THE IRRATIONALITY OF CERTAIN INFINITE SERIES
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The aim of this paper is to prove the irrationality of a certain class of infinite series.
The main theorem is related to some results due to Erdos and Straus (7], Erdos [5] and
Séndor [15]. As applications of the main result, the solutions of two problems posed by
Erdos and Graham [6] are given, among others.

1. Introduction. Some criteria for the irrationality of infinite series of positive
rationals have been proved. In the case when an infinite series is divergent, the problem
of the irrationality of its value does not arise. Thus we shall assume in what follows that
all infinite series which appear are convergent. Another way in which we can avoid this
trivial case is to make the convention that ®« is an irrational number (or, perhaps more
naturally, to consider that o« is irrational and rational at the same time).

The purpose of this paper is to prove the irrationality of a certain class of infinite
series, i.e. to give another criterion for irrationality. Qur main result is related to the
following known theorems.

THEOREM A (Erdos and Straus [7]). Let (a,,), n =1, be a sequence of positive integers
such that

a, 1 = a,a,...a,
for each n and, for every C >0, there is a natural number n > C with the property that

Gy Fai—a, +1.

Then the sum of the series Y, 1/a, is an irrational number.
n=1

TueoreM B (Erdos [5]). Let a,<a,<...<a,<... be a sequence of positive
integers such that

lim sup a}*" =

N—»c0

and

a, >n1+£

for a number € >0 and for every n>ny(€). Then the sum of the series Y 1/a, is an
n=1
irrational number.
THeoreM C (Sandor [15]). Let (a,), (b,), n =1, be two sequences of positive integers

Glasgow Math. J. 29 (1987) 221-228.

https://doi.org/10.1017/50017089500006868 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006868

222 C. BADEA

such that
. ap 41 1
lim sup —2——. =0
now  didy...4, b,
and 5
L. TS
liminf 2% . —2->1.
n—® a, n+1

Then the sum of the series Y. b,/a, is an irrational number.
n=1
In the proof of the main result we shall use a criterion for irrationality of limits of
rationals due to Brun [3]. As applications we give the solutions of two problems recently
posed by Erdos and Graham [6] and we prove that every convergent infinite series of
positive rationals has infinitely many disjoint subseries (to be defined) with irrational
sums.

We note in ending that the same method of proof for the main result was used [1] to
obtain some criteria for the irrationality of certain infinite products.

2. Main result. The main result of the present paper is the following.

THEOREM. Let (b,) and (a,), n =1, be two sequences of positive integers such that the
relation

bn bns
ntlg2 ——mtlg 41 (1)

an+1> b a'l b
n n

holds for every large n. Then the sum of the series ¥, b,/a, is an irrational number.
n=1

Proof. We have
b b b A,
2—"=1im(—‘+...+—")=1im—, @)
a, n—» P,,

where, for everyn=1, P,=a,a,...a,and A, = )'i b;P,/a;.
i=1

Brun’s criterion asserts that a positive real number a which is the limit of an
increasing sequence of rationals

@=1lm2, 3)

n—o X,

where x,, and y,, n =1, are positive integers, is irrational if

yn+2_yn+1<yn+l_yn (4)

Xp42 " Xps1  Xpa1 " Xp

for all large n.
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Taking into account this theorem, we shall prove the inequality (4) for y, = A, and
x, = P,. Because b, and a, are positive integers for all n, we get that the sequence
(A,/P,), n=1, is increasing and thus, via Brun’s theorem, we shall find that the sum of

the series ), b,/a, is irrational.

n=1
Firstly, we derive a recurrence relation for the sequence (A,). Because P,., =
a,..,P,, we have

n+1

Api— A, =ap4 2 P,(b;/a;) - 2 P,(bi/a;)
i=1 i=1
so we may write the following relation

An+1=an+1An+bn+1Pn' (5)

Using (5) in the inequality (4) with y, =A, and x, = P,, we obtain the following
equivalent inequality

(an+2—1)An+l+bn+2Pn+l (an+1_1)An+bn+1Pn
Pn+l(an+2_1) Pn(an+1_1)
which is also equivalent to

An+1 _ﬁ< bn+1 _ bn+2 ) (6)
Pn+l Pn an-f—l_1 an+2_1
Using again (5), we have
An+1 _ ﬁ =An+1Pn - AnPn-H = An-H - an+1An — bn+l
Pn+1 Pn PnPn-H Pn+1 Ay 41 .
Therefore the inequality (6) is equivalent to
bn+l bn+1an+2_bn+l _an+1bn+2+bn+2 (7)

ap 41 (@ne1 = 1)(@ns2— 1)
From (7), we deduce by routine calculations the following relation
bnan+1 > bn+lai - bn+1an + bn)

which is just (1).
Thus it follows that (4) holds for every sufficiently large n and, via Brun’s criterion,
the proof is now complete.

REMARK. A generalization of Brun’s irrationality criterion was given by Froda [8].
Namely, Froda proved that Brun’s criterion is also true if y, and x, are positive real
numbers so that (4) holds. The same method of the proof of the above theorem remains
valid to show, with the help of Froda’s generalization, that the main result is also true for
positive numbers a, and b,. However, this is not valid because Froda’s generalization is
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not correct. Indeed, we gave recently [1] the following counter-example: let us define the
sequence (c,) by ¢, =2 and the recursive relation

— A2 .
Cn+l—cn_cn+1,

then the sequences

YV, = H (a;+1ogl.5) and x,= ]—[ a;,
i=1 i=1

where (a,) is given by a, = (log 1.5)/(2V% — 1), provide the desired counter-example.

3. Some consequences. In this section we shall give some easy consequences of the
main result which show the similarity (and the differences) of our theorem with the
above-mentioned results of Erdds and Straus, Erdds and Sandor.

The following result is an easy consequence of the main theorem and is related to
Theorem A of Erdés and Straus.

CoroLLARrY 1. Let (a,), n =1, be a sequence of positive integers such that
a,1>at—a, +1 8)

holds for all large n. Then the sum of the series i 1/a, is an irrational number.

n=1
Proof. Put b, =1 in the above theorem.
REMARK. In a certain sense, Corollary 1 is the best possible. Indeed, for the

k
sequence (c,) defined in the remark in the previous section, we have ¥ 1/c,=

n=1
1-(cxk+1—1)7" and thus i 1/c, = 1; so we cannot replace (8) by a,., =a2 —a, + 1. This
n=1

example also shows that the answer to the last question of Problem E.24 in [11] is
negative.

We recall that the sequence (u,), n =1, is eventually nondecreasing if u, ., = u, for
all large n.

In connection with Theorem B of Erdés we now state another corollary.

CoroLLARY 2. Let (a,), n=1, be a sequence of positive integers such that the
sequence (ay*'), n=1, is eventually nondecreasing. Then the sum of the series il 1/a, is
ne
an irrational number.
Proof. Because the sequence (a,*"), n =1, is eventually nondecreasing, we have

An+1 ?ai (9)
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for all large n. Using the convention that Y 1/a, is a convergent series (see the first

n=1

section), we get that a, tends to infinity with # and thus

a,>1 (10)
for all large n.
We complete the proof by using (9), (10) and Corollary 1.

Considering again series of the form Y b,/a,, we may state the following result
1

n=

which is related to Sandor’s Theorem C.

CoroLLARY 3. Let (b,) and (a,), n = 1, be two sequences of positive integers such that
the sequence (a,41/b,+1a:a;. . .a,), n =1, is eventually nondecreasing. Then the sum of

oo
the series ¥, b,/a, is an irrational number.
n=1

Proof. The condition from the statement of this corollary is equivalent to

n+1

A4y ?Taf.- (11)

Now we can complete the proof as in the proof of Corollary 2 using (11), the
convention from the first section and the main result.

As a general remark, we note that in all these consequences something is gained and
something is lost from the results mentioned in Theorems A to C.

4. Disjoint subseries with irrational sums. We say that Y v, is a subseries of a
n=1
given series Y u, if (v,) is a subsequence of the sequence (u,). Two subseries Y. v, and
n=1 n=1

¥ w, of the same series ¥ u, are disjoint if (w,) is a subsequence of the sequence (i,)

n=1 n=1
from which has been taken the subsequence (v,), i.e. (w,) and (v,) are disjoint
subsequences of the sequence (u,).

As an application of the main result we shall prove the following (perhaps
unexpected) proposition.

ProrosITION. Every convergent infinite series of positive rationals has infinitely many
disjoint subseries with irrational sums.

This result is similar to a proposition in [1], where we proved that every convergent
infinite product of rational numbers greater than 1 has infinitely many disjoint
subproducts with irrational values (the notions of subproducts and disjoint subproducts
are defined similarly).
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Proof of proposition. Let ¥ b,/a, be a convergent series of positive rationals. Then
n=1

the sequence (b,/a,) tends to zero when n tends to infinity. Hence there are infinitely
many disjoint subsequences (a%)y) and (b%)), k=1, of the sequences (a,) and (b,)
respectively, p =1, 2, ..., such that

n(k+1) 2
8> b&), (ady)

for all large k because the sequence (a,) tends to infinity with n.

Now, using Corollary 3, we find that the subseries of the series Z b,/a, generated

by the subsequences (a%},) and (b%},) have irrational sums.
The proof is complete.

ReMark. There is (see {4]) a convergent series of positive rationals such that all its
subseries have irrational sums. This shows that we cannot replace the word irrational by

rational in the above proposition. This contrasts with the known fact [9] that if ¥ a, is a
n=1
divergent series with a,, — 0 as n— = then every positive real number may be written as

the sum of a convergent subseries of ¥ a,. The above ‘“negative” result for series may be

n=1
explained by the fact that the set of rational numbers is denumerable while the set of
irrationals is uncountable. We note that in [1] we posed the question of the existence of a
convergent infinite product of rational numbers greater than 1 such that all its
subproducts have irrational values and, as far as we know, the problem is still open.

5. Two problems of Erdés and Graham. In this section we shall give, based upon
our irrationality criterion, the solutions of two problems posed by Erdés and Graham (6,
pp. 64-65].
It has been noted that for the sequence of Fibonacci numbers F, defined by F, =0,
F=1,F,,=F,.,+F, n=0, we have (see [10], [12])
s 1_7- V5
n=0F5n 2
and thus the sum of the above series is irrational. This is not surprising in view of the

above proposition. As a related result, we mention the transcendence of the sum of the
series

o 1
n=0n! B"

which was independently proved by Mignotte [14] and Mahler [13].
In their very nice book [6, pp. 64-65], Erdos and Graham wrote: “However, nothing
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is known about the character of the related sums
S | Gl |
D or 3.
n=14 2741 n=1 LZ”

Here L, is the nth Lucas number, defined by L, =F,_,+ F,,,.”
The aim of this section is to prove the above series have irrational sums. Firstly we
prove the following corollary.

CoRrOLLARY 4. The sum of the series Y. 1/Fr,, is an irrational number.
1

n=

In the proof of this (and the next) result we shall use some known identities for
Fibonacci numbers which can be easily proved by induction.

Proof of Corollary 4. Keeping in mind the first corollary, it is sufficient to prove that
F2"+l+l > F§n+1 - F2n+1 + 1

or even

F2"“+1 = F§"+1

for all large n. But this follows from F, ., = F%+ F%,, for k =2" and now the proof is
complete.

For the second problem of Erd6s and Graham we prove the following corollary.
COROLLARY 5. The sum of the series Y. 1/Ly is an irrational number.
n=1

Proof. Firstly we prove that, for all large p, we have

Ly, >L:~L,+1. (12)
The above inequality (12) is equivalent to
Fopir+ Fop > Fopy+Fp i +2F, \Foy— Fpy— Fpo + 11
or, by the identity F,., = F2+ F2,,, to
Fp+1+1';z—1+2(F§_Fp+11';;—1)>1. (13)

But F2—F,,.F,_; =(=1)"*'; so (13) holds for all large p. By putting p =2" in (12), we
get

Loni>L% — Lon+ 1
for all large n and from Corollary 1 we deduce the desired conclusion.

Remark. Recently [2] further contributions on these and other related problems of
Erdos and Graham were given.

I am very grateful to the referee for helpful suggestions.
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