ppΓ(�,�)(�) is always at least �+.

Lying a little deeper is a result of Shelah that PPΓ(�,�)(�) consists of an interval of
regular cardinals, that is,

� ∈ PPΓ(�,�)(�) =⇒ [�+, �] ∩ Reg ⊆ PPΓ(�,�)(�). (1.4.9)

This is known as the No Holes Conclusion (see 2.3 in Chapter II of [12]).
The interval of regular cardinals PPΓ(�,�)(�) enjoys some nice closure properties:

if A is a subset of PPΓ(�,�)(�) of cardinality less than �, then

pcf�–com(A) ⊆ PPΓ(�,�)(�), (1.4.10)

that is, the interval of regular cardinals PPΓ(�,�)(�) is closed under computing �-
complete pcf on sets of cardinality less than �.3 This is a critical property for us,
and it is usually expressed in terms of an inverse monotonicity property of Γ(�, �)-
pseudopowers:

Proposition 1.4.3 (Inverse Monotonicity). Suppose � ≤ cf(�) < � with � and �
regular. If � < � satisfies

• � ≤ cf(�) < � and
• � ≤ ppΓ(�,�)(�),

then

PPΓ(�,�)(�) ⊆ PPΓ(�,�)(�), (1.4.11)

and therefore

ppΓ(�,�)(�) ≤ ppΓ(�,�)(�). (1.4.12)

3A cardinal � is in pcf�–com(A) if there is a �-complete ideal J on A with the true cofinality of
∏
A/J

equal to �. See, e.g., the chapter [1].
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The preceding result can be found as ⊗1 in Section II.2 of [12]. To see why this
implies the closure property expressed in (1.4.10), suppose A ⊆ PPΓ(�,�)(�) satisfies
|A| < � and J is �-complete ideal on A for which

∏
A/J has true cofinality equal

to some �. Let � be the least cardinal such that A ∩ � /∈ J . Then � is singular with
� ≤ cf(�) < �, and � is Γ(�, �)-representable at � by way of the pair (A ∩ �′, J �
A ∩ �′). Inverse Monotonicity implies that � also Γ(�, �)-representable at �, and
hence it is a member of PPΓ(�,�)(�) by definition.

The final ingredient of the calculus of pseudopowers that we need is denoted
Continuity, and can be found as ⊗2 in Section II.2 of [12]:

Proposition 1.4.4 (Continuity). Assume � ≤ cf(�) < � with � and � regular, and
let � be a regular cardinal greater than �. If � is Γ(�, �)-representable at � for an
unbounded set of singular cardinals � < � (satisfying � ≤ cf(�) < � < �), then � is
also Γ(�, �)-representable at �. In other words, if

� = sup{� < � : � ≤ � < � < � and � ∈ PPΓ(�,�)(�)}, (1.4.13)

then

� ∈ PPΓ(�,�)(�). (1.4.14)

The proof is not difficult: one can paste together suitable representations of � at
cardinals � < � to obtain a representation at � itself.

1.5. The cov vs. pp Theorem. With the above material in hand, we can state the
connection between covering numbers and pseudopowers. This theorem is due to
Shelah (Theorem 5.4 of Chapter II of [12]); our paper [3] gives another proof of the
result, in addition to providing much more background about pseudopowers and
their computation.

Theorem 1.5.1 (The cov vs. pp Theorem). Suppose � < � are infinite regular
cardinals, and � is singular with � ≤ cf(�) < �. Then

ppΓ(�,�)(�) ≤ cov(�, �, �, �). (1.5.1)

If � > ℵ0 (so � has uncountable cofinality) then

ppΓ(�,�)(�) = cov(�, �, �, �). (1.5.2)

The proof of (1.5.2) is the hard part of the result, and the question of whether
the uncountability of � is necessary to prove the equality is a major open question
in pcf theory known as the “cov vs. pp problem.” Shelah has shown that in many
cases this condition can be dropped, and that pcf theory in the neighborhood of a
counterexample � must be very badly behaved.

1.6. Overview revisited. Given the above discussions, we hope the reader is now
in a better position to understand the summary given in Section 1.1. For example,
to obtain our sample equation (1.1.1), we prove that if a cardinal � is Γ(ℵ9,ℵ2)-
representable at � of cofinality ℵ6, then either � is Γ(ℵ7,ℵ2)-representable at �, or it
is Γ(ℵ9,ℵ6)-representable at �. In other words, if � can be represented at a singular
cardinal � of cofinality ℵ6 using an ℵ2-complete ideal on a set of cardinality at most
ℵ8, then it can either be represented using anℵ2-complete ideal on a set of cardinality
ℵ6 (the minimum possible size of a representation at �), or it can be represented on
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a set of cardinality at most ℵ8 using an ℵ6-complete ideal (the maximum possible
completeness of a representation at �). We then apply the cov vs. pp Theorem to
draw conclusions about the corresponding covering numbers (see Corollary 7.1.2
and the subsequent discussion).4

1.7. Structure of the paper. The remainder of the paper is structured as follows:

• In Section 2, we chain together some theorems of Shelah (scattered throughout
several papers) concerning the existence of well-organized sets of generators
in order to formulate a precise and user-friendly result (Theorem 2.1.3) that
we then use to prove a generalization of the main result of [11], tailored to
�-complete pcf.

• Section 3 builds on this work and analyzes pseudopowers at singular cardinals
that are eventually Γ(�, �)-closed. We are able to show that cardinals Γ(�, �)-
representable at such a � can be represented in a well-organized way.

• Section 4 isolates the Pseudopower Dichotomy, and then analyzes the structure
of PPΓ(�,�)(�) when the singular cardinal � is NOT eventually Γ(�, �)-closed.

• In Section 5, we use the previous sections to obtain results in ZFC about
equalities between various types of pseudopowers at a singular cardinal �. In
particular, we show

pp�(�) = pp(�) + ppΓ(�+,cf(�))(�), (1.7.1)

and, for � < cf(�),

ppΓ(�,�)(�) = ppΓ(�)(�) + ppΓ(�,�+)(�). (1.7.2)

• Section 6 uses recent work of Gitik [5] to provide complementary independence
results related to the formulas derived in Section 5.

• In Section 7, we map out consequences of these results for covering numbers,
arriving at the formula (1.1.1) and its relatives, and also discussing its
consequences. We conclude with questions raised by this work.

§2. Reducing the size of a representations.

2.1. On generators. In this section, we prove a generalization of Theorem 1.1
of [11] that extends Shelah’s result to �-complete pcf. We prove the theorem by
manipulating a suitably nice collection of pcf generators rather than by working
directly with characteristic functions of models as in [11].

The basic definitions follow, and we refer the reader to [1] and [2] for more detailed
discussion of these matters.

Definition 2.1.1. Let A be a progressive set of regular cardinals.

(1) If � ∈ pcf(A), then a subset B of A is a generator for�in A if

J≤�[A] = J<�[A] + B. (2.1.1)

4We also note here that the two options do not correspond cleanly to the possibilities of the
Pseudopower Dichotomy: in the “strong limit” option of the dichotomy, we will actually get a
representation of � using a cf(�)-complete ideal on a set of size cf(�), and it is the other option of
the dichotomy that is responsible for the complexity of (1.1.1).
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(2) A generating sequence for pcf(A) is a sequence 〈B� : � ∈ pcf(A)〉 where B� is
a generator � in A.

(3) More generally, if C is a progressive subset of pcf(A) and Λ is a subset of
pcf(C ), we say that 〈B� : � ∈ Λ〉 is a generating sequence for Λ in C if B� is
a generator for � in C for all � ∈ Λ, that is,

J≤�[C ] = J<�[C ] + B�, (2.1.2)

for all � ∈ Λ.

In (3), our assumptions imply pcf(C ) ⊆ pcf(A) so Λ is a subset of pcf(A) as
well. We will usually assume that C includes A, and in this situation we know that
if B� is a generator for � in C, then B� ∩ A will be a generator for � in A. Where
important for clarity, we may write B�[C ] to emphasize that the corresponding set
is a generator for � in C.

Definition 2.1.2. Let A be a progressive set of regular cardinals, and suppose b̄

is a generating sequence 〈B�[C ] : � ∈ Λ〉 for Λ in C, where Λ ⊆ pcf(A) and C is a
progressive subset of pcf(A) containing A. The sequence b̄ is transitive if

� ∈ B�[C ] ∩ Λ =⇒ B� [C ] ⊆ B�[C ]. (2.1.3)

It is a fundamental result of pcf theory that for a progressive A, any � in pcf(A) has
a corresponding generator in A, and thus we can always find a generating sequence
〈B�[A] : � ∈ pcf(A)〉 for pcf(A) in A. Obtaining transitive generating sequences is a
more complicated issue. Shelah shows in Claim 6.7 of [14] that there is a transitive
generating sequence for A (not pcf(A)!) in A whenever A is progressive. Thus, if
pcf(A) happens to be progressive, then a transitive generating sequence for pcf(A)
in pcf(A) will exist. Abraham and Magidor prove something a little more general
in Section 6 of [1]. A corollary of their presentation is that if κ is a regular cardinal
with |A| < κ < min(A) and Λ is a subset of pcf(A) of cardinality at most κ, then
we can find a transitive generating sequence for Λ in A.

Our proof requires more than this, and we need some results of Shelah appearing in
Claims 6.7A and B of [14]. These are quite technical, so in the interest of readability
we summarize our requirements in a “black box” result:

Theorem 2.1.3 (Black Box). Let A be a progressive set of regular cardinals, and
suppose κ is a regular cardinal satisfying |A| < κ < min(A). Then for any sufficiently
large regular � and x ∈ H (�), there is an elementary submodel N of H (�) of
cardinality κ containing A and x and a sequence b̄ = 〈B� : � ∈ N ∩ pcf(A)〉 such
that:

(1) b̄ is a transitive generating sequence for N ∩ pcf(A) in N ∩ pcf(A) and
(2) given a sequence Ā = 〈A
 : 
 < �〉 of sets and a regular cardinal � such that:

(a) Ā ∈ N,
(b) � and � are less than κ, and
(c) A
 is a subset of N ∩ pcf(A) for each 
 < �,

there is a family C̄ = 〈C
 : 
 < �〉 such that:
• C̄ ∈ N ,
• C
 is a subset of pcf�com(A
) of cardinality less than �, and
• A
 ⊆

⋃
�∈C
 B�.
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Part (1) of the conclusion gives more than what Abraham and Magidor obtain
in [1], as they produce a transitive generating sequence for N ∩ pcf(A) in A, and
not in the (possibly larger) set N ∩ pcf(A). Said another way, the argument in [1]
provides sets B� for � ∈ N ∩ pcf(A) that are subsets of A and such that B� generates
the ideal J≤�[A] over J<�[A]. The stronger version we need provides generators
that function in the progressive set N ∩ pcf(A), rather than just in A, with the
corresponding B� generating J≤�[N ∩ pcf(A)] over J<�[N ∩ pcf(A)]. This extra
power will be important for us, and it follows from parts (1) and (2) of Claim 6.7B
of [14].

Part (2) of the conclusion says that even though the generators we produce may
not be in N, they do interact well with N in the sense that pcf compactness arguments
work as long as we are trying to cover sets in N. This follows from part (3) of Claim
6.7B of [14], and it is arranged by showing that the generators produced have suitable
“internal reflections” inside of N.

2.2. Reducing the size of a representation. We turn now to the main result of this
section: a relative of Theorem 1.1 from Chapter VIII of [12].

Theorem 2.2.1. Suppose A =
⋃

<� A
 is a progressive set of regular cardinals,

and suppose � is a regular cardinal. Suppose

� = max pcf(A), (2.2.1)

and

� ∈ pcf�–com(A) \
⋃

<�

pcf�–com(A
). (2.2.2)

Then can find a subset C of
⋃

<� pcf�–com(A
) such that

|C | ≤ �, (2.2.3)

and

� ∈ pcf�–com(C ). (2.2.4)

This is a template for what we might call a reduction-in-size theorem. The point
is that we are replacing the set A by set C whose size is under our control, and doing
it in such a way that � is still captured by pcf�–com(C ).

Proof. Looking at our assumptions, it is clear that we may assume that � is
at most the cardinality of A. The assumptions also imply that � is at least �, as
otherwise pcf�–com(A) would simply be the union of the various pcf�–com(A
) for

 < �, and this would violate (2.2.2). Thus, we can assume � ≤ � ≤ |A|.

We may also assume that |A|+ is strictly less than min(A), and so (by setting
κ = |A|+) we can find a model N as in Theorem 2.1.3 containing A and the sequence
〈A
 : 
 < �〉. Note that since κ + 1 ⊆ N , we know that A is a subset of N and each
individual element A
 of our sequence will be in N as well. Since |A
 | < κ for each

, it follows that A
 will be a subset of N ∩ pcf(A) too.
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Let 〈B� : � ∈ N ∩ pcf(A)〉 be the transitive sequence from Theorem 2.1.3.
Conclusion (2) of this theorem tells us there is a sequence 〈C
 : 
 < �〉 in N such
that each C
 is a subset of pcf�–com(A
) of cardinality less than � and

A
 ⊆
⋃
�∈C


B�. (2.2.5)

We set

C =
⋃

<�

C
. (2.2.6)

Then |C | ≤ � · � = �, and C is definable from the sequence 〈C
 : 
 < �〉 in N.
We now show that � is in pcf�–com(C ), which will finish the proof. To do this, we

apply conclusion (2) of Theorem 2.1.3 again, this time to the single set C ∈ N . We
obtain a set D ∈ N of cardinality less than � such that

D ⊆ pcf�–com(C ) ⊆ pcf�–com(A) (2.2.7)

and

C ⊆
⋃
�∈D
B�. (2.2.8)

This is the crucial point where we need for our generators to work in N ∩ pcf(A)
rather than just in the potentially smaller set A, as we are applying a compactness
argument to cover a subset of N ∩ pcf(A).

We know that max pcf(C ) is at most � because

max pcf(pcf(A)) = max pcf(A). (2.2.9)

Thus, if � fails to be in pcf�–com(C ), it must be the case that

D ⊆ pcf�–com(A) ∩ �, (2.2.10)

that is, all members of D must be less than �.
We now have an untenable situation. Since � is in pcf�–com(A), the�-complete ideal

on A generated by J<�[A] must be a proper ideal. But for � ∈ D, we know B� ∩ A is
in the ideal J<�[A], and since |D| < � it follows that A cannot be contained in the
union of the sets B� for � in D, that is,

A �
⋃
�∈D
B�. (2.2.11)

On the other hand, though, for each � ∈ A there is a 
 ∈ C with � ∈ B
 , and there is
a corresponding � ∈ D with 
 ∈ B� . By transitivity, we know B
 ⊆ B� and therefore
� ∈ B� . Thus

A ⊆
⋃
�∈D
B�, (2.2.12)

which contradicts (2.2.11). Thus, � must be in pcf�–com(C ). 
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§3. Eventually Γ(�, �)-closed cardinals.

3.1. Motivation. In this section we work with cardinals that are strong limits in a
sense measured by pseudopowers. Our aim is to generalize one of the main results of
Chapter VIII of Cardinal Arithmetic, where Shelah addresses basic questions about
improving representations of cardinals. Simply recalling a small part of what Shelah
establishes provides us with a good starting point.

Theorem 3.1.1 (Shelah [11]). Suppose ℵ0 < cf(�) ≤ � < �, and for every suffi-
ciently large � < �,

cf(�) ≤ � =⇒ pp�(�) < �. (3.1.1)

Then PP�(�) = PPΓ(cf(�))(�). In fact, any � ∈ PP�(�) can be represented as the true
cofinality of

∏
A/J bd[A] where A is a cofinal subset of � ∩ Reg of cardinality cf(�).

The above is part of Corollary 1.6 on page 321 of [12], and we will shortly derive
it from our own work in this section. For now, we wish to highlight the assumption
(3.1.1): it expresses that � is (in a weak sense) a type of strong limit cardinal, and we
will be working with such assumptions a lot in this section. The conclusion of the
above theorem can be described informally in terms of upgrading the representation
of �: we are able to move from an arbitrary representation of � based on a set of
cardinality at most � to one based on a set of cardinality cf(�), with the added
bonus that the ideal used in the representation is as simple as possible. The results
we prove in this section will have a similar flavor.

We start with our main hypothesis, a definition that is natural given the preceding
discussion.

Definition 3.1.2. Let � and � be regular cardinals, and suppose � is singular
with � ≤ cf(�) < � < �.

(1) We say that � is eventuallyΓ(�, �)-closed if for all sufficiently large � < �, if �
is singular with � ≤ cf(�) < � then ppΓ(�,�)(�) < �.

(2) We say that � is Γ(�, �)-closed beyond � if � < � and the above holds for all
� between � and �.

Shelah has looked at such concepts in a more general setting. In particular, the
third section of [13] briefly examines the idea of “pcf inaccessibility.” The following
lemma shows that our definition and his approach are essentially the same.

Lemma 3.1.3. Suppose � < � are regular cardinals, and � is a singular cardinal
satisfying � ≤ cf(�) < � < �. Then the following conditions are equivalent:

(1) � is eventually Γ(�, �)-closed.
(2) There is an � < � such that if A is a set of regular cardinals from the interval

(�, �) bounded below �, then

pcf�–com(A) ⊆ �. (3.1.2)

Proof. Assume (1), and choose � < � such that � is Γ(�, �)-closed beyond �.
Given a set A satisfying the assumptions of (2), suppose � is in pcf�–com(A) \ �. By
passing to the generator B�[A], we may assume � is max pcf(A), and so if J is the
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�-complete ideal on A generated by J<�[A] then

� = tcf
(∏
A/J

)
. (3.1.3)

Now let 
 be least ordinal with A ∩ 
 /∈ J . Our assumptions imply that 
 is a
singular cardinal of cofinality at most |A| < �, and � is Γ(�, �)-representable at 
.
Since � < 
 < �, we have a contradiction. The proof that (2) implies (1) is even
easier: if � is not eventually Γ(�, �)-closed, then the associated representations show
that (2) must fail. 


3.2. Basic representation theorems. Turning to the main topic of this section, we
begin with an application of Theorem 2.2.1 to the question of representation.

Theorem 3.2.1. Suppose� ≤ cf(�) < � < �with� and � regular. If� is eventually
Γ(�, �)-closed, then

PPΓ(�,�)(�) = PPΓ(�)(�). (3.2.1)

Before we give the proof, note that this result is a natural counterpart to
Theorem 3.1.1, with the only difference being the inclusion of the parameter �. This
theorem asks for a weaker closure condition than (3.1.1) in the situation where � is
uncountable, but it also has a weaker conclusion: it says only that if � is eventually
Γ(�, �)-closed, then any cardinal representable at � via a �-complete ideal on a set
of cardinality less than � is in fact representable at � via a �-complete ideal on a set
of cardinality cf(�), the minimum possible, but the proof does not let us obtain a
representation using the bounded ideal.

Proof. Suppose A and J witness that the cardinal � is Γ(�, �)-representable at �.
Since we may remove an initial segment of A if necessary, we may assume that � is
Γ(�, �)-closed beyond min(A), and by restricting to a suitable generator if necessary,
we may assume that � = max pcf(A) as well. Given 〈�α : α < κ〉 increasing and
cofinal in �, if we define

Aα := A ∩ �α, (3.2.2)

then the hypotheses of Theorem 2.2.1 are satisfied by 〈Aα : α < cf(�)〉 and �, and
we obtain a set

C ⊆
⋃
α<cf(�)

pcf�–com(Aα) (3.2.3)

of cardinality less than � such that

� ∈ pcf�–com(C ). (3.2.4)

Now let I be the �-complete ideal generated by J<�[C ]. We claim that C and I
witness that � is Γ(�)-representable at �.

Certainly C is a subset of � ∩ Reg because of (3.2.3) and Lemma 3.1.3. We know
I is a proper ideal on C because � is in pcf�–com(C ), and

� = tcf
(∏
C/I

)
(3.2.5)
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because � = max pcf(C ) and I extends J<�[C ]. To finish, we need to show that C
is unbounded in � and I includes all initial segments of C, but this follows from
Lemma 3.1.3 as well: any subset of C bounded below � must be in I because � is
greater than �. 


We can do better than this, though, and the next lemma lies is the heart of our
results. It shows that with assumptions similar to those used in Theorem 3.2.1, we
are able to obtain representations of cardinals that are “well-organized.” This will
then allow us to show that the corresponding ideals in the representation satisfy
stronger completeness conditions.

Lemma 3.2.2. Assume � is eventually Γ(�, �)-closed, where � and � are regular,
and � ≤ cf(�) < �. Suppose � is Γ(�, 
)-representable at � for some regular cardinal

 in the interval [�, cf(�)]. Then we can find a cardinal �∗ < � and a set

C = {�α� : α < cf(�) and � < �∗} (3.2.6)

of regular cardinals less than � such that:

• pcf�–com{�	� : 	 < α and � < �∗} ⊆ � for each α < cf(�) and
• if X is an unbounded subset of cf(�), then

� = max pcf({�α� : α ∈ X and � < �∗}) (3.2.7)

and

� ∈ pcf
–com({�α� : α ∈ X and � < �∗}). (3.2.8)

The above is essentially a generalization of Shelah’s result Theorem 3.1.1. We will
discuss this after the proof, and even show how his result follows easily from the
lemma.

Proof. Suppose A and J are a Γ(�, �)-representation of � at �. Just as in the
proof of Theorem 3.2.1, we may assume � is Γ(�, �)-closed beyond min(A) and that
� is max pcf(A). Let 〈�α : α < cf(�)〉 be an increasing sequence cofinal in �, and
let Aα be A ∩ �α .

We implement the argument of Theorem 2.2.1 and make use of transitive
generators. To do this, we assume (without loss of generality) that |A| < κ = cf(κ) <
min(A), and let N and b̄ be as in Theorem 2.1.3 with N containing all objects under
discussion in the preceding paragraph. By properties of b̄, in the model N there is a
sequence of sets Cα for α < cf(�) such that:

• Cα is a subset of pcf�–com(Aα) of cardinality less than � and
• Aα ⊆

⋃
�∈Cα B�.

Since the sequence 〈Aα : α < cf(�)〉 is increasing, it follows that whenever X is an
unbounded subset of cf(�) we have

A ⊆
⋃
α∈X

⋃
�∈Cα

B�, (3.2.9)

and so the transitivity arguments from the proof of Theorem 2.2.1 tells us

� = max pcf

( ⋃
α∈X
Cα

)
(3.2.10)
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and

� ∈ pcf
–com

( ⋃
α∈X
Cα

)
. (3.2.11)

Since each Cα has cardinality less than � < cf(�), we can (by passing to an
unbounded subset of cf(�)) assume each Cα is of some fixed cardinality �∗ < �,
say

Cα = {�α� : � < �∗}, (3.2.12)

and we are done by letting C be the union of the sets Cα . 

Note that we do not claim that the sets Cα are disjoint, and they may very well

overlap. It is helpful to visualize C as an array of regular cardinals with cf(�) rows
and �∗ columns. In this interpretation, row α corresponds to Cα , and we get a
corresponding column for each fixed � < �∗.

The pcf structure of C transfers to the index set Λ = cf(�) × �∗ in the natural
way, and we may define an ideal J on Λ by

X ∈ J ⇐⇒ max pcf
(
{�α� : (α, �) ∈ X}

)
< �∗. (3.2.13)

With this point of view, we see that for X ⊆ cf(�),

{(α, �) : α ∈ X and � < �∗} ∈ J ⇐⇒ X is bounded in cf(�). (3.2.14)

Note as well that the 
-complete ideal generated by J is a proper ideal because of
(3.2.11).

It is helpful to look back and compare our situation with the conclusion of
Theorem 3.1.1. We have not managed to represent � as the true cofinality of a
product of cardinals modulo the bounded ideal, but we have come close! What goes
wrong is that the rows Cα in our array are not singletons, and instead all we know
is that they all have a fixed cardinality �∗ less than �. What Shelah does in [11] is
note that if this cardinality happens to be finite, then we can improve the situation
and get the ideal to consist of just the bounded sets:

Corollary 3.2.3 (Theorem 3.1.1, due to Shelah [11]). Suppose ℵ0 < cf(�) ≤
� < � and � is eventually Γ(�+,ℵ0)-closed, that is, for all sufficiently large � < �,

cf(�) ≤ � =⇒ pp�(�) < �. (3.2.15)

Then any member of PP�(�) has a representation of the form (C, J bd[C ]) where C is
unbounded in � ∩ Reg of order-type cf(�) and J bd[C ] is the ideal of bounded subsets
of C.

Proof. Suppose � = tcf
∏
A/J where A is cofinal in � of cardinality at most

� and J is an ideal on A extending the bounded ideal. We apply Lemma 3.2.2 to
Γ(�+,ℵ0) and obtain n < � and C = 〈�αi : i ≤ n〉 such that

• sup pcf{�	i : 	 < α and i ≤ n} is less than � for each α < cf(�), and
• � = max pcf({�αi : α ∈ X and i ≤ n}) for any unbounded X ⊆ cf(�).

We now claim there is an i ≤ n and an unbounded X ⊆ cf(�) such that

� = max pcf{�αi : α ∈ Y} (3.2.16)
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for every unboundedY ⊆ X . This is enough, as lettingD = {�αi : i ∈ Y}, it follows
easily that the ideal J<�[D] consists of the bounded ideal J bd[D].

We establish this by contradiction: if there are no such i and X, then for every
i ≤ n and every unbounded X ⊆ cf(�) there is an unbounded Y ⊆ X such that

max pcf{�αi : α ∈ Y} < �. (3.2.17)

Working by induction, we find a single unbounded X ⊆ cf(�) such that

(∀i ≤ n) (max pcf{�αi : α ∈ X}) < �. (3.2.18)

But then

max pcf{�αi : α ∈ X and i ≤ n} < �, (3.2.19)

as any ultrafilter on this set must contain one of the columns, and we have a
contradiction. 


We note that Shelah obtains even nicer representations in Chapter VIII of Cardinal
Arithmetic, but the above observation is at the heart of his argument.

3.3. Better representations. Moving on to the more general situation, we can
apply Lemma 3.2.2 to obtain the following improvement of Theorem 3.2.1.

Theorem 3.3.1. Suppose � is eventually Γ(�, �)-closed for some regular � and �
with

� < cf(�) < � < �, (3.3.1)

and 
 < � are regular cardinals in the interval [�, cf(�)]. If


 ≤ � < � =⇒ cov(�, �, �, 2) < cf(�), (3.3.2)

then

PPΓ(�,
)(�) = PPΓ(�)(�). (3.3.3)

Before presenting a proof of this theorem, we note that condition (3.3.2) holds if �
is less than 
+� , so at the very least, the theorem allows us to find representations that
are “more complete,” while simultaneously ensuring that the size of the set involved
is at most cf(�). In order to do this, we need to make the stronger assumption that �
is strictly less than cf(�), and this is what allows us to achieve greater completeness
in our representation.

Proof. Suppose � is Γ(�, 
)-representable at �, and apply Lemma 3.2.2 to obtain
a cardinal �∗ < � and a set C of regular cardinals �α� (for α < cf(�) and � < �∗) as
there. In particular, if X is any unbounded subset of cf(�), then

� ∈ pcf
–com{�α� : α ∈ X and � < �∗}. (3.3.4)

It suffices to prove that the �-complete ideal on C generated by J<�∗ [C ] is proper.
Suppose by way of contradiction this is not the case. Then there is a least cardinal

� < � such that for some sequence of sets 〈Di : i < �〉 and unbounded X ⊆ cf(�),
we have:
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• Di ∈ J<�∗ [C ] for each i < � and
• {�α� : α ∈ X and � < �∗} ⊆

⋃
i<� Di .

Clearly 
 must be less than or equal to �, and by shrinking C if necessary we may
assume there are such sets Di for i < � with

C ⊆
⋃
i<�

Di . (3.3.5)

Our assumptions tell us that cov(�, �, �, 2) is less than cf(�), so there is a family P
such that:

• P ⊆ [�]<�,
• |P| < cf(�), and
• (∀U ∈ [�]<�)(∃V ∈ P)[U ⊆ V ].

For each α < cf(�), there is a set Yα ∈ [�]<� such that

Cα = {�α� : � < �∗} ⊆
⋃
i∈Yα

Di , (3.3.6)

Since |P| < cf(�), there is a single set Y ∈ P and an unbounded subset X of cf(�)
such that ⋃

α∈X
Cα ⊆

⋃
i∈Y
Di . (3.3.7)

But now we have a contradiction, as we have shown that
⋃
α∈X Cα can be covered

by |Y | < � sets from J<�∗ [C ]. 

Again, note that Theorem 3.2.1 can only tell us that PPΓ(�,
)(�) = PPΓ(
)(�) under

the same assumptions as Theorem 3.3.1. The improvement we obtain here is that
we find a representation using an �-complete ideal on a set of size cf(�) rather than
simply a 
-complete one.

We close this section with the following corollary, which gives us a little
information about the assumptions we make relating �, 
, and �.

Corollary 3.3.2. Suppose � is eventually Γ(�)-closed, where � < cf(�). If 
 < �
are regular cardinals in the interval [�, cf(�)] and

PPΓ(�)(�) � PPΓ(
)(�), (3.3.8)

then there is a singular cardinal � of cofinality less than � such that


 < � < � ≤ cf(�) < cov(�, �, �, 2), (3.3.9)

hence


 < � < � ≤ cf(�) < cf([�]<�,⊆) ≤ �<�. (3.3.10)

If we work with cardinals whose cofinality is ℵn for some n, then the above
situation cannot happen because there is no place for such a cardinal �. Thus, the
following is immediate.

Corollary 3.3.3. Suppose � is singular with ℵ0 < cf(�) < ℵ� . If � is eventually
Γ(�, �)-closed for some � < cf(�), then

PPΓ(�,�)(�) = PPΓ(cf(�))(�). (3.3.11)
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§4. The Pseudopower Dichotomy.

4.1. Introducing the dichotomy. In the preceding section we analyzed the behavior
of ppΓ(�,
)(�) where � is a singular cardinal that is eventually Γ(�, �)-closed and
� ≤ 
 ≤ cf(�). The analysis showed that if a cardinal is Γ(�, 
)-representable at �,
then it is has a �-complete representation using the minimum possible size, cf(�),
and the completeness of the representation can be increased if � is strictly less than 
.
In this section, we will analyze what happens when� is not eventually Γ(�, �)-closed.
We start with the following result which formulates a fundamental dichotomy about
singular cardinals. This is not a new idea (in fact, the result we present is a relative
of Fact 1.9 in [11], and Shelah has made and used similar observations in other
places. However, such dichotomies are extraordinarily useful for proving theorems
in ZFC, as they allow one to analyze situations by breaking into cases where each
option carries non-trivial information. We will refer to this result as the Pseudopower
Dichotomy.

Lemma 4.1.1 (Pseudopower Dichotomy). Suppose � is a singular cardinal, and
let � < � be regular cardinals with � ≤ cf(�) < �. Then exactly one of the following
statements hold:

Option 1 � is eventually Γ(�, �)-closed.
Option 2 � is a limit of eventually Γ(�, �)-closed cardinals � for which

� ≤ cf(�) < �, (4.1.1)

and

PPΓ(�,�)(�) = PPΓ(�,�)(�) \ �+. (4.1.2)

Proof. It is clear that the two options are mutually exclusive as �+ is always
Γ(�, �)-representable at�. Suppose that Option 1 fails for a cardinal�. By definition,
this means that for each 
 < � there is a singular cardinal � greater than 
 such that

� ≤ cf(�) < � < � < �, (4.1.3)

and

� ≤ ppΓ(�,�)(�). (4.1.4)

By Inverse Monotonicity (Proposition 1.4.3), this implies

PPΓ(�,�)(�) ⊆ PPΓ(�,�)(�). (4.1.5)

Note as well that if � is the LEAST such cardinal above 
, then � is Γ(�, �)-closed
beyond 
. Thus, � is a limit of eventually Γ(�, �)-closed cardinals � for which (4.1.3)
is true, and for which

PPΓ(�,�)(�) ⊆ PPΓ(�,�)(�). (4.1.6)

Let X be the collection of such cardinals � < �, and for each � in X , we define

Y� = PPΓ(�,�)(�) \ �+. (4.1.7)
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If � is in X , then Y� is an non-empty interval of regular cardinals with minimum
�+. Furthermore, if � < � in X then by Inverse Monotonicity we have

�+ ≤ sup(Y�) = ppΓ(�,�)(�) ≤ ppΓ(�,�)(�) = sup(Y�). (4.1.8)

Thus, the sequence 〈Y� : � ∈ X〉 must eventually stabilize, say with value Y .
If � ∈ Y , then by an application of the continuity property of Proposition 1.4.4

we know � ∈ PPΓ(�,�)(�), and so for all sufficiently large � ∈ X , we have

PPΓ(�,�)(�) \ �+ = Y ⊆ PPΓ(�,�)(�). (4.1.9)

Combining this with (4.1.6) establishes that Option 2 of the Pseudopower
Dichotomy holds. 


As a corollary, we have the following result which we will use later in the paper.

Corollary 4.1.2. Suppose � is singular, while � < � are regular cardinals with
� ≤ cf(�) < �. If

ppΓ(�)(�) < ppΓ(�,�)(�), (4.1.10)

then � is a limit of singular cardinals � such that:

• � ≤ cf(�) < � < � < �,
• � is eventually Γ(�, �)-closed, and
• ppΓ(�,�)(�) = ppΓ(�,�)(�).

Proof. Our assumption implies that Option 2 of the Pseudopower Dichotomy
holds by way of Theorem 3.2.1, and now the result follows immediately. 


4.2. More on improving representations. The proof of the Pseudopower
Dichotomy provides a template for its applications. For example, suppose that
a cardinal � is Γ(�, �)-representable at � and look at the Pseudopower Dichotomy.
If Option 1 holds, then our work in the preceding section applies and we can get
nice representations of � at �. If, on the other hand, Option 2 holds sway, then
we know instead that � has nice representations for many cardinals below �, and
we will be able to combine these representations (using the Continuity Property of
pseudopowers from Proposition 1.4.4) to produce a nice representation of � at �
itself. The following definition will help us take advantage of these ideas.

Definition 4.2.1. Suppose � is singular, and � < � are regular with
� ≤ cf(�) < �. We define XΓ(�,�)(�) to be the collection of cardinals � satisfying:

• � ≤ cf(�) < � < � < �,
• � is eventually Γ(�, �)closed, and
• PPΓ(�,�)(�) = PPΓ(�,�)(�) \ �+.

This set might very well be empty, but note that the Pseudopower Dichotomy can
be reformulated as the statement “either XΓ(�,�)(�) is unbounded in � or it is not.”
If XΓ(�,�)(�) is unbounded, then it will exert an influence over representations at �
through continuity. For example, we have the following observation which yields the
same conclusion as Theorem 3.2.1.
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Proposition 4.2.2. Suppose {� ∈ XΓ(�,�)(�) : cf(�) ≤ cf(�)} is unbounded in �.
Then

PPΓ(�,�)(�) = PPΓ(�)(�). (4.2.1)

Proof. Suppose � is Γ(�, �)-representable at �. Since Option 2 holds, we know
that � is also Γ(�, �)-representable at each � ∈ XΓ(�,�)(�). Given such an �, we can
apply Theorem 3.2.1 to conclude � is also Γ((cf �)+, �))-representable at �. By the
assumption of the lemma, we have

� = sup{� < � : � ≤ cf(�) < (cf(�))+ and � ∈ PPΓ((cf �)+,�)(�)}, (4.2.2)

and hence � is Γ(�)-representable at � by way of Proposition 1.4.4. 


The next result builds on this idea, and shows how assumptions on the structure
of XΓ(�,�)(�) let us improve representations of cardinals in PPΓ(�,�)(�).

Theorem 4.2.3. Suppose � is singular, and �,
, �, and � are regular cardinals
satisfying

� < 
 ≤ cf(�) < � ≤ � < �. (4.2.3)

If

� = sup{� ∈ XΓ(�,�)(�) : sup{cov(�, �, �, 2)+ : � ≤ � < 
} ≤ cf(�) < �}, (4.2.4)

then

PPΓ(�,�)(�) = PPΓ(�,
)(�), (4.2.5)

hence

ppΓ(�,�)(�) = ppΓ(�,
)(�) (4.2.6)

Proof. Clearly PPΓ(�,
)(�) is contained in PPΓ(�,�)(�), so we will show the reverse
inclusion holds. To do this, suppose � satisfies the following conditions:

• � is Γ(�, �)-representable at �,
• � is eventually Γ(�, �)-closed, and
• � ≤ � < 
 =⇒ cov(�, �, �, 2) < 
 ≤ cf(�).

An application of Theorem 3.3.1 tells us that � is Γ((cf �)+, 
)-representable at �,
and since cf(�) < � this means � is Γ(�, 
)-representable at �. We have assumed that
the set of such � is unbounded in �, so once again Proposition 1.4.4 forces � to be
Γ(�, 
)-representable at � as well. 


§5. Applications of the Pseudopower Dichotomy.

5.1. Computing PP�(�). In this section, we put together pieces from our
preceding work to obtain theorems in ZFC based on the Pseudopower Dichotomy.
Our first result echoes Theorem 3.1.1, as tells us that PP�(�) can be computed from
pseudopowers that involve the cofinality of � in two different ways.

Since PP(�) is defined as PPcf(�)(�), it is clear that

PP(�) ∪ PPΓ(�+,cf(�)) ⊆ PP�(�). (5.1.1)
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The first theorem in this section shows that the two sides of (5.1.1) are actually
equal.

Theorem 5.1.1. Suppose � is singular, and cf(�) ≤ � < �. Then

PP�(�) = PP(�) ∪ PPΓ(�,cf(�))(�); (5.1.2)

hence

pp�(�) = pp(�) + ppΓ(�+,cf(�))(�). (5.1.3)

We make a couple of comments before presenting the proof. First, note that the
above theorem shows us that if � has a representation at � using a set of size �,
then � can be represented at � using either a set of cardinality cf(�) (the minimum
possible size) or a cf(�)-complete ideal (the maximum possible). These options
are not mutually exclusive (for example, both hold simultaneously for �+), but the
power of the theorem is in the statement that at least of these two things must occur.

Our second comment is to note that because PP(�) and PPΓ(�,cf(�))(�) are both
intervals of regular cardinals, the equation (5.1.2) implies that PP�(�) must in fact
be equal to one of these two sets.

Proof of Theorem 5.1.1. We may assume that � has uncountable cofinality,
as otherwise (5.1.2) holds automatically. We apply the pseudopower dichotomy to
Γ(�+,ℵ0). If � is eventually Γ(�+,ℵ0)-closed, then Corollary 3.2.3 gives us more
than we need because any � in PP�(�) can be represented using the bounded ideal
on a set of cardinality cf(�) cofinal in � ∩ Reg. It follows that in this situation, all
three of the sets from (5.1.2) are equal, and

PPΓ(�+,ℵ0)(�) = PPΓ(cf(�))(�) ⊆ PP(�) = PPΓ(�+,cf(�))(�), (5.1.4)

which is more than we require.
Thus, we may assume that Option 2 of the Pseudopower Dichotomy is in force

and the corresponding set XΓ(�+,ℵ0) is unbounded in �. Abbreviating this set as “X ,”
we split into two cases.

If the set of � ∈ X with cf(�) ≤ cf(�) is unbounded in �, then Proposition 4.2.2
tells us

PPΓ(�+,ℵ0)(�) = PP(�), (5.1.5)

and (5.1.2) is immediate.
If {� ∈ X : cf(�) > cf(�)} is unbounded in �, then we apply Theorem 4.2.3 with

� = �+, � = cf(�), and � and 
 both equal to ℵ0 to conclude

PP�(�) = PPΓ(�+,cf(�))(�), (5.1.6)

which establishes (5.1.2). Note that Theorem 4.2.3 does apply here: since � = ℵ0,
we know cov(�, �, �, 2) = � for any � < cf(�).

Clearly at least one of these cases must happen, and therefore (5.1.2) holds under
Option 2 of the Pseudopower Dichotomy, finishing the proof. 


Reformulating the preceding result in less technical language, we have shows
that given a singular cardinal �, if a cardinal � is representable at � using a set of
cardinality at most � < �, then either � is representable at� using a set of cardinality
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cf(�), or � can be represented at� using a cf(�)-complete ideal on a set of cardinality
at most �.

5.2. Computing PPΓ(�,�)(�). The next theorem examines the more general
situation where � may be uncountable. The conclusion is weaker than that of
Theorem 5.1.1, but the fact that � is uncountable will allow us to transfer the
result into a corresponding statement about covering numbers.

Theorem 5.2.1. Suppose � is singular, and let � and � be regular cardinals with
� < cf(�) < � < �. Then

PPΓ(�,�)(�) = PPΓ(�)(�) ∪ PPΓ(�,
)(�) (5.2.1)

for any regular 
 ∈ (�, cf(�)) such that

� ≤ � < 
 =⇒ cov(�, �, �, 2) < cf(�). (5.2.2)

In particular, for such 
 we have

ppΓ(�,�)(�) = ppΓ(�)(�) + ppΓ(�,
)(�). (5.2.3)

Proof. The proof mirrors that of Theorem 5.1.1. If� is eventually Γ(�, �)-closed,
then all three sets mentioned in (5.2.1) are equal, and the result follows. Thus, we
may assume that Option 2 of the Pseudopower Dichotomy is in force, and the set
X = XΓ(�,�)(�) from Definition 4.2.1 is unbounded in �. We break into cases just as
in Theorem 5.1.1. If the set of � in X with cf(�) ≤ cf(�) is unbounded, then

PPΓ(�,�)(�) = PPΓ(�)(�) (5.2.4)

by way of Proposition 4.2.2.
If the set of � ∈ X with cf(�) < cf(�) is unbounded in �, then by Theorem 4.2.3

we will have

PPΓ(�,�)(�) = PPΓ(�,
)(�). (5.2.5)

Since at least one of these two things must occur under Option 2, the result follows.



Note that condition (5.2.2) holds if � ≤ 
 < �+� , so we are able to conclude the
following:

Corollary 5.2.2. Suppose � is singular, and � and � are regular cardinals such
that

�+n ≤ cf(�) < � < �.

Then

PPΓ(�,�)(�) = PPΓ(�)(�) ∪ PPΓ(�,�+n)(�), (5.2.6)

and thus

ppΓ(�,�)(�) = ppΓ(�)(�) + ppΓ(�,�+n)(�). (5.2.7)

In particular, if � < cf(�), then

ppΓ(�,�)(�) = ppΓ(�)(�) + ppΓ(�,�+)(�). (5.2.8)

https://doi.org/10.1017/jsl.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.1


THE PSEUDOPOWER DICHOTOMY 1675

This is similar in spirit to results we saw earlier: if we know a cardinal is Γ(�, �)-
representable at � with � < cf(�), then either it is representable using a �-complete
ideal on a set of cardinality cf(�) (so the size is as small as possible), or it is
representable on a set of cardinality less than �, but using a �+-complete ideal (so
we are able to find a representation with greater completeness). The equation (5.2.8)
will be important in the next section, in which we use work of Gitik to show that
both terms appearing on the right-hand side of the equality are needed.

5.3. A theorem of Gitik and Shelah. For our final application, we show that the
pseudopower dichotomy underlies a result of Gitik and Shelah (Theorem 1.5 of [6])
on cardinal arithmetic. They phrase their result in terms of covering numbers of the
form cov(�, κ, �,ℵ1), but their proof is basically as given below.

Theorem 5.3.1 (Gitik–Shelah [6]). Suppose � ≤ cf(�) < �. Then

{ppΓ(�,�)(�) : cf(�) < � = cf(�) < �} is finite. (5.3.1)

As noted by Gitik and Shelah, this result can be viewed as “non-GCH analog”
of a theorem of Hajnal and Shelah that {�� : 2� < �} is finite.5

Proof. Suppose this fails for �, and choose an increasing sequence 〈�n : n < �〉
such that for each n < �,

cf(�) < �n = cf(�n) < �, (5.3.2)

and

ppΓ(�n,�)(�) < ppΓ(�n+1,�)(�). (5.3.3)

Since

ppΓ(�)(�) ≤ ppΓ(�,�)(�) (5.3.4)

for any regular � in the interval (cf(�), �), we can assume that

ppΓ(�)(�) < ppΓ(�n,�)(�) (5.3.5)

as well. By Corollary 4.1.2, we know for each n < � that � is a limit of eventually
Γ(�n, �)-closed cardinals � with

ppΓ(�n,�)(�) = ppΓ(�n,�)(�). (5.3.6)

For each n, let �n be the least such cardinal. The sequence 〈�n : n < �〉 is non-
increasing, hence eventually constant, say with value �. This particular � will be
eventually Γ(�n, �)-closed for each n < �, and hence

ppΓ(�n,�)(�) = ppΓ(�)(�) (5.3.7)

by Theorem 3.2.1. But then for any n, we have

ppΓ(�n,�)(�) = ppΓ(�n,�)(�) = ppΓ(�)(�) = ppΓ(�n+1,�)(�) = ppΓ(�n,�)(�), (5.3.8)

which contradicts our choice of the sequence 〈�n : n < �〉. 


5One reference for this result given in [6] is incorrect: it appears as a Exercise 5 in Section 11 of [7].
Shelah noted it independently on pages 164 and 165 of [10].
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This result will reappear in the final section of our paper, when we formulate some
natural open questions.

§6. Independence results.

6.1. Gitik’s theorem. This short section will focus on obtaining independence
results complementary to the theorems we established in the previous section.
Specifically, we will examine the formula

ppΓ(�,�)(�) = ppΓ(�)(�) + ppΓ(�,�+)(�) (6.1.1)

established in Corollary 5.2.2. We rely almost completely on recently published work
of Gitik [5]. Since we do not have the expertise to discuss his proof in detail, our
approach will be to quote his results liberally. We start with his main theorem:

Theorem 6.1.1 (Theorem 1.3 of [5]). Assume GCH. Let � be an ordinal and � be
a regular cardinal. Let 〈κα : α < �〉 be an increasing sequence of strong cardinals, and
let � be a cardinal greater than the supremum of {κα : α < �}. Then there is a cardinal
preserving extension in which, for every α < �:

(1) cf(κα) = � and
(2) pp(κα) ≥ �.

The final section of his paper (Section 8) is the part most relevant for us, as
he examines the cardinal arithmetic structure of his model in some detail. We will
follow his notation, and point out what need.

6.2. Computations. We assume that � and � are regular cardinals with ℵ2 ≤ � and
�+ < �, and we work in the generic extension V [G ] from Theorem 6.1.1. In V [G ],
the cardinals κα for α < � will all have cofinality �, and each satisfies pp(κα) ≥ �.
We need a little more: as Gitik notes prior to his Proposition 8.11, in fact we have
the stronger result that

ppΓ(�)(κα) ≥ � (6.2.1)

as all of the ideals involved in the computation are �-complete.
For each α < �, we let

κ̄α = sup{κ	 : 	 < α}. (6.2.2)

InV [G ], ifα < � is a limit ordinal, then κ̄α is singular with cofinality less than �. Our
choices of � and � guarantee that there are limit ordinals α < � with cf(α) greater
than �, and others of cofinality less than � but greater than �1. The corresponding
κ̄α for these two sorts of α are the places of interest to us, and we analyze each
situation separately. Again, relying on Gitik’s work we have:

Proposition 6.2.1. Let α be a limit ordinal less than �, and let V [G ] be as in
Theorem 6.1.1. Then the model V [G ] satisfies:

(1) If cf(α) < � then

pp(κ̄α) < ppΓ(�+,cf(α))(κ̄α). (6.2.3)
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(2) If � < cf(α) then

ppΓ(�+)(κ̄α) < ppΓ(�)(κ̄α). (6.2.4)

Proof. For (1), suppose α < � is a limit ordinal of cofinality less than �. We
know that {κ	 : 	 < α} is cofinal in κ̄α , and each κ	 is singular of cofinality � with

ppΓ(�)(κ	) ≥ �; (6.2.5)

hence

ppΓ(�+,cf(α))(κ	) ≥ �. (6.2.6)

An application of Continuity tells us

ppΓ(�+,cf(α))(κ̄α) ≥ � (6.2.7)

as well. On the other hand, Gitik’s Proposition 8.6 tells us

pp(κ̄α) = κα, (6.2.8)

and so

pp(κ̄α) = κα < � ≤ ppΓ(�+,cf(α))(κ̄α) (6.2.9)

as required.
For (2), suppose α < � is a limit ordinal of cofinality greater than �. Again, the

set {κ	 : 	 < α} is unbounded in κ̄α , and so an application of continuity tells us

ppΓ(�)(κ̄α) ≥ �. (6.2.10)

On the other hand, Gitik’s Proposition 8.11 tells us

ppΓ(�+)(κ̄α) ≤ κα, (6.2.11)

and (6.2.4) follows immediately. 


6.3. Conclusions. Let us now return to the equation (6.1.1), and work with Gitik’s
extension V [G ] in the situation where � is at least �2 and � is greater than �+ (these
restrictions are simply to make sure we have enough room to manipulate parameters
of interest to us).

One the one hand, if we define � = κ̄�1 , � = �+, and � = ℵ0, then by equation
(6.2.3), we have

ppΓ(�)(�) ≤ pp(�) = pp(κ̄α) < ppΓ(�+,cf(α))(κ̄α) = ppΓ(�,�+)(�). (6.3.1)

and so for this choice of parameters we have

ppΓ(�,�)(�) = ppΓ(�,�+)(�) > ppΓ(�)(�). (6.3.2)

On the other hand, if we let � = κ̄�+, � = �+, and � = �, then from equation
(6.2.4) we conclude

ppΓ(�+)(�) < ppΓ(�)(�), (6.3.3)

and so (remembering that � is of cofinality �) we have

ppΓ(�,�)(�) = ppΓ(�)(�) > ppΓ(�,�+)(�). (6.3.4)
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Taken together, (6.3.2) and (6.3.4) show us that both summands in equation
(6.1.1) are important if we want a theorem that holds in ZFC. We have not pushed
the analysis of the cardinal arithmetic in Gitik’s model beyond what was presented
above; it may be that there are similar examples for many other values of � and �.

§7. On covering numbers.

7.1. Back to the beginning. We now look at what Theorem 5.2.1 and its relatives
tell us about covering numbers at singular cardinals. Once again, we assume that �
and � are infinite regular cardinals, while � is a singular cardinal satisfying

� ≤ cf(�) < � < �. (7.1.1)

Recall that the covering number cov(�, �, �, �) is defined to be the minimum
cardinality of a subset P of [�]<� that �-covers [�]<� , that is, such that for every
X ∈ [�]<� there is a subset Y of P of cardinality less than � with

X ⊆
⋃

Y . (7.1.2)

Recall as well that the cov vs. pp Theorem of Shelah (Theorem 1.5.1 mentioned in
our introduction) tells us that if � is uncountable, then

cov(�, �, �, �) = ppΓ(�,�)(�). (7.1.3)

Given this, the following theorem is a straightforward translation of Theorem
5.2.1 into the language of covering numbers.

Theorem 7.1.1. Suppose � is a singular cardinal, and let � and � be regular
cardinals such that

ℵ0 < � < cf(�) < �. (7.1.4)

Then

cov(�, �, �, �) = cov(�, �, (cf �)+, �) + cov(�, �, �, �+). (7.1.5)

Proof. By (5.2.8), we know

ppΓ(�,�)(�) = ppΓ(�)(�) + ppΓ(�,�+)(�). (7.1.6)

Because � is uncountable, we invoke Theorem 1.5.1 and convert the pseudopowers
into covering numbers, yielding

cov(�, �, �, �) = cov(�, �, (cf �)+, �) + cov(�, �, �, �+) (7.1.7)

as required. 

Similarly, based on Corollary 5.2.2, we have the following:

Corollary 7.1.2. Suppose� is a singular cardinal, and � < � are regular cardinals
such that

ℵ0 < � ≤ cf(�) < min(�+�, �) ≤ � < �, (7.1.8)

Then

cov(�, �, �, �) = cov(�, �, (cf �)+, �) + cov(�, �, �, cf(�)). (7.1.9)
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In particular, if � is singular of cofinality ℵ6, and we set � = ℵ9 and � = ℵ2, then
Corollary 7.1.2 tells us

cov(�, �,ℵ9,ℵ2) = cov(�, �,ℵ7,ℵ2) + cov(�, �,ℵ9,ℵ6). (7.1.10)

and we finally arrive at (1.1.1) from the introduction. What important for this choice
of parameters is

� ≤ cf(�) < �+�, (7.1.11)

7.2. What does it mean? The above formula (7.1.10) hides a trichotomy about
the ways in which certain elementary submodels interact with subsets of �. To see
why, let � be a sufficiently large regular cardinal, and suppose M is an elementary
submodel of H (�) containing � and such that

|M | + 1 ⊆M. (7.2.1)

If we let P beM ∩ [�]<�, then EXACTLY one of the following three things MUST
occur:

(1) Some X ∈ [�]ℵ6 cannot be covered by a union of ℵ1 sets from P .
(2) Every X ∈ [�]ℵ8 can be covered by a union of ℵ1 sets from P .
(3) Every X ∈ [�]ℵ6 is covered by a union of ℵ1 sets from P , but some Y ∈ [�]ℵ8

cannot be covered by a union of ℵ5 sets from P .

The above is quite easy: if we let κ be the cardinality of M, then (7.1.10) tells us
that exactly one of the following must be true:

(1)′ κ < cov(�, �,ℵ7,ℵ2), or
(2)′ cov(�, �,ℵ9,ℵ2) ≤ κ, or
(3)′ cov(�, �,ℵ7,ℵ2) ≤ κ < cov(�, �,ℵ9,ℵ6).

The rest follows easily.
More generally, we can consider this view of our conclusion (7.1.5). Given a

model M as above, if every member of [�]cf(�) can be covered by a union of fewer
than � sets fromM ∩ [�]<�, and every member of [�]<� can be covered by a union
of at most � sets fromM ∩ [�]<�, then in fact every member of [�]<� can be covered
by fewer than � sets fromM ∩ [�]<�.

7.3. The role of pseudopowers. Looking back at the discussion ending the previous
section, the conclusions speaks about elementary submodels and the combinatorics
of [�]<� without any reference at all to the pseudopowers that were used in the
proofs. The fact that we are forced to use pseudopowers and then rely on the cov vs.
pp theorem means that any conclusions on covering numbers are currently limited to
situations where the last argument � is uncountable. Thus, eliminating the reliance
on pseudopowers might unlock a more general theorem:

Question 1. Can results like Theorem 7.1.1 be proved directly without the use of
pseudopowers?

It is possible that an argument like Shelah’s original proof of the cov vs. pp
theorem (pages 87–93 of [12]) may work under these circumstances.
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7.4. Gitik–Shelah revisited. Look back at Theorem 5.3.1. This tells us that for
a singular cardinal �, if we fix a regular cardinal � ≤ cf(�) then as � ranges over
the interval (cf(�), �) ∩ Reg there are only finitely many distinct pseudopowers
ppΓ(�,�)(�) achieved. If we instead fix � ∈ (cf(�), �) ∩ Reg and let � range over the
regular cardinals in [ℵ0, cf(�)], then we achieve only finitely many distinct values
for different reasons: as � increases, the corresponding sequence of pseudopowers
is non-increasing. Thus, it is natural to ask if there is something deeper going on.

Question 2. Suppose � is a singular cardinal.

Is {ppΓ(�,�)(�) : � = cf(�) ≤ cf(�) < � = cf(�) < �} finite? (7.4.1)

Note that this is true for � satisfying cf(�) < ℵ� , so the first interesting case
occurs when � is singular of cofinality ℵ�+1. For a more specific question that may
shed light, suppose � is singular of cofinality ℵ�+1, and we have a cardinal � that is
Γ(ℵn)-representable at � for all n < �. Is � also Γ(ℵ�+1)-representable at �?

7.5. A conjecture. Finally, we ask if the behavior we observed for singular
cardinals with cofinality less than ℵ� holds in general.

Question 3. Suppose � is singular, and � < � are regular cardinals with � ≤
cf(�) < � < �.

Is PPΓ(�,�)(�) = PPΓ((cf �)+,�)(�) ∪ PPΓ(�,cf(�))(�)? (7.5.1)

Note that a positive answer to this question also implies a positive answer to
Question 2, as both {

ppΓ((cf(�))+,�) : � ∈ [ℵ0, cf(�)] ∩ Reg
}

(7.5.2)

and {
ppΓ(�,cf(�))(�) : � ∈ (cf(�), �) ∩ Reg

}
(7.5.3)

are finite. We conjecture that the answer to Question 3 is positive.
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