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Ignorable likelihood (IL) approaches are often used to handle missing data when estimating a multi-
variate model, such as a structural equation model. In this case, the likelihood is based on all available data,
and no model is specified for the missing data mechanism. Inference proceeds via maximum likelihood
or Bayesian methods, including multiple imputation without auxiliary variables. Such IL approaches are
valid under a missing at random (MAR) assumption. Rabe-Hesketh and Skrondal (Ignoring non-ignorable
missingness. Presidential Address at the InternationalMeeting of the Psychometric Society, Beijing, China,
2015; Psychometrika, 2023) consider a violation of MAR where a variable A can affect missingness of
another variable B also when A is not observed. They show that this case can be handled by discarding
more data before proceeding with IL approaches. This data-deletion approach is similar to the sequential
estimation of Mohan et al. (in: Advances in neural information processing systems, 2013) based on their
ordered factorization theorem but is preferable for parametric models. Which kind of data-deletion or
ordered factorization to employ depends on the nature of the MAR violation. In this article, we therefore
propose two diagnostic tests, a likelihood-ratio test for a heteroscedastic regression model and a kernel
conditional independence test. We also develop a test-based estimator that first uses diagnostic tests to
determine which MAR violation appears to be present and then proceeds with the corresponding data-
deletion estimator. Simulations show that the test-based estimator outperforms IL when the missing data
problem is severe and performs similarly otherwise.

Key words: data deletion, diagnostic test, graphical models, MAR, missingness mechanisms, m-graph,
ordered factorization, structural equation models.

A common approach for handling missing data in regression analysis (e.g., linear, logistic,
multilevel) is complete-case analysis or listwise deletion. Alternatively, regression models are
sometimes embedded within multivariate models in order to analyze all available data by maxi-
mum likelihood (ML) estimation, Bayesian analysis, or multiple imputation. Following Little and
Zhang (2011), we use the term “ignorable likelihood” (IL) for such approaches.

Missing at random (MAR) andmissing completely at random (MCAR) assumptions, originat-
ing fromRubin (1976), are often invoked as justifications for IL approaches, but these assumptions
tend to be misunderstood as pointed out by Seaman et al. (2013) and Rabe-Hesketh and Skrondal
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(2023). When data are believed to be missing not at random (MNAR), it is commonly believed
that it becomes necessary to model the missingness process explicitly. However, as demonstrated
by Rabe-Hesketh and Skrondal (2015, 2023), valid inferences can often be obtained by making
slight modifications to data, models, or estimators, such as data deletion followed by IL methods.

In groundbreaking work, Mohan et al. (2013) and Mohan and Pearl (2021) provide a frame-
work for understanding missing data problems based on directed acyclic graphs (DAGs). Their
DAGs, called m-graphs (m for “missing data”), represent the assumed relations among the vari-
ables of interest and include paths from these variables to missing data indicators to encode
the (conditional) independence assumptions for the missing data mechanism. These representa-
tions make assumptions explicit and allow graph theory to be used to determine whether target
quantities are recoverable (can be estimated consistently) and whether assumptions regarding the
missingness mechanism are testable. If target quantities can be estimated consistently based on
the observed data, m-graphs also help to derive procedures for estimating these quantities.

Following this line of research, there have been many advances in handling missing data
problems, primarily in computer science. Most of this work implicitly assumes that all variables
are categorical so that joint and conditional probabilities can be estimated by the corresponding
sample proportions from which other target quantities can be derived. In contrast, in this paper
we use m-graphs to derive and justify parametric inference with missing data. For concreteness,
we focus on linear regression and linear structural equation modeling (SEM) and on three types
of MNAR processes: (a) an explanatory variable X directly affects missingness of a response
variable Y (also when X is not observed); (b) a response variable Y directly affects missingness
of an explanatory variable X (also when Y is not observed); and (c) both of these MAR violations
are present.

For situations (a) and (b), Rabe-Hesketh and Skrondal (2015, 2023) show that a consistent
estimator can be obtained by creating more missing data followed by IL methods. They demon-
strate that their data-deletion approach can be viewed as making the process MAR. Rabe-Hesketh
and Skrondal (2023) demonstrate that this approach is closely related to the ordered factoriza-
tion theorem of Mohan et al. (2013) but preferable for parametric models. Situation (c) can be
addressed by an inverse probability weighted (IPW) estimator that we derive in Sect. 1 of this
article.

In Sect. 1, we also provide a brief review of m-graphs and describe consistent estimators for
the three types of MNAR considered. Thereafter, we use a population study in Sect. 2 to show
that the estimators proposed for the above situations are actually consistent and a Monte Carlo
study to investigate finite sample bias and mean squared error (MSE).

Because addressing MAR violations (a) and (b) requires different estimators, it is important
to be able to diagnose which of the violations is present. We therefore propose both parametric
and nonparametric diagnostic tests in Sect. 3. Simulations are used to assess the Type I error rates
and power of the tests as a function of the strength of MAR violation, proportion of missing data
and sample size.

In Sect. 4, we develop a novel test-based estimator that first uses diagnostic tests for specific
MAR violations and then proceeds with the estimator that is valid for that violation. The finite
sample performance of the proposed test-based estimator is compared with the naive IL estima-
tor under various missing data mechanisms. Finally, we close the article with some concluding
remarks.

1. Missingness Mechanisms, Recoverability and Estimators

We follow the terminology and notation of Rabe-Hesketh and Skrondal (2015, 2023) in this
paper. Mohan andPearl (2021) use anm-graph, a type ofDAG, to encode relations amongmultiple
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variables and their missingness (or selection) indicators, so that conditional independence can be
inferred based on d-separation (e.g., Geiger et al., 1990).

Figure 1 shows m-graphs for the different types of missingness mechanisms considered in
this paper. Here Y is the response variable and X and Z are two explanatory variables. Whereas
Z is always observed (filled circle), X and Y can be missing (hollow circles) with corresponding
selection indicators, Sx and Sy , equal to 1 if the variable is observed and 0 if missing. In all
cases, we assume that (Xi , Zi ,Yi , Sxi , Syi ) for unit i are independently and identically distributed
and henceforth omit the i subscript for convenience. The graphs do not show “proxy” variables
introduced by Mohan et al. (2013) to represent the observed data in conditional independence
statements. To avoid the notation Vobs for the subset of elements of V that are not missing used
in most of the missing-data literature, Mohan et al.’s (scalar) proxy variable X∗ for X is equal to
X when X is observed and equal to some representation for missingness, such as “NA,” when X
is missing. All variables that can be missing have such proxies, here also Y .

In our setting, the definition of MAR in Mohan et al. (2013) and Mohan and Pearl (2021)
is (Sx , Sy) ⊥⊥ (X,Y )|Z . More generally, missingness cannot depend on variables that can be
missing (here X and Y ), given the variables that cannot be missing (here Z ). In contrast, Rubin’s
(1976) original MAR definition allows missingness to depend on Vobs, the observed elements
of the variables that can be missing (and additionally, it conditions on the realized data and
missingness indicators insteadof the corresponding randomvariables). To emphasize that allowing
missingness to depend on X only when it is observed is unrealistic, Rabe-Hesketh and Skrondal
(2023) call Mohan and Pearl’s version of MAR “realistic MAR” (R-MAR), and we use this
acronym henceforth. Rabe-Hesketh and Skrondal (2023) also relate R-MAR to Seaman et al.
(2013) everywhere MAR and Pothoff et al. (2006) MAR+.

The m-graph in the top left panel of Fig. 1 represents R-MAR. For concreteness, Y could be
income, X introversion and Z age, with income and introversion obtained from survey responses
and age from an administrative database, so that age is never missing. The graph includes paths
Z → Sx and Z → Sy , which encode that age (Z ) causes the missingness of the covariate (X ) and
the outcome (Y ). For instance, senior citizens may be more reluctant to disclose their income or
complete a personality questionnaire. This situation corresponds to R-MAR because Z is always
observed.

We refer to the other situations in the figure as MNAR because R-MAR is violated. In
the bottom left panel, R-MAR is violated because of one path, X → Sy , where X is not always
observed, andwe call this situationMNAR-X. This path could be due tomore introvert individuals
having a tendency not to report their income, given their age. MNAR-Y, shown in the bottom right
panel of Fig. 1, violates R-MAR because of the path Y → Sx . For example, those who earn more
may be less willing to provide their personal information, given age. Both MNAR-X andMNAR-
Y can be handled by data deletion and standard IL based on all remaining data, as shown by
Rabe-Hesketh and Skrondal (2023) and described in Sect. 1.1.

In the top right panel of Fig. 1, the paths X → Sy and Y → Sx are both present, and we
call this situation MNAR-XY. This situation was not considered by Rabe-Hesketh and Skrondal
(2023).

We do not consider R-MAR violations in the form of the paths X → Sx and Y → Sy .
While X → Sx can be handled by simply conditioning on X (i.e., making inferences regarding
P(Y, Z |X) for the subset of data where X is observed), more complex solutions work in specific
situations when Y → Sy (e.g., Mohan, 2018; Skrondal & Rabe-Hesketh, 2014).

Mohan and Pearl (2021) use graphs to derive whether joint and conditional distributions,
such as P(X, Z ,Y ) and P(Y |X, Z), can be recovered (i.e., can be estimated consistently) when
the missingness process is compatible with the graphs. They implicitly assume that all variables
are categorical and that the distributions can be estimated from cross-tabulations. Here we assume
that we have specified a correct parametric model for continuous variables, X , Z and Y , namely
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Figure 1.
Missingness graphs (DAGs) for common missingness mechanisms.

a linear SEM compatible with the graphs in Fig. 1. Our interest is in consistent estimation of
the model parameters as in Mohan et al. (2018). However, we also refer to the joint distribution
P(X, Z ,Y ) as the target when we consider the case where all parameters of the SEM are of
interest, including the parameter for Cov(X, Z), and to the conditional distribution P(Y |X, Z)

when only the parameters of the regression model of Y on X and Z are of interest, i.e., the
regression coefficients and the residual variance.

1.1. Estimators Under MNAR-X

1.1.1. Joint Distribution We start by showing how to recover the joint distribution P(X, Z ,Y )

under MNAR-X, discussed (without Z ) in Example 1 of Mohan and Pearl (2021):

P(X, Z ,Y ) = P(Z)P(X |Z)P(Y |X, Z)

= P(Z)
︸ ︷︷ ︸

aA

P(X∗|Sx = 1, Z)
︸ ︷︷ ︸

bA

P(Y ∗|Sx = 1, Sy = 1, X∗, Z)
︸ ︷︷ ︸

cA

. (1)

From the graph in Fig. 1, we observe that Sx and X are independent conditional on Z (i.e.,
Sx ⊥⊥ X |Z ), so that P(X |Z) = P(X |Sx = 1, Z) = P(X∗|Sx = 1, Z). We also observe that
(Sx , Sy) ⊥⊥ Y |X, Z , so that P(Y |X, Z) = P(Y |Sx = 1, Sy = 1, X, Z) = P(Y ∗|Sx = 1, Sy =
1, X∗, Z). The last equality shows that we can apply the same estimator to the observed data Z
and X∗ that we would apply if there were no missing data. To recover the joint distribution, we
therefore proceed sequentially according to (1). In step aA, we estimate P(Z) using all units (Z is
never missing); in step bA, we include units for which X is observed, Sx = 1; and in step cA, we
include complete cases for which both X and Y are observed, C = Sx Sy = 1. This is an example
of Mohan et al.’s (2013) ordered factorization.
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Rabe-Hesketh and Skrondal (2015, 2023) suggest a data-deletion approach briefly described
here. If Sx and Sy satisfy MNAR-X, then the selection process for Y is modified by deleting Y
when Sx = 0, resulting in a modified selection indicator Ṡ y ,

Ṡ y =
{

Sy if Sx = 1
0 if Sx = 0

.

Now selection of Y depends on X only when X is observed and does not depend on any missing
data, as shown by conditioning on X∗ (sometimes denoted Xobs in the missing data literature):

M-MAR: P(Sx, Ṡ y |X, Z ,Y ) = P(Sx |Z)P(Ṡ y |Sx, X∗, Z). (2)

We have therefore made the missingness MAR, and the idea is referred to as M-MAR. If the data
deletion is performed in repeated samples, the modified missingness process is everywhere MAR
(as defined in Seaman et al., 2013). IL methods for all remaining data hence have the desired
frequentist properties (Seaman et al., 2013).

When X , Z and Y follow a SEM, we call the data-deletion ML estimator SEM-X. Using
the factorization in the first line of (1) to express the data-deletion log-likelihood in terms of the
three densities, Rabe-Hesketh and Skrondal (2023) show that the subsets of units that contribute
information on the parameters for each of these densities correspond to the subsets of units used
in the sequential estimation procedure by Mohan et al. (2013). The advantage of data deletion is
that we can proceed with conventional IL methods using standard software after deleting some
data and obtain standard errors as a byproduct.

1.1.2. Conditional Distribution It is evident from cA in Eq. (1) that the conditional distribution
P(Y |X, Z) can be recovered from complete cases. The m-graph satisfies conditional MAR (C-
MAR) as defined by Rabe-Hesketh and Skrondal (2023) because C ⊥⊥ Y |X, Z . This condition
for valid inference is also discussed by Little (1992) and corresponds to Example 2 in Mohan and
Pearl (2021).

1.2. Estimators Under MNAR-Y

1.2.1. Joint Distribution To recover the joint distribution under MNAR-Y in Fig. 1, we can
again use sequential estimation, now based on the ordered factorization

P(X, Z ,Y ) = P(Z)P(Y |Z)P(X |Z ,Y )

= P(Z)
︸ ︷︷ ︸

aB

P(Y ∗|Sy = 1, Z)
︸ ︷︷ ︸

bB

P(X∗|Sx = 1, Sy = 1, Z ,Y ∗)
︸ ︷︷ ︸

cB

. (3)

In step aB , we estimate P(Z) using all units (Z is never missing); in step bB , we include units
where Sy = 1; and in step cB , we include complete cases.

After discarding values of X for units whose Y is missing, and defining the new selection
indicator Ṡx as in Sect. 1.1.1 but now with X and Y interchanged, we obtain

M-MAR: P(Ṡx, Sy |X, Z ,Y ) = P(Sy |Z)P(Ṡx |Sy, Z ,Y ∗). (4)

Again, the modified missingness process is everywhere MAR, and we can proceed with standard
IL methods. When the assumed model for X , Z and Y is a SEM, we refer to the data-deletion
ML estimator as SEM-Y.
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1.2.2. ConditionalDistribution Unfortunately, the conditional distributionof interest P(Y |X, Z)

does not appear directly in the factorization in (3). Although the conditional distributions needed
for sequential estimation can be derived from the specified models for P(Y |X, Z) and P(X, Z),
they may not be straightforward functions of the parameters of interest. Therefore, SEM-Y is
highly preferable to sequential estimation here. Alternatively, an IPW estimator can be derived as
shown for a more complex case in Sect. 1.3 and Appendix A.

1.3. Estimators Under MNAR-XY

1.3.1. Joint Distribution Mohan and Pearl (2021), Example 5, derive an expression for the joint
distribution (without Z ) that is a weighted version of the joint distribution in the complete-case
sample. However, it is not clear how to apply this result unless all variables are categorical and
the goal is to estimate the probabilities of the X by Z by Y table.

Instead, we use an estimating equation approach. Let m(X, Z ,Y ) be the vector of score
contributions for a unit based on the joint likelihood for X , Z andY . For a correctly specifiedmodel
with no missing data, EX,Z ,Y [m(X, Z ,Y )] = 0 when evaluated at the correct parameter values.
To obtain a consistent estimator of the parameters for P(X, Z ,Y ) using complete cases (withC =
Sx Sy = 1), we find inverse weightsπ ≡ π(X, Z ,Y ) so that ESx ,Sy ,X,Z ,Y

[ 1
π
Sx Sym(X, Z ,Y )

] =
0 when evaluated at the correct parameter values. We show in Appendix A that

E

[

1

π
Sx Sym(X, Z ,Y )

]

= EX,Z ,Y

[

1

π
P(Sx = 1|Z ,Y )P(Sy = 1|X, Z)m(X, Z ,Y )

]

,

where we suppressed the subscripts for the expectation when it is over the selection indicators
and the variables X , Z and Y that are not explicitly conditioned on. Therefore, π = P(Sx =
1|Z ,Y )P(Sy = 1|X, Z) and both these probabilities, assumed to be positive, can be estimated in
the complete-case sample by using, for instance, logistic regression. The inverses of the products
of these estimates are then used as weights in pseudo maximum likelihood estimation. We call
this IPW estimator SEM-XY. The estimator is also consistent under MNAR-X and MNAR-Y
because these mechanisms are special cases of MNAR-XY.

1.3.2. Conditional Distribution We now let m(X, Z ,Y ) be the vector of score contributions
for a unit based on the likelihood of Y given X and Z . Without missing data, we assume that
EY |X,Z ,[m(X, Z ,Y )] = 0 at the correct parameter values. To estimate a model for P(Y |X, Z)

using complete cases when there are missing data, we want to find π ≡ π(X, Z ,Y ) so that
ESx ,Sy ,Y |X,Z

[ 1
π
Sx Sym(X, Z ,Y ) | X, Z

] = 0 at the correct parameter values. Appendix A shows
that we obtain

E

[

1

π
Sx Sym(X, Z , Y ) | X, Z

]

= P
(

Sy = 1 | X, Z
)

EY |X,Z

[

1

π
P

(

Sx = 1 | Z , Y
)

m(X, Z , Y )

]

.

Assuming P (Sy = 1 | X, Z) > 0, the estimating equation becomes EY |X,Z
[ 1

π
P (Sx = 1 | Z ,Y )m(X, Z ,Y )

] = 0, so π = P (Sx = 1 | Z ,Y ), also assumed to be posi-
tive. For linear regression, the pseudolikelihood estimator is weighted least squares (WLS), and
we call the estimator WLS-X because the inverse weights are estimates of P (Sx = 1 | Z ,Y ).
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2. Performance of Estimators

2.1. Population Study of Asymptotic Performance

Weevaluated the performance of six estimators for a simulated population-scale datasetwhere
missingness mechanisms are compatible with the DAGs in Fig. 1. The model for P(X, Z ,Y ) is
a SEM as described in Sect. 2.1.1. The six estimators are:

1. OLS for P(Y |X, Z): OLS with complete cases
2. SEM for P(X, Z ,Y ): SEM by MLE (with all available data)
3. SEM-X for P(X, Z ,Y ): SEM by MLE after discarding Y when X is missing
4. SEM-Y for P(X, Z ,Y ): SEM by MLE after discarding X when Y is missing
5. WLS-X for P(Y |X, Z): WLS with weights for selection of X
6. SEM-XY for P(X, Z ,Y ): SEM by pseudo-MLE with weights for selection of X and Y .

2.1.1. Simulation Design For X and Z , we specify a bivariate normal distribution:

(

X
Z

)

i.i.d.∼ N

[(

0
0

)

,

(

ψXX ψXZ

ψZ X ψZ Z

)]

, (5)

where ψXX = ψZ Z = 1 and ψXZ = 0.5. Y is simulated from the linear model

Y = β0 + βX X + βZ Z + ε, ε|X, Z ∼ N (0, σ 2), (6)

where β0 = βX = βZ = σ 2 = 1.
Themissingness indicatorsMx = 1−Sx andMy = 1−Sy are simulated from probit models:

M∗
y = γ0 + γX X + γZ Z + u0, u0|X, Z ∼ N (0, 1) (7)

M∗
x = α0 + αZ Z + αY Y + u1, u1|Z ,Y ∼ N (0, 1), (8)

where

1 − Sx = Mx =
{

1, if M∗
x > 0

0, otherwise
and 1 − Sy = My =

{

1, if M∗
y > 0

0, otherwise.

WesetγZ = αZ = 1and express the strength of dependence representedby thepaths X → Sy

and Y → Sx by the partial correlations, ρM∗
y X ≡ Cor(M∗

y , X |Z) and ρM∗
x Y ≡ Cor(M∗

x ,Y |X, Z),
respectively. Appendix B gives expressions for these correlations that allow us to solve for γX and
αY . We simulate four missingness processes defined by the four combinations of ρM∗

y X ∈ {0, 0.6}
and ρM∗

x Y ∈ {0, 0.6}. For MNAR-X, ρM∗
y X = 0.6 and ρM∗

x Y = 0; for MNAR-Y, ρM∗
y X = 0 and

ρM∗
x Y = 0.6; for MNAR-XY, ρM∗

y X = 0.6 and ρM∗
x Y = 0.6 and for R-MAR, ρM∗

y X = 0 and
ρM∗

x Y = 0. Appendix B also gives expressions for the marginal probabilities of observing X and
Y , Px = P(Sx = 1) and Py = P(Sy = 1), which were set to 0.8 to solve for γ0 and α0.

Datasets of size N = 5,000,000 were simulated with the R-package lavaan (Rosseel, 2012)
which is also used for maximum likelihood estimation of the SEM (for SEM, SEM-X, and
SEM-Y). The IPW estimator was based on the correct probit models, and we implemented WLS-
X with survey (Lumley, 2019), and SEM-XY with ipw (van der Wal & Geskus, 2011) and
lavaan.survey (Oberski, 2014). Sandwich estimators were used for the standard errors (SEs)
of IPW estimators.
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2.1.2. Results Table 1 reports the point estimates of βX and βZ for all estimation methods and
the estimates ofψXZ for the SEM estimators. The original estimated SEs have been multiplied by
100 and are presented in parentheses. The asymptotic SEs for any sample size m can be obtained
by multiplying the reported estimates by

√
500/m. Point estimates expected to be consistent are

indicated by asterisks next to the estimates. SEs of the most efficient estimators are shown in bold
and the percentage increase in SE compared with the smallest SE is shown in square brackets
for some alternative consistent estimators for each condition. Point estimates that differ from the
generating value by more than 3% are shown in italics.

We see that SEM is inconsistent when R-MAR is violated although the inconsistency of ̂βX is
small. In contrast, the data-deletion estimators SEM-X and SEM-Y are consistent underMNAR-X
andMNAR-Y, respectively. These deletion estimators have smaller population SEs and are hence
more efficient than the corresponding consistent IPW estimators, WLS-X and SEM-XY. In fact,
SEM-XY is very inefficient, a general problem of IPW estimators discussed in Seaman andWhite
(2013). SEM-X is inconsistent under MNAR-Y and, to a lesser extent, SEM-Y is inconsistent
under MNAR-X. Generally, the inconsistency of ̂βZ is more severe than that of ̂βX .

In contrast, OLS is consistent for MNAR-X (and R-MAR) because C ⊥⊥ Y |X, Z , the suffi-
cient condition for recovering P(Y |X, Z), and hence consistently estimating βX and βZ , using
complete cases. Notably, X in this case can cause its own missingness (a condition not included
in the simulation).

All estimators are consistent under R-MAR, with SEM and SEM-Y being more efficient than
OLS. This can be understood by remembering that the maximum likelihood estimators (SEM,
SEM-Y) are equivalent to the corresponding multiple imputation estimators (without auxiliary
variables). Units with Sy = 1 and Sx = 0 can be used to impute X based on the imputation model
P(X |Z ,Y ) estimated from the complete cases, and such imputations contribute to the estimation
of P(Y |X, Z) and hence βX and βZ . The efficiency gain is not large in the current case but could
be improved by using multiple imputation with auxiliary variables.

OLS and SEM-X produce identical estimates of βX and βZ for all missingness processes
because (i) without missing data, OLS estimates of regression coefficients are identical to ML
estimates when the likelihood is based on P(Y |X, Z), and (ii) SEM-X uses data from complete
cases only for the parameters of P(Y |X, Z), and these parameters are distinct from the parameters
of P(X, Z) (whose estimates are also based on incomplete cases).

We note that WLS-X is consistent for P(Y |X, Z) under all missingness mechanisms con-
sidered here, and the loss in efficiency relative to the most efficient consistent alternative (when
one exists) is appreciable under MNAR-Y but much less so under MNAR-X. Under MNAR-
XY, WLS-X is more efficient than SEM-XY and therefore preferable if we are interested in the
parameters of P(Y |X, Z) only.

2.2. Simulation Study of Finite Sample Performance

In this section, we assess the finite-sample frequentist properties of the estimators discussed
above. We limit our investigation to a comparison of SEM with each consistent estimator, i.e.,
SEM-X, SEM-Y and SEM-XY for MNAR-X, MNAR-Y, MNAR-XY, respectively.

2.2.1. Simulation Design The simulation conditions are all combinations of the following
factors:

1. Strength of dependence ρM∗
y X ∈ {0, 0.5, 0.9}.

2. Strength of dependence ρM∗
x Y ∈ {0, 0.5, 0.9}.

3. Marginal probability of observing X : Px ∈ {0.3, 0.8}.
4. Marginal probability of observing Y : Py ∈ {0.3, 0.8}.
5. Sample size: N ∈ {200, 500, 1000}.
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Table 1.
Estimates and (100×SE) for population study.

MNAR-X
X → Sy

MNAR-Y
Y → Sx

MNAR-XY R-MAR

OLS ̂βX 1.000* 0.955 0.963 1.000*
(0.064) (0.061) (0.062) (0.062) [4]

̂βZ 0.999* 0.902 0.905 1.000*
(0.070) (0.070) (0.067) (0.072) [7]

SEM ̂βX 0.993 0.999 0.999 1.000*
(0.062) (0.060) (0.060) (0.060)

̂βZ 0.967 1.012 0.968 1.000*
(0.065) (0.068) (0.065) (0.067)

̂ψXZ 0.483 0.458 0.432 0.500*
(0.056) (0.057) (0.056) (0.057)

SEM-X:
discard Y when
X is missing

̂βX 1.000* 0.955 0.963 1.000*
(0.064) (0.061) (0.062) (0.062) [4]

̂βZ 0.999* 0.902 0.905 1.000*
(0.070) (0.070) (0.067) (0.072) [7]

̂ψXZ 0.500* 0.392 0.392 0.500*
(0.058) (0.056) (0.056) (0.058) [2]

SEM-Y:
discard X when
Y is missing

̂βX 0.998 1.000* 0.986 1.000*
(0.062) (0.060) (0.279) (0.060) [0]

̂βZ 0.988 1.000* 0.956 1.000*
(0.065) (0.068) (0.280) (0.067) [0]

̂ψXZ 0.384 0.500* 0.161 0.500*
(0.058) (0.063) (0.230) (0.057) [0]

WLS-X:
with IPW for Sx

̂βX 1.000* 1.010* 0.999* 1.000*
(0.066) [3] (1.055) [1661] (0.120) (0.064) [7]

̂βZ 1.000* 1.001* 0.996* 1.000*
(0.076) [9] (0.539) [688] (0.202) (0.079) [18]

SEM-XY:
with IPW for Sx

times IPW for Sy

̂βX 1.000* 1.020* 0.989* 0.999*

(0.286) [347] (2.387) [3884] (0.557) [362] (0.115) [92]
̂βZ 0.999* 0.997* 0.992* 1.000*

(0.660) [841] (1.012) [1379] (1.381) [583] (0.279) [317]
̂ψXZ 0.484* 0.490* 0.464* 0.505*

(0.793) [1267] (2.724) [4238] (1.852) (0.605) [969]

Consistent estimators are denoted by ∗.
Bold SE is smallest SE among estimators.
Italics show estimates that differ from generating value by at least 3%.
Square brackets show percentage increase in SE compared with smallest SE among estimators.

ForMNAR-X,ρM∗
y X ∈ {0.5, 0.9} andρM∗

x Y = 0; forMNAR-Y,ρM∗
y X = 0 andρM∗

x Y ∈ {0.5, 0.9};
for MNAR-XY, ρM∗

y X ∈ {0.5, 0.9} and ρM∗
x Y ∈ {0.5, 0.9}.

We replicate the simulation 100 times for each condition and estimate the parameters by SEM
(MLE based on all available data) as well as the SEM-X, SEM-Y or SEM-XY estimator that is
consistent for that condition.
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2.2.2. Results The estimated bias and mean squared error are reported for ̂βX , ̂ψXZ and ̂βZ

in Figs. 2 and 3 for N = 500. Tables with these results as well as the results for N = 200 and
N = 1000 are given in Web Appendix C (Tables 1 to 6).

The upper panels in Figs. 2 and 3 show that the consistent estimators (SEM-X for MNAR-X
and SEM-Y for MNAR-Y) are approximately unbiased whereas SEM is biased, especially when
the probabilities of being observed, Px and Py , are both small and the strength of dependence is
large. In these conditions, the data-deletion estimators also have considerably smaller MSE than
SEM in spite of the loss of data (see lower panels of Figs. 2 and 3). The tables in Web Appendix
C show that these results persist for N = 1000. However, when N = 200, the MSE of SEM is
comparable to that of SEM-X and SEM-Y.

For MNAR-XY, Fig. 4 shows that SEM-XY has greater bias and MSE than SEM for all
simulation conditions although it is consistent unlike SEM.

3. Diagnostic Tests for Violation of R-MAR

Whenmissingness is believed to beMNAR, themissingness or selection process is sometimes
modeled jointly with the process of interest, for example by including the outcome of interest as a
covariate in the selection model (Diggle &Kenward, 1994; Hausman&Wise, 1979), allowing the
error term of a probit selection model to be correlated with the error term of the linear regression
model of interest (Heckman, 1979), or by including shared random effects in the selection and
substantive models (Wu & Carroll, 1988). In such models, MAR can be tested by testing the
null hypothesis that the parameters that represent the MAR violations are zero. However, such
models and the associated tests rely on unverifiable assumptions (e.g., Molenberghs et al., 2008).
Without such assumptions, MAR or Seaman et al.’s everywhere MAR are not testable because
they involve statements regarding the missing data.

Little (1988) developed tests for the much stronger missing completely at random (MCAR)
assumption, but these tests are of limited use for approaches that require only the weaker MAR
assumption. Fortunately, as pointed out by Pothoff et al. (2006), R-MAR (which they called
MAR+) can be tested. While R-MAR is a stronger assumption than MAR (or everywhere MAR),
so that violation of R-MAR does not imply violation of MAR, it is difficult to imagine realistic
scenarios where MAR holds and R-MAR does not. We therefore consider R-MAR tests here.

3.1. Testability

Here we consider tests of the null hypothesis that the missingness process is R-MAR against
alternative hypotheses expressed as specific violations of R-MAR. Mohan and Pearl (2021),
Example 13, summarize the violations of R-MAR that are testable. Based on their work, we can
test R-MAR against MNAR-X and MNAR-Y by expressing the alternative hypotheses as

HMNAR-X
1 : X∗ 	⊥⊥ Sy |Z , Sx =1

HMNAR-Y
1 : Y ∗ 	⊥⊥ Sx |Z , Sy =1.

Conditioning on Sx = 1 and Sy = 1 above ensures that the two statements involve solely observed
variables and that both tests are therefore feasible.

3.2. Likelihood Ratio Test (LRT)

We propose to use likelihood-ratio tests based on heteroscedastic regression where the groups
defined by the selection indicators have different conditional expectations and variances versus
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Figure 2.
Estimated bias and mean squared error (MSE) for SEM (solid lines), SEM-X (dotted lines) and test-based (dashed lines)
estimators under MNAR-X for N = 500.
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Figure 3.
Estimated bias and mean squared error (MSE) for SEM (solid lines), SEM-Y (dotted lines) and test-based (dashed lines)
estimators under MNAR-Y for N = 500.
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Figure 4.
Estimated bias and mean squared error (MSE) for SEM (solid lines) and SEM-XY (dotted lines) estimators underMNAR-
XY for N = 500.
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a nested model that assumes equal conditional expectations and variances. Specifically, to test
R-MAR against HMNAR−X

1 , we use the following model:

X∗ = δ0 + δ1Z + δ2S
y + δ3S

y Z + ε, ε|Z , Sy ∼ N (0, (1 − Sy)σ 2
0 + Syσ 2

1 ),

and perform a LRT to test the null hypothesis that δ2 = δ3 = 0 and σ 2
0 = σ 2

1 . This null hypothesis
corresponds to:

E(X∗|Z , Sx = 1, Sy) = E(X∗|Z , Sx = 1) (9)

Var(X∗|Z , Sx = 1, Sy) = Var(X∗|Z , Sx = 1).

To test R-MAR against HMNAR−Y
1 , we use an analogous LRT based on a heteroscedastic

regression of Y ∗ on Z , Sx and Sx Z , where the residual variance depends on Sx .
Bojinov et al. (2020) proposed a similar test but considered only conditional expectations

as in (9). It seems more meaningful to test both the conditional mean and variance because this
is a conditional independence test under normality. Moreover, both conditional mean and con-
ditional variance independence are necessary (and sufficient) for estimating covariance matrices
and structural equation models with missing data (Mohan et al., 2018). We anticipate that, under
multivariate normality, testing the first two moments is more powerful than a generic conditional
independence test such as the one described in the next subsection.

3.3. Kernel Conditional Independence (KCI) Test

When X,Y |Z is bivariate normal, conditional independence is equivalent to zero partial
correlation,

X ⊥⊥ Y |Z ⇐⇒ Cov(εX , εY ) = 0,

where εX ≡ X − E(X |Z) and εY ≡ Y − E(Y |Z). Relaxing normality, Daudin (1980) provides a
characterization of conditional independence as zero partial correlation of certain functions of the
randomvariables.Defining ε̃X ≡ f (X, Z)−E[ f (X, Z) | Z ] and ε̃Y ≡ g(Y, Z)−E[g(Y, Z) | Z ],
conditional independence is characterized as

X ⊥⊥ Y |Z ⇐⇒ Cov(ε̃X , ε̃Y ) = 0

for all functions f and g that satisfy E[ f (X, Z)2] < ∞ and E[g(Y, Z)2] < ∞, respectively.
We can think of ε̃X as a “residual” function of X, Z that is uncorrelated with any function of Z
and similarly for ε̃Y . Then conditional independence means that the residual functions ε̃X and ε̃Y
have zero covariance.

Although conceptually simple, this characterization is hard to implement in practice. To
address this problem, Zhang et al. (2012) consider a smaller class of functions from a reproducing
kernel Hilbert space that makes the problem tractable and propose a kernel conditional indepen-
dence (KCI) test. For a review of nonparametric conditional independence tests for continuous
variables, see Li and Fan (2020).
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3.4. Power of LRT and KCI Tests

Zhang et al. (2012) showed that the KCI test has correct Type I error rates when variables are
simulated from various distributions under different non-linear transformations. To assess Type
I error rates and power of the two tests in the missing data setting, we perform simulations as
described below. We confine our investigation to HMNAR−Y

1 because the results for HMNAR−X
1

should be identical due to symmetry.

3.4.1. Simulation Design We simulate data as in Sect. 2 but with X being the only partially
observed variable, i.e., Sy = 1. The data-generating process is the same as in Sect. 2.1.1. The
simulation conditions are:

1. Strength of dependence ρM∗
x Y ∈ {0, .1, .2, .3, .4, .5, .6, .7, .8, .9}.

2. Marginal probability of observing X : Px ∈ {.2, .8}.
3. Sample size N ∈ {100, 200, 500, 1000}.
For each condition, 100 datasets were simulated and both tests were performed at the 5%

level. All analyses were carried out in R with the packages lmvar (Posthuma Partners, 2019) for
heteroscedastic regression and CondIndTests (Heinze-Deml et al., 2019) for the KCI test.

3.4.2. Results Figure 5 shows that both tests have Type I error rates at the nominal α level.
The KCI test is comparable to LRT in terms of power in each of the simulation conditions, which
is impressive given its nonparametric nature. Both tests are fairly powerful (power ≥ .75) for a
moderate effect size (ρM∗

x Y ≥ .4) and sample size N ≥ 200.

4. Test-Based Estimator

The simulations in Sect. 2 showed that SEM-X and SEM-Y have lower MSE than SEM if
missingness is MNAR-X andMNAR-Y, respectively, especially when the strength of dependence
is high and the probabilities of observing X and Y are low. It is fortunate that it is precisely in
these conditions that the tests of R-MAR versus MNAR-X and MNAR-Y have high power. We
therefore propose conducting these diagnostic tests and then proceeding with SEM-X if R-MAR
is rejected in favor of MNAR-X and proceeding with SEM-Y if R-MAR is rejected in favor
of MNAR-Y. If neither test is rejected, R-MAR is assumed to hold and SEM is used. If both
tests are rejected, the process is assumed to be MNAR-XY. However, the MSE for SEM-XY is
considerably greater than for SEM under MNAR-XY, so we will use SEM when both tests are
rejected. These decision rules are shown in Table 2.

We use a significance level of 0.05 to avoid using the deletion estimators too readily given
the good performance of SEM for small violations of R-MAR. We call the sequence of testing
followed by estimation a test-based estimator. To examine the utility of the test-based estimator,
we conducted a simulation study to compare the bias and MSE of the test-based estimator with
SEM.

4.1. Simulation Study of Finite Sample Performance

The data generating process is the same as in Sect. 2.1.1, with the following conditions:

1. Strength of dependence ρM∗
y X ∈ {0, 0.5, 0.9}.

2. Strength of dependence ρM∗
x Y ∈ {0, 0.5, 0.9}.

3. Marginal probability of observing X : Px ∈ {0.3, 0.8}.
4. Marginal probability of observing Y : Py ∈ {0.3, 0.8}.
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Figure 5.
Power of test of R-MAR against HMNAR−Y

1 .

Table 2.
Decision rules for test-based estimator, where H0 is that R-MAR holds.

HMNAR-Y
1 : Y ∗ 	⊥⊥ Sx |Z , Sy =1

Reject H0 Not Reject H0

HMNAR-X
1 : X∗ 	⊥⊥ Sy |Z , Sx =1

Reject H0 MNAR-XY: SEM MNAR-X: SEM-X

Not Reject H0 MNAR-Y: SEM-Y R-MAR: SEM

5. Sample size N ∈ {200, 500, 1000}.
For each combination of simulation conditions, we replicated the simulation 100 times and applied
two tests (LRT and KCI, at the 5% level) and two estimators (SEM and test-based) and obtained
the estimated bias and MSE for β̂X , β̂Z and ψ̂XZ .

Here we report the performance of the LRT only because the KCI test performed very sim-
ilarly. Figures 2 and 3 show the estimated bias and MSE for the test-based estimator (dashed
lines) compared with SEM (solid lines) and the consistent estimator SEM-X for MNAR-X and
SEM-Y for MNAR-Y (dotted lines). In situations where the consistent estimator performs appre-
ciably better than SEM, the test-based estimator is not much worse than the consistent estimator.
Specifically, when the marginal probabilities of being observed, Px and Py , are low (first row)
and the R-MAR violation is strong (large ρM∗

y x for MNAR-X or large ρM∗
x y for MNAR-Y), SEM
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Table 3.
Bias (×1000) for SEM and test-based estimator across conditions.

Px
0.3 0.8

Py Py

0.3 0.8 0.3 0.8

Method N ̂βX ̂βZ ̂ψXZ ̂βX ̂βZ ̂ψXZ ̂βX ̂βZ ̂ψXZ ̂βX ̂βZ ̂ψXZ

SEM 200 −40 −51 −173 −20 −44 −56 −9 −19 −82 −5 −25 −47
500 −43 −53 −175 −13 −37 −60 −3 −18 −76 −3 −23 −49
1000 −55 −50 −177 −17 −38 −57 −15 −15 −79 −5 −22 −49

Test 200 −4 −63 −120 −6 −36 −44 −4 −16 −67 −2 −21 −36
500 −0 −54 −126 −7 −34 −45 −4 −12 −60 −0 −18 −37
1000 −12 −48 −128 −11 −33 −40 −7 −8 −62 −2 −16 −38

Table 4.
MSE (×1000) for SEM and test-based estimator across conditions.

Px
0.3 0.8

Py Py

0.3 0.8 0.3 0.8

Method N ̂βX ̂βZ ̂ψXZ ̂βX ̂βZ ̂ψXZ ̂βX ̂βZ ̂ψXZ ̂βX ̂βZ ̂ψXZ

SEM 200 52 73 69 19 30 25 33 31 19 10 13 11
500 24 42 53 8 13 12 12 14 12 4 5 6
1000 18 36 50 4 8 8 7 7 11 2 3 5

Test 200 47 64 61 20 33 25 33 32 20 10 13 11
500 16 28 41 8 13 12 12 14 11 4 5 6
1000 8 19 37 4 8 7 6 6 9 2 3 4

performs much worse than the consistent estimator, whereas the test-based estimator performs
almost as well as the consistent estimator.

Tables 3 and 4 show detailed results aggregated across the nine combinations of the three
values for ρM∗

y x with the three values for ρM∗
x y , representing R-MAR, MNAR-X, MNAR-Y and

MNAR-XY. Across these missingness mechanisms, the test-based estimator had the smallest bias
and MSE for most simulation conditions and comparable performance otherwise. Specifically,
the test-based estimator is almost uniformly better (i.e., smaller bias and MSE) than SEM when
N = 500 and is uniformly better when N = 1000 for the conditions considered. The bias
reduction for the test-based estimators is evident across the simulation conditions and can be as
large as 99% (bold typeface in Table 3). The benefit of using the test-based estimator regarding
MSE is large when the missingness of both X and Y is severe (i.e., Px = Py = .3, Table 4).
Similar to the population results, ̂βZ has larger bias and MSE across all simulation conditions
than ̂βX .

The bias and MSE for each missingness mechanism separately are summarized in Web
Appendix D (Tables 7 to 12). Again, the test-based estimator tends to outperform SEM when the
missingness mechanisms areMNAR-X andMNAR-Y. The greater the proportion of missing data,
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either in X or Y, the greater the improvement in the bias and MSE, especially when the strength
of dependence ρM∗

x Y and ρM∗
y X is high. Reassuringly, Tables 11 and 12 show that the test-based

estimator performs nearly as well as SEM under R-MAR, with the larger discrepancies occurring
for N = 200.

5. Concluding Remarks

We have demonstrated that the data-deletion approaches SEM-X and SEM-Y are approx-
imately unbiased and have smaller MSE than the conventional SEM estimator for MNAR-X
and MNAR-Y, respectively. We proposed tests to diagnose whether the missingness process is
MNAR-X, MNAR-Y or MNAR-XY. Surprisingly, the nonparametric test had similar power to
the parametric counterpart and both tests performed well for moderate departures from R-MAR.
We also proposed a test-based estimator in which the choice between SEM, SEM-X and SEM-
Y is determined by the diagnostic tests. This estimator outperformed the SEM estimator under
MNAR-X/MNAR-Y and performed nearly as well under R-MAR.

The model considered was a simple linear SEM without latent variables, but the estimators
generalize to other multivariate models such as SEMs with latent variables and/or categorical
response variables.

Our missing data assumptions for consistent estimation of target quantities were confined to
properties of themissingness graphs. However, in some situations, the features of the data can also
be utilized to address harder questions, such as a binary outcome Y causing its own missingness
when the explanatory variable Z is binary, Sy ⊥⊥ Z |Y , and there is no X (Mohan, 2018). In this
case P(Z ,Y ) can be recovered by first estimating P(Z) and P(Z |Y ), so that P(Y = 0) and
P(Y = 1) are the only two unknowns in the two equations P(Z = 1) = P(Z = 1|Y = 0)P(Y =
0) + P(Z = 1|Y = 1)P(Y = 1) and P(Z = 0) = P(Z = 0|Y = 0)P(Y = 0) + P(Z =
0|Y = 1)P(Y = 1). Solving these equations gives P(Y ) and hence P(Z ,Y ) = P(Z |Y )P(Y ).
This estimation method will provide a unique solution only if Z 	⊥⊥ Y . See also Skrondal and
Rabe-Hesketh (2014) on ways to protect target parameters against inconsistency due to MNAR
in mixed models for binary responses.

Acknowledgments

This article was partially supported by the Research Council of Norway through its Centres
of Excellence funding scheme, project number 26270.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s11336-022-09896-0 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11336-022-09896-0


FENG JI, SOPHIA RABE-HESKETH AND ANDERS SKRONDAL 1141

Appendix A: Derivation of IPW Estimators

For the joint model, we now show the derivation if the IPW estimator under MNAR-XY for
Sect. 1.3:

E

[

1

π
Sx Sym(X, Z ,Y )

]

= EX,Z ,Y

[

E

(

1

π
Sx Sym(X, Z ,Y ) |X, Z ,Y

)]

= EX,Z ,Y

[

1

π
E

(

Sx Sy | X, Z ,Y
)

m(X, Z ,Y )

]

= EX,Z ,Y

[

1

π
E

(

Sx | X, Z ,Y
)

E
(

Sy | X, Z ,Y
)

m(X, Z ,Y )

]

(10)

= EX,Z ,Y

[

1

π
E

(

Sx | Z ,Y
)

E
(

Sy | X, Z
)

m(X, Z ,Y )

]

(11)

= EX,Z ,Y

[

1

π
P(Sx = 1|Z ,Y )P(Sy = 1|X, Z)m(X, Z ,Y )

]

.

Here (10) follows because Sx ⊥⊥ Sy |X, Z ,Y and (11) follows because Sx ⊥⊥ X |Y, Z and Sy ⊥⊥
Y |X, Z . We can estimate P(Sx = 1|Z ,Y ) = P(Sx = 1|Z ,Y, Sy = 1) in the complete-case
sample. Similarly, because Sx ⊥⊥ Sy |X, Z , we can estimate P(Sy = 1|X, Z) = P(Sy =
1|X, Z , Sx = 1).
For the conditional model, the derivation of the IPW estimator described in Sect. 1.3 is given
below.

E

[

1

π
Sx Sym(X, Z , Y ) | X, Z

]

= EY |X,Z

[

E

(

1

π
Sx Sym(X, Z , Y ) |X, Z , Y

)]

= EY |X,Z

[

1

π
E

(

Sx | Z , Y
)

E
(

Sy | X, Z
)

m(X, Z , Y )

]

(12)

= E
(

Sy | X, Z
)

EY |X,Z
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π
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Sx | Z , Y
)

m(X, Z , Y )

]

= P
(

Sy = 1 | X, Z
)

EY |X,Z

[

1

π
P

(

Sx = 1 | Z , Y
)

m(X, Z , Y )

]

.

Here (12) follows from steps analogous to those leading to (11).

Appendix B: ρM∗
x Y |X,Z , ρM∗

y X |Z , Px and Py in terms of model parameters

For the data-generating model described in Sect. 2.1.1, we derive expressions for the strengths of
dependence, ρM∗

x Y |X,Z , ρM∗
y X |Z , and probabilities, Px and Py , as functions of the model parame-

ters.

Var(M∗
x |X, Z) = α2

Y σ 2 + 1

Var(Y |X, Z) = σ 2

Cov(M∗
x , Y |X, Z) = αY σ 2

ρM∗
x Y |X,Z = αY σ 2

√

α2
Y σ 2 + 1

√
σ 2

(13)
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Var(M∗
y |Z) = γ 2

XψXX + 1

Var(X |Z) = (1 − ψ2
XZ

ψXXψZ Z
)ψXX

Cov(M∗
y , X |Z) = γXψXX

ρM∗
y X |Z = γXψXX

√

γ 2
XψXX + 1

√

(1 − ψ2
X Z

ψXXψZ Z
)ψXX

(14)

E(M∗
x ) = α0 + αY β0

Var(M∗
x ) = 1 + α2

ZψZ Z + α2
Y (β2

XψXX + β2
ZψZ Z + 2βXβZψXZ + σ 2) + 2αZαY (βXψXZ + βZψZ Z )

Px = P(Sx = 1) = P(M∗
x ≤ 0)

= �(
−(α0 + αY β0)

√

1 + α2
ZψZ Z + α2

Y (β2
XψXX + βZψZ Z + 2βXβZψXZ + σ 2) + 2αZαY (βXψXZ + βZψZ Z )

)

(15)

E(M∗
y ) = γ0 + γY β0

Var(M∗
y ) = γ 2

XψXX + γ 2
ZψZ Z + 2γZγXψXZ + 1

Py = P(Sy = 1) = P(M∗
y ≤ 0) = �(

−(γ0 + γY β0)
√

γ 2
XψXX + γ 2

ZψZ Z + 2γZγXψXZ + 1
) (16)

All parameters, except α0, γ0, αY and γX , are fixed. To achieve desired strengths of dependence,
Eqs. (13) and (14) are solved forαY and γX , respectively. To achieve desiredmarginal probabilities
of observing X and Y , Eqs. (15), (16) are then solved for α0 and γ0, respectively.
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