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Ricci Solitons on Almost Co-Kähler
Manifolds

Yaning Wang

Abstract. In this paper, we prove that if an almost co-Kähler manifold of dimension greater than three
satisfying η-Einstein condition with constant coeõcients is a Ricci soliton with potential vector ûeld
being of constant length, then either the manifold is Einstein or the Reeb vector ûeld is parallel. Let
M be a non-co-Kähler almost co-Kähler 3-manifold such that the Reeb vector ûeld ξ is an eigenvector
ûeld of the Ricci operator. IfM is a Ricci soliton with transversal potential vector ûeld, then it is locally
isometric to Lie group E(1, 1) of rigid motions of the Minkowski 2-space.

1 Introduction

Ricci solitons, known as a natural generalization of Einstein metrics, have attracted a
lot of attention in diòerential geometry of almost contact Riemannian manifolds in
the last decade. As one of the most important objects of research in contact geome-
try, co-Kähler manifolds are really odd-dimensional analogs of Kähler manifolds, be-
cause a closed manifold is a co-Kähler manifold if and only if it is a Kähler mapping
torus (see [9]). herefore, the study of existence and classiûcation of Ricci solitons on
(almost) co-Kähler manifolds is an interesting problem. As far as we know, there are
only a few results related to this topic.

he ûrst attempt in this framework was made by Cho in [5]. Cho proved that if
a co-Kähler 3-manifold is a Ricci soliton such that the potential vector ûeld is the
Reeb vector ûeld ξ, or is a unit vector ûeld orthogonal to ξ, then the manifold is lo-
cally �at (i.e., the Riemannian tensor vanishes). Generalizing this result, the present
author proved in [19] that if a co-Kähler 3-manifold is a Ricci soliton, then either
the manifold is locally �at or the potential vector ûeld is an inûnitesimal contact
transformation.

In complex geometry, the celebrated Goldberg conjecture says that any compact
Einstein almost Kähler manifold is integrable. Naturally, such conjecture has a coun-
terpart in contact geometry; namely, any compact Einstein almost co-Kähler man-
ifold is a co-Kähler manifold. Although until now Goldberg’s conjecture was con-
ûrmed only for those manifolds having non-negative scalar curvatures, its counter-
part in contact geometry for those manifolds having Killing Reeb vector ûelds has
been proved to be true (see [10]). Extending this result, the present author proved
in [18] that if a compact almost co-Kähler manifold is a Ricci soliton such that the
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potential vector ûeld is pointwise collinear with the Reeb vector ûeld, then the mani-
fold is a Ricci-�at co-Kähler manifold and the soliton is steady. Recently, in [4], some
geometric restrictions were given under which a compact Einstein almost co-Kähler
manifold is a co-Kähler manifold.

In this paper, we continue the investigation of the existence and classiûcation of
Ricci solitons on almost co-Kähler manifolds. For dimensions greater than three,
we show that if an almost co-Kähler manifold satisfying η-Einstein condition with
constant coeõcients is a non-trivial Ricci soliton with potential vector ûeld being of
constant length, then the Reeb vector ûeld is parallel. Consequently, the manifold is
locally isometric to the product manifold of R and an almost Kähler Ricci soliton.
For dimension three, let M be a non-co-Kähler almost co-Kähler 3-manifold with
ξ an eigenvector ûeld of the Ricci operator. If M is a Ricci soliton with transversal
potential vector ûeld, then M is locally isometric to the unimodular Lie group E(1, 1)
of rigidmotions of theMinkowski 2-space. Some examples verifying ourmain results
are also given.

2 Almost Co-Kähler Manifolds

Let M2n+1 be a smooth diòerential manifold of dimension 2n + 1. On M2n+1, if there
exist a (1, 1)-type tensor ûeld ϕ, a vector ûeld ξ and a 1-form η such that

ϕ2
= −id + η ⊗ ξ, η(ξ) = 1,

then the triple (ϕ, ξ, η) is called an almost contact structure, ξ is called the Reeb vector
ûeld, and η is called an almost contact 1-form. If, in addition, there exists a Riemannian
metric g on M2n+1 such that

g(ϕ ⋅ , ϕ ⋅) = g − η ⊗ η,
then g is said to be compatible with the almost contact structure, andM2n+1 together
with the quadruple (ϕ, ξ, η, g) is called an almost contact metric manifold. On the
product M2n+1 × R of an almost contact metric manifold M2n+1 and R, there exists
an almost complex structure J deûned by

J(X , f
d
dt

) = (ϕX − f ξ, η(X)
d
dt

) ,

where X denotes a vector ûeld tangent to M2n+1, t is the coordinate of R, and f is a
C∞-function on M2n+1 ×R. We denote by [ϕ, ϕ] the Nijenhuis tensor of ϕ. If

[ϕ, ϕ] = −2dη ⊗ ξ
holds, or equivalently, J is integrable, then the almost contact metric structure is said
to be normal.

In this paper, by an almost co-Kähler manifold we mean an almost contact metric
manifold M2n+1 satisfying dη = 0 and dΦ = 0, where the fundamental 2-form Φ of
the almost contact metric manifold M2n+1 is deûned by Φ(X ,Y) = g(X , ϕY) for
any vector ûelds X and Y . A normal almost co-Kähler manifold is called a co-Kähler
manifold. An almost co-Kähler structure is said to be strictly almost co-Kähler if it is
not a co-Kähler structure.
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Note that an (almost) co-Kähler manifold is nothing but an (almost) cosymplec-
tic manifold, deûned by Blair in [1] and investigated in some other literature [2, 3, 5,
10–12, 19]. On an almost co-Kähler manifold M2n+1 we set h ∶= 1

2Lξϕ, where L is
the Lie diòerentiation. We consider the Jacobi operator l = R( ⋅ , ξ)ξ generated by ξ
and deûne h′ ∶= h ○ ϕ, where R denotes the Riemannian curvature tensor of g. From
[11, 12], we know that the three (1, 1)-type tensor ûelds l , h′ and h are symmetric and
satisfy hξ = 0, l ξ = 0, tr h = 0, tr(h′) = 0, and hϕ + ϕh = 0 and

(2.1) ∇ξ = h′ .

From [1], we see that an almost co-Kähler manifold is co-Kähler if and only if

∇ϕ = 0(⇐⇒ ∇Φ = 0).

In particular, an almost co-Kähler 3-manifold is co-Kähler if and only if h vanishes
(see [11]). In this paper, all manifolds are assumed to be smooth and connected.

3 Ricci Solitons on η-Einstein Almost Co-Kähler Manifolds

On a Riemannianmanifold (M , g) if there exist a vector ûeldV and a constant λ such
that

(3.1)
1
2
LV g + Ric = λg ,

where Ric denotes the Ricci tensor and L is the Lie derivative, then we say that the
triple (M ,V , λ), or simply, M is a Ricci soliton. V and λ are called the potential vec-
tor ûeld and the soliton constant, respectively. A Ricci soliton is said to be shrinking,
steady, or expanding according to whether λ > 0, λ = 0, or λ < 0, respectively. If the
potential vector ûeld is either Killing or vanishes, then the Ricci soliton (3.1) reduces
to an Einstein metric and in this case the soliton is said to be trivial. Hamilton [6]
introduced the notion of Ricci �ow in order to ûnd a canonical metric on a smooth
manifold. he Ricci �ow is an evolution equation for metrics on a Riemannian man-
ifold deûned by

∂
∂t

g i j(t) = −2Rici j(t).

Ricci solitons are self-similar solutions to the Ricci �ow. If the potential vector ûeld
V is the gradient of some function f on M, then the Ricci soliton equation becomes

Hess f + Ric = λg

and characterizes what is called a gradient Ricci soliton. It is known that a Ricci soliton
on any compact manifold is always a gradient Ricci soliton (see [14]).
An almost contact metric manifold M2n+1 is said to be η-Einstein if the Ricci op-

erator satisûes

(3.2) Q = αid + βη ⊗ ξ,

where both α and β are smooth functions, and the Ricci operator Q is deûned by
Ric(X ,Y) = g(X ,QY). If, in particular, both α and β are constants, then we say that
M satisûes η-Einstein condition with constant coeõcients.
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As seen in [19], any co-Kähler 3-manifold is always η-Einstein. More precisely, we
have

Q =
r
2
(id − η ⊗ ξ),

where r denotes the scalar curvature that is not necessarily a constant. hus, according
to [16, Corollary 4.3], we have the following proposition.

Proposition 3.1 A co-Kähler 3-manifold is η-Einstein with constant coeõcients if
and only if it is locally isometric to the product ofR and a 2-manifold of constant Gauss
curvature.

For dimension greater than three, we have the following proposition.

Proposition 3.2 If, on an almost co-Kähler manifold of dimension greater than three,
the Reeb vector ûeld is Killing, then the coeõcients of η-Einstein condition are constants.

Proof Suppose that an almost co-Kähler manifoldM has a Killing Reeb vector ûeld.
From (2.1), we have∇ξ = 0 and hence Qξ = 0. IfM is η-Einstein, from (3.2), we have
α + β = 0. In this paper, we denote by ∇ f the gradient of a smooth function f .
Applying the formula divQ = 1

2∇r on (3.2), we obtain

(3.3)
1
2
Y(r) = Y(α) + ξ(β)η(Y)

for any vector ûeld Y . It follows directly from (3.2) that r = (2n + 1)α + β. Applying
this and α+ β = 0 in (3.3) gives (n− 1)Y(α)+ ξ(α)η(Y) = 0 for any vector ûeld Y . In
this relation, replacing Y by ξ gives ξ(α) = 0, and hence we obtain (n−1)Y(α) = 0 for
any vector ûeld Y . his completes the proof, because of the assumption dimM > 3. ∎

hecoeõcients of the η-Einstein condition on a strictly almost co-Kählermanifold
with non-Killing Reeb vector ûeld are not necessarily constants for dimension greater
than three. For dimension three, note that the η-Einstein condition on an almost co-
Kählermanifold implies that the Reeb vector ûeld is harmonic; i.e., it is a critical point
for the energy function (see [15, Proposition 4.2]). herefore, from [17, heorem 4.1],
we have the following proposition.

Proposition 3.3 A strictly almost co-Kähler 3-manifold is η-Einstein if and only if it
is locally isometric to Lie group E(1, 1) of rigid motions of the Minkowski 2-space.

he construction of almost co-Kähler structure on E(1, 1) can be seen in [17].
Proposition 3.3 is a nice complement to Proposition 3.1 for the non-co-Kähler case. In
view of Propositions 3.1 and 3.2, we next consider η-Einstein condition with constant
coeõcients on strictly almost co-Kähler manifolds with higher dimensions and prove
the following theorem.

heorem 3.1 If an almost co-Kähler manifold M of dimension greater than three
satisfying η-Einstein condition with constant coeõcients is a Ricci soliton with potential
vector ûeld being of constant length, then either M is Einstein or the Reeb vector ûeld is
parallel.
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Proof Suppose that an almost co-Kähler manifold M of dimension greater than
three is η-Einstein with constant coeõcients. From [12, Corollary 4.1], we have
Ric(ξ, ξ) = −∥∇ξ∥2. Because h′ = h ○ ϕ has the same norm with h, with the aid
of (2.1), it follows that Ric(ξ, ξ) = −∥h∥2, and this implies

(3.4) α + β = −∥h∥2 ,

because of (3.2). According to (3.2) we also have r = (2n + 1)α + β.
If, in addition, M is a Ricci soliton, inserting (3.2) into (3.1) gives

(3.5) (LV g)(X ,Y) = 2(λ − α)g(X ,Y) − 2βη(X)η(Y)

for any vector ûelds X ,Y . Taking the covariant derivative of (3.5) and making use of
(2.1), we acquire

(3.6) (∇XLV g)(Y , Z) = −2βη(Z)g(h′X ,Y) − 2βη(Y)g(h′X , Z)

for any vector ûelds X ,Y , Z. According to Yano [20, p. 23], we write

(LV∇X g −∇XLV g −∇[V ,X]g)(Y , Z) =

− g((LV∇)(X ,Y), Z) − g((LV∇)(X , Z),Y)

for any vector ûelds X ,Y , Z. Because of the parallelism of the Riemannian metric g,
it follows directly that

(∇XLV g)(Y , Z) = g((LV∇)(X ,Y), Z) + g((LV∇)(X , Z),Y)

for any vector ûelds X ,Y , Z. Interchanging cyclicly the roles of X ,Y , and Z in the
above relation and by a direct calculation, we obtain

2g((LV∇)(X ,Y), Z) = (∇XLV g)(Y , Z) + (∇YLV g)(Z , X) − (∇ZLV g)(X ,Y)

for any vector ûelds X ,Y , Z, where we have used the fact that LX∇ is symmetric.
Applying (3.6) in the above relation gives

(3.7) (LV∇)(X ,Y) = −2βg(h′X ,Y)ξ

for any vector ûelds X and Y , where we have used the fact that h′ is a symmetric
operator. Taking the covariant derivative of (3.7), we acquire

(3.8) (∇XLV∇)(Y , Z) = −2βg((∇Xh′)Y , Z) ξ − 2βg(h′Y , Z)h′X

for any vector ûelds X ,Y , Z, where we have used (2.1). Also, according to Yano
[20, p. 23], we write

(LVR)(X ,Y , Z) = (∇XLV∇)(Y , Z) − (∇YLV∇)(X , Z)

for any vector ûelds X ,Y , Z. Inserting (3.8) into the above relation yields

(LVR)(X ,Y , Z) = −2β(g((∇Xh′)Y , Z) ξ + g(h′Y , Z)h′X

− g((∇Yh′)X , Z)ξ − g(h′X , Z)h′Y)

for any vector ûelds X ,Y , Z. Contracting the above equation over X gives

(3.9) (LV Ric)(Y , Z) = −2βg((∇ξh′)Y , Z)
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for any vector ûelds Y , Z, where we have used tr h′ = 0, (2.1), and the symmetry
property of h′. On the other hand, from (3.2), we have

(LV Ric)(Y , Z) = α(g(∇YV , Z) + g(∇ZV ,Y))

+ βη(Z)(g(h′Y ,V) + g(∇YV , ξ)) + βη(Y)(g(h′Z ,V) + g(∇ZV , ξ))

for any vector ûelds Y , Z, where we have used (2.1). Obviously, comparing the previ-
ous equation with (3.9) gives

2βg((∇ξh′)Y , Z) + α(g(∇YV , Z) + g(∇ZV ,Y))

+ βη(Z)(g(h′Y ,V) + g(∇YV , ξ)) + βη(Y)(g(h′Z ,V) + g(∇ZV , ξ)) = 0

for any vector ûelds Y , Z, which is simpliûed by (3.5), giving

(3.10) 2βg((∇ξh′)Y , Z) + 2α(λ − α)g(Y , Z) − 2αβη(Y)η(Z)

+ βη(Z)(g(h′Y ,V) + g(∇YV , ξ))

+ βη(Y)(g(h′Z ,V) + g(∇ZV , ξ)) = 0

for any vector ûelds Y , Z.
In view of tr h′ = 0, by a direct calculation, we have tr∇ξh′ = 0. Let {e i ∶ i = 1, . . . ,

2n + 1} be a local orthonormal frame of the tangent space for each point of M. hus,
putting Y = Z = e i in (3.10) and summing i over {1, 2, . . . , 2n + 1}, we obtain

(3.11) (2n + 1)α(λ − α) − αβ + βη(∇ξV) = 0,

where we have used the fact h′ξ = 0. On the other hand, replacing both Y and Z by ξ
in (3.10) yields

(3.12) α(λ − α − β) + βη(∇ξV) = 0.

Obviously, subtracting equation (3.12) from (3.11) gives that

(3.13) α(λ − α) = 0.

If β = 0, M is Einstein. In what follows, let us consider the other case; i.e., β is a
non-zero constant, and this immediately reduces to η(∇ξV) = α, because of (3.11) (or
(3.12)) and (3.13). hen replacing both X and Y by ξ in (3.5) gives

(3.14) λ − 2α − β = 0.

If α ≠ 0, from (3.13) we obtain λ = α, and putting this into (3.14), we acquire
α+β = 0. Applying this in (3.4) we obtain ∥h∥2 = 0, and hencewe have∇ξ = 0 because
of (2.1). his clearly implies that ξ is parallel and hence a Killing vector ûeld. Finally,
we consider the last case, that is, α = 0 and β ≠ 0, and prove that it is impossible.

In this context, according to (3.11) or (3.12), we have η(∇ξV) = 0. Applying this
and replacing Y by ξ in (3.10), with the aid of α = 0, β ≠ 0, and (2.1), we acquire
Z(g(V , ξ)) = 0 for any vector ûeld Z, and this means that the component of V
along ξ is a constant. Because the length of the potential vector ûeld is a constant,
with the aid of α = 0 and λ = β ≠ 0, putting X = Y = V in (3.5) we observe that
V is collinear with the Reeb vector ûeld ξ. herefore, we can assume that V = θξ
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with θ ∈ R. Substituting this into (3.5), with the aid of (2.1), α = 0, λ = β ≠ 0, and
(3.14), we obtain

(3.15) θg(h′X ,Y) = β(g(X ,Y) − η(X)η(Y))

for any vector ûelds X ,Y . In view of tr h′ = 0, putting X = Y = e i into (3.15) and
summing i over {1, 2, . . . , 2n + 1}, we obtain β = 0, a contradiction. his completes
the proof. ∎

Remark 3.1 According to the last part of proof ofheorem 3.1, we observe that con-
clusions of heorem 3.1 are still true even if the assumption “potential vector ûeld is
of constant length” was weakened to “the length of potential vector ûeld V is constant
along V”.

Remark 3.2 When studying Ricci solitons on co-Kähler manifolds, “the length of
the potential vector ûeld is a constant” was employed by Cho [5].

It was proved in [8,heorem 2.1] that the product manifoldR×F is a Ricci soliton
if and only if F is a Ricci soliton. Moreover, if the Reeb vector ûeld of an almost co-
Kähler manifold is Killing, then the manifold is locally isometric to the product of R
and an almost Kähler manifold (see [11]). herefore, from heorem 3.1, we have the
following corollary.

Corollary 3.1 Let M be an almost co-Kähler manifold M of dimension greater than
three satisfying η-Einstein condition with constant coeõcients. hen M is a Ricci soliton
with potential vector ûeld being of constant length if and only if either M is Einstein or
M is locally isometric to the product of R and an almost Kähler Ricci soliton.

Next we construct two examples to verify our main results.

Example 3.1 Let G be a connected, simply connected Lie group with Lie algebra
g = {e1 , e2 , e3 , e4 , e5} whose structure equations are given by

de1 =
√

3
2
e2 ∧ e5 +

1
2
e1 ∧ e4 , de2 =

√
3

2
e1 ∧ e5 +

1
2
e2 ∧ e4 ,

de3 = e1 ∧ e2 + e3 ∧ e4 , de4 = 0, de5 = 0,

where {e1 , e2 , e3 , e4 , e5} is the dual basis for g∗. Let g be the le� invariant metric on
G given as

g = (e1)2
+ (e2)2

+ (e3)2
+ (e4)2

+ (e5)2 .

Conti and Fernández [4] proved that G admits an Einstein non-co-Kähler almost co-
Kähler structure (η ∶= e5 , Φ ∶= −e1 ∧ e2 − e3 ∧ e4 , g).

Let M be a strictly almost Kähler manifold. hen the product R × M admits a
strictly almost co-Kähler structure (see [11]) for which the Reeb vector ûeld is Killing.
It was proved in [13] that on the product of R and a hyperbolic 3-spaceH3(−1) there
exists a strictly almost Kähler structure. herefore, we have the following example.
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Example 3.2 heproductR2×H3(−1) admits a strictly almost co-Kähler structure
satisfying η-Einstein condition with constant coeõcients; namely, the Ricci operator
is given by Q = − 3

2 (id − η ⊗ ξ).

4 Ricci Solitons on Strictly Almost Co-Kähler 3-manifolds

In this section, we denote by M a non-co-Kähler almost co-Kähler 3-manifold. Be-
cause of h ≠ 0, there exists a local orthonormal basis {ξ, e , ϕe} of three smooth unit
eigenvectors of h for the tangent space at each point p ∈ M. We set he = µe and hence
hϕe = −µϕe, where µ is a positive function.

Lemma 4.1 ([15, Lemma 2.1]) On M, the Levi-Civita connection is given by

∇ξξ = 0, ∇ξe = aϕe , ∇ξϕe = −ae , ∇e ξ = −µϕe , ∇ϕe ξ = −µe ,

∇e e =
1
2µ

(ϕe(µ) + σ(e))ϕe , ∇ϕeϕe =
1
2µ

(e(µ) + σ(ϕe)) e ,

∇ϕe e = µξ −
1
2µ

(e(µ) + σ(ϕe))ϕe , ∇eϕe = µξ −
1
2µ

(ϕe(µ) + σ(e)) e ,

where a is a smooth function and σ is the 1-form deûned by σ( ⋅ ) = Ric( ⋅ , ξ).

Applying Lemma 4.1, the Ricci operator Q is expressed (see [15]) by

Qξ = −2µ2ξ + σ(e)e + σ(ϕe)ϕe ,

Qe = σ(e)ξ +
1
2
(r + 2µ2

− 4µa)e + ξ(µ)ϕe ,

Qϕe = σ(ϕe)ξ + ξ(µ)e +
1
2
(r + 2µ2

+ 4µa)ϕe ,

(4.1)

with respect to the local basis {ξ, e , ϕe}, where r denotes the scalar curvature.
On an almost contactmetricmanifold, if the potential vector ûeld of a Ricci soliton

is orthogonal to the Reeb vector ûeld ξ, then we say that the potential vector ûeld is
transversal (see also [5]).

heorem 4.1 Let M be a strictly almost co-Kähler 3-manifold such that ξ is an eigen-
vector ûeld of the Ricci operator. If M is a Ricci soliton with transversal potential vector
ûeld, then M is locally isometric to Lie group E(1, 1) of rigid motions of the Minkowski
2-space. Moreover, M is η-Einstein.

Proof If the Reeb vector ûeld ξ is an eigenvector ûeld of the Ricci operator, we have
σ(e) = σ(ϕe) = 0. Since M is a Ricci soliton, it follows from (3.1) that

(4.2) g(∇XV ,Y) + g(∇YV , X) + 2g(X ,QY) = 2λg(X ,Y)

for any vector ûelds X ,Y . In view of Qξ = −2µ2ξ, replacing both X and Y by ξ in
(4.2) and using the fact ∇ξξ = 0 (see (2.1)), we obtain

λ = −2µ2 ,
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where we have used that the potential vector ûeld is orthogonal to ξ. Now from (4.1)
we have

(4.3) Qe =
1
2
(r + 2µ2

− 4µa)e , Qϕe =
1
2
(r + 2µ2

+ 4µa)ϕe .

Because the potential vector ûeld V is assumed to be orthogonal to the Reeb vec-
tor ûeld ξ, we set V = f1e + f2ϕe for certain smooth functions f1 and f2. Inserting
X = Y = e in (4.2) gives

(4.4) e( f1) =
1
2
(4µa − r − 6µ2) ,

where we have used Lemma 4.1 and the ûrst term of (4.3). Similarly, inserting X =

Y = ϕe in (4.2) gives

(4.5) ϕe( f2) = −
1
2
(4µa + r + 6µ2

),

where we have used Lemma 4.1 and the second term of (4.3). Inserting X = ξ and
Y = e in (4.2) gives
(4.6) ξ( f1) + (µ − a) f2 = 0,
where we have used Lemma 4.1 and Qξ = −2µ2ξ. Inserting X = ξ and Y = ϕe in (4.2)
gives
(4.7) ξ( f2) + (µ + a) f1 = 0,
where we have used Lemma 4.1 and Qξ = −2µ2ξ. Finally, inserting X = e and Y = ϕe
in (4.2) gives
(4.8) e( f2) + ϕe( f1) = 0,
where we have used Lemma 4.1 and (4.3).
Because Qξ = −2µ2ξ and µ is a constant, from Lemma 4.1 we obtain [ξ, e] =

(µ + a)ϕe, [e , ϕe] = 0, and [ϕe , ξ] = (a − µ)e. he application of the three relations
in the Jacobi identity [[ξ, e], ϕe] + [[e , ϕe], ξ] + [[ϕe , ξ], e] = 0 implies
(4.9) e(a) = ϕe(a) = 0.
he application of Lemma 4.1 together with Qξ = −2µ2ξ and (4.3) gives

(∇ξQ)ξ = 0, (∇eQ)e =
1
2
e(r)e , (∇ϕeQ)ϕe =

1
2
ϕe(r)e ,

where we have used (4.9) and the fact that µ is a constant. hus, the application of the
above relation on formula 1

2∇r = divQ gives ξ(r) = 0.
Applying [ξ, e] = (µ + a)ϕe on f2 yields ξ(e( f2)) − e(ξ( f2)) = (µ + a)ϕe( f2).

Putting (4.7) into this relation gives

(4.10) ξ(e( f2)) = (µ + a)(ϕe( f2) − e( f1)) .

Similarly, applying [ξ, ϕe] = (µ−a)e on f1 yields ξ(ϕe( f1))−ϕe(ξ( f1))= (µ−a)e( f1).
Putting (4.6) into this relation gives

(4.11) ξ(ϕe( f1)) = (a − µ)(ϕe( f2) − e( f1)) .

In view of (4.8), the addition of (4.10) to (4.11) yields a(ϕe( f2) − e( f1)) = 0.
Here we conclude that this implies only one case, that is, a = 0. Otherwise, if a ≠ 0,
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we have ϕe( f2) = e( f1). By applying this, comparing (4.4) with (4.5), we have a = 0,
because M is a strictly almost co-Kähler manifold, a contradiction. Finally, we have

(4.12) [ξ, e] = µϕe , [e , ϕe] = 0, [ϕe , ξ] = −µe

for a certain positive constant µ. Following (4.12), we state that the manifold is lo-
cally isometric to the unimodular Lie group E(1, 1) of rigidmotions of theMinkowski
2-space.
Applying Lemma 4.1, by a direct calculation we have R(e , ξ)ξ = −µ2e and

R(ϕe , ξ)ξ = µ2e. It follows that Qe = 0, and hence by (4.3) we obtain Qϕe = 0
and r = −2µ2. hus, M is η-Einstein, namely Q = −2µ2η ⊗ ξ. ∎

he present author proved in [19, p. 983] that if a co-Kähler 3-manifold is a Ricci
soliton, then either the manifold is locally �at or ∇ξV = λξ. For the later case,
if, in addition, the potential vector ûeld is orthogonal to ξ, the soliton constant is
given by λ = η(∇ξV) = 0. herefore, the following corollary follows directly from
[19, heorem 3.1].

Corollary 4.1 Let M be a co-Kähler 3-manifold. If M is a Ricci solitonwith transversal
potential vector ûeld, then either it is locally �at or the soliton is steady.

Acknowledgment heauthorwould like to thank the reviewer for his or her careful
reading and useful suggestions.
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