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Today’s mobile technology features several sensors that when integrated can provide
ubiquitous navigation assistance to pedestrians including wheelchair users. Common sensors
found in most smartphones are Global Positioning System (GPS), accelerometer, and com-
pass. In this paper, a user’s movement pattern recognition algorithm to improve map match-
ing efficiency and accuracy in pedestrian/wheelchair navigation systems/services is discussed.
The algorithm integrates GPS positions, orientation data from compass, and movement
states recognized from accelerometer data in a client/server architecture. The algorithm is
tested in an Android mobile phone, and the results show that the proposed map matching
algorithm is efficient and provides good accuracy.
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1. INTRODUCTION. Pedestrian tracking and navigation are now being
widely researched and applied (Retscher et al., 2006; Sun et al., 2009; Ren and Karimi,
2009a, 2009b, 2011). Wheelchair users, as a special subset of pedestrians, also need
navigation systems/services in their daily life. As distinct from car driving, pedestrians
walk or wheelchair users operate at relatively lower speeds and their outdoor activities
usually are closer to buildings, where the Global Navigation Satellite System (GNSS)
cannot provide accurate and reliable position information due to the noise inter-
ruption and multipath effect by the environment. Furthermore, Global Positioning
System (GPS) receivers (e.g., those in smartphones) have difficulties in distinguishing
the two sides of a street if the street is less than 10 m in width. In addition, pedestrians
and wheelchair users are free to advance, stop and make turns at will on sidewalks
outdoors. This makes tracking people on sidewalk networks more challenging in
pedestrian/wheelchair navigation systems/services than tracking people on road
networks in car navigation systems/services. Considering the challenges in continually

https://doi.org/10.1017/S0373463312000252 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463312000252

618 MING REN AND HASSAN A. KARIMI VOL. 65

finding user’s location in real time on sidewalk networks, utilizing GPS as the only
positioning sensor is not feasible and reliable to track pedestrians and wheelchair users
outdoors.

Integration of GPS with other complementary sensors, such as Inertial Measure-
ment Unit (IMU), has been introduced in recent years. Two different approaches for
integrating GPS with IMU have been explored (Ahmed et al., 2009). The first
approach uses conventional GPS and Inertial Navigation System (INS) integration
algorithms as used in car navigation systems. The IMU is tightly coupled with GPS
at the measurement level using an Extended Kalman Filter (EKF) in an effort to
achieve best positioning results (Venkatraman et al., 2009; Ahmed et al., 2009). The
second approach makes use of the fact that the user takes one step at a time and counts
steps to obtain user’s movement distance. For pedestrians, by counting steps and
knowing the step length in the direction of motion, the navigation system can obtain
walking distance. This method of obtaining navigation solution is often known as
‘Pedometry’. For wheelchair users, one step is equal to one wheel circle. Given the
circumference of the wheel, the moving distance in the motion can also be easily
calculated. However, both approaches need specially designed hardware. The first
approach requires chip-level integration of GPS and IMU, and the second approach
requires a wearable device tied on the body for step counting or on a wheel for circle
counting.

Due to recent advances in computing and mobile device technologies, smartphones,
like iPhone and Android phones, are growing in popularity. Navigation services on
smartphones can be based on common technologies such as GPS, cameras, accelero-
meters, compasses, and even gyroscopes. Given the popularity of smartphones and the
availability of technologies for navigation services, this paper discusses a map
matching algorithm based on multi-sensor data on a smartphone as the platform for
pedestrian/wheelchair navigation.

iPhone and Android platforms are different in terms of GPS location management.
The iPhone development platform only provides distance-based user-location
updating (Arfe et al., 2011). On an Android development platform, the user-location
updating function has two modes: distance-based location updating and time-based
location updating (Arfe et al., 2011). The distance-based location updating mode
updates user’s location only when the user travels for a distance that is greater than a
pre-determined distance. The time-based location updating mode updates user’s
location each time a given time interval is reached. Both location updating modes have
their own advantages and disadvantages. In the time-based location updating mode, if
the time interval is small, frequent user-location updates lead to more awareness of the
mobile user’s location. However, transmission of too many updates in short time
intervals may overload the network. On the other hand, in the distance-based location
updating mode, infrequent location updates may cause a lack of awareness about the
actual user location but cost less in terms of data transmission compared to the
frequent user-location update mode.

Neither of these location updating modes is suitable for pedestrian/wheelchair
navigation services. Current GPS technology is unable, due to its accuracy range, to
detect movement of pedestrians or wheelchair users who typically move at low speeds.
Pedestrians or wheelchair users may move, stop, or make turns at will, which makes
pre-setting a time interval for location updates difficult. As a result, updating a
pedestrian’s or wheelchair user’s location based on time is impractical. Figure 1 shows
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Figure 1. An example of GPS error in the scenario in which a user is stopped on a sidewalk.

an example of GPS error that can result when a user is stopped at an intersection by a
red traffic light.

When there is no movement, GPS keeps updating the same location resulting in
multiple positions, circles in Figure 1. In this example, with no knowledge about user’s
movement, the map matching algorithm will treat all the received positions as
individual locations and match them onto the sidewalk. Map matching GPS data
when there is no user’s movement will not represent user’s actual location, since every
distinct GPS position within the error circle will be located on a different point of the
sidewalk segment.

In order to address the problem of location updating in pedestrian/wheelchair
navigation services, unlike traditional methods used in INS for geo-positioning, a map
matching algorithm is proposed in this paper to take user’s behaviours into account
and then use movement pattern to assist map matching. For the algorithm, user’s
movement modes are no movement, walk, run, and turn.

The rest of the paper is structured as follows. Section 2 discusses background and
related works. Section 3 describes an approach to user’s movement pattern
recognition on mobile phone. Section 4 introduces map matching algorithm assisted
by user’s movement recognition. Section 5 discusses testing platform and experimental
evaluation. Conclusions and future research are discussed in Section 6.

2. BACKGROUND. Map matching is an essential function of any land-
based navigation application (Karimi et al., 2006; Karimi, 2011). Approaches for
map matching algorithms can be categorized into three groups: geometric map
matching, topological map matching, and advanced map matching (Quddus et al.,
2007). Topological map matching (Meng, 2006; Quddus et al., 2003) utilizes
geometrical and topological information of the road network and the previous GPS
data collected. In topological map matching, vehicle’s trajectory and topological
features of the road (road turn, road curvature, and road connection) are matched.

https://doi.org/10.1017/50373463312000252 Published online by Cambridge University Press


https://doi.org/10.1017/S0373463312000252

620 MING REN AND HASSAN A. KARIMI VOL. 65

Introducing additional sensors into the system, e.g., Dead Reckoning (DR) and
gyroscope in vehicles, can improve the performance of topological map matching.
Moreover, some other advanced map matching algorithms use additional techniques,
such as a Kalman Filter or an Extended Kalman Filter, a flexible state-space model
and a particle filter, and a fuzzy logic model (Quddus et al., 2007; Jagadeesh et al.,
2004), to improve performance.

iPhone and Android platforms currently represent the cutting edge of mobile
technology and have been widely adopted by people around the world. These two
smartphone platforms come with built-in GPS receivers and integrated motion
sensors, such as an accelerometer, a compass and even a gyroscope, which can be used
for orientation detection, gesture recognition, and image stabilization, among other
things.

Activity recognition from accelerometer data has been a research topic for many
years and is usually formulated as a signal processing and classification problem
(Mathie et al., 2004; Ravi et al., 2005; Sun et al., 2009). Research in activity
recognition has focused on identification of physical activities, such as walking,
jogging, resting, standing, climbing, or running. Accelerometers have been used as
motion detectors (DeVaul and Dunn, 2001) as well as for body-position and posture
sensing (Foerster et al., 1999). Inspired by the accelerometer-related research on
activity recognition, this paper applies signal processing and pattern recognition
techniques to process accelerometer data to recognize user’s movement behaviour.
The following section will present a new map matching algorithm that is assisted
by the recognition of user’s movement pattern. The algorithm has two major steps.
The first step involves using accelerometer data to recognize user’s movement
behaviour and the second step involves performing map matching by using
positioning data from GPS, orientation data from a compass, and knowledge of
user’s movement pattern.

3. MOVEMENT PATTERN RECOGNITION OF PEDESTRIAN/
WHEELCHAIR USERS OUTDOORS. Pedestrian/wheelchair navigation
activities that occur outdoors can be grouped into four movement modes: no
movement, walking, running, and turning. To detect these four modes of movement,
four classes corresponding to these modes are defined in a decision tree classifier. A
decision tree classification and recognition was developed and is described below.

Figure 2 shows the process of movement pattern classification and recognition. The
process has two stages: a training stage and a testing stage. Both training stage and
testing stage consist of four steps, three of which are the same in each stage. In the first
step, data are collected from multi-sensors. In the second step, the raw data are pre-
processed. In the third step, features are extracted from pre-processed data and raw
data to create feature vectors. In the last step of the training stage, a decision-tree
classifier is generated which will be used for recognition in the testing stage.

3.1. Signal Pre-processing. Accelerometers are sensitive to shaking and
vibration, while digital compasses are susceptible to noise disturbances in the Earth’s
magnetic field. The magnetic distortion may vary significantly with time and location
due to environmental changes. Because of this, before accelerations and orientations
are measured by an accelerometer and a compass, they must be calibrated in order to
reduce noise disruption of the environment.
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Figure 2. Overview of movement pattern recognition.

2+

Figure 3. 3D accelerometer.

Once calibrated, Discrete Fourier Transform (DFT) is used to convert the
acceleration data from time-domain values to frequency-domain features. In practice,
a Fast Fourier Transform (FFT) algorithm is used to speed up DFT computations.
For fast computation of FFT, a window size of 128 is used; this size was chosen as it
can provide sufficient data for feature extraction in the next step and can meet the
demand of computation in real-time navigation services.

3.2. Feature Extraction. With noises, if the raw accelerometer data were used
directly as inputs to the decision tree classifier, the activity classification would
produce poor results. It is possible to extract appropriate features by applying pre-
processed data to enhance the quality of classification. In this paper, features are
extracted from raw accelerometer signals through a sliding window of 128 samples, 64
of which overlap with their predecessors. The reason for utilizing sliding windows with
50% overlap to extract features is explained in the literature (e.g., see Bao and Intille,
2004).

Since a 3D accelerometer, used in most smartphones, can measure acceleration
more accurately than a 2D accelerometer can, this paper uses typical 3D accelero-
meters available in smartphones. Figure 3 shows a sketch map of a 3D accelerometer,
indicating three-axis directions. These three-axis accelerations are measured as ay, ay
and a,.
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It should be noted that it is unnecessary to recognize all types of activities with high
accuracy; it is sufficient to distinguish between the different modes (i.e., no movement,
walking, running, and turning) for the purpose of navigation. To distinguish between
the four modes, four features are extracted from each of the three axes in the accelero-
meter, giving a total of twelve attributes. The extracted features are mean, standard
deviation, energy, and correlation.

Possible range of acceleration data varies with different activities. The energy
feature is widely considered in activity measurement and recognition, while cor-
relation is especially useful for differentiating among activities that involve translation
of dimensions. No translation in dimensions is produced by the sensor when there is
no movement, while walking and running usually involve translation in one dimen-
sion. Finally, turning involves translation in more than one dimension. Turning could
be making a left turn, making a right turn, or making a U turn. It can be identified by
orientation changes measured with a compass.

Taking the x-axis of the accelerometer as an example, equations to represent each of
the four features are as follows (features in axis y and axis z are computed in the same
way).

1 N
my :ﬁjzzla)(j (1)

where:

a, 1s x-axis acceleration.
my is the mean of all x-axis accelerations values in sample size N.

> (ax — a_x)3
L= 2
s N_1 2)
where s, is the standard deviation of x-axis accelerations in sample size N.
Yo Ifx]
Bo=" (3)
where:
E, is energy.
f, is the component produced by FFT.
N represents the length of the sliding window.
04, Oa,

where corryy is correlation between each pair of axes as the ratio of the covariance and
the product of the standard deviations.

3.3.  Feature Selection and Classification. After the feature vector is generated,
the next step is feature selection and classification. Of the twelve features computed,
only eight are considered to be useful to recognize user’s movement. For example,
when a smartphone is held face-up, its embedded accelerometer is faced up as shown
in Figure 3. The x direction indicated in the figure is perpendicular to the direction of
movement and direction of up-and-down vibration in the movement. Therefore, the
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Table 1. Selected features.

Symbol fl f2 f3 f4 f5 f6 f7 fg
Feature my m, Sy S, E, E, corry,(1,2) corry,(1,2)

f1 <-0.505027 21 >= -0.505027

3 < 1.56119 >= 156119 f3 < 1.00789 >=1.00789

>= 22,9863

7 < 0.381039 >= (0.384033 54679 >= 3.54679

Figure 4. Movement recognition decision tree.

features related to the x-axis movement are not useful for distinguishing between the
four movement modes. In this case, the features computed based on the x-axis
acceleration can be removed from the feature list. Table 1 shows the eight features
after eliminating the x-axis — related features.

This eight-feature vector is further compressed by employing a decision tree to
eliminate redundant features. In the training stage, a decision tree is constructed based
on a training data set. Figure 4 shows the movement pattern recognition decision tree
after feature selection. Eventually the selected features are f}, f3, fy, fs and {5, which
correspond to my, sy, s,, E, and corr,y(1,2), respectively.

In Figure 4, the leaf nodes 1, 2, 3, and 4 represent the four movement modes, i.e., no
movement, walking, running, and turning, respectively. Given the decision tree built
in the training stage, to identify user’s movement pattern in the testing stage, con-
secutively collected accelerometer data are processed in real time to compute the five
selected features as feature vectors. Through the decision tree, the extracted feature
vectors are used to determine the mode to which user’s movement belongs. The
identified mode will be used for map matching, as described in the next section.

4. MOVEMENT PATTERN RECOGNITION ASSISTED MAP
MATCHING. There are generally two types of navigation platforms. One
works as a standalone system, while the other works on a network with clients and
servers. Standalone platforms are referred to as ‘navigation systems’ and network-
based navigation platforms are referred to as ‘navigation services’ (Karimi, 2011).
Since smartphones have relatively limited memory and computing capabilities, it is
difficult to build standalone pedestrian/wheelchair navigation systems on them.
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Therefore, in this paper, a client/server architecture is discussed to provide multi-
sensor map matching for pedestrian/wheelchair navigation services.

A client/server architecture generally involves multiple clients connecting to a
central server. In our client/server architecture, the smartphone is responsible for
collecting real-time data (positioning data as well as other types of data such as
heading data), synchronizing multi-sensor data, requesting map-matched results from
the server, and updating the map that is presented to the user. The map data is stored
in the server to perform map matching, among other functions. Figure 5 illustrates the
architecture for map matching.

In the client/server architecture, user’s movement pattern is recognized in the client
by using accelerometer data, where user’s location updates are sent to the server in pre-
set time intervals that vary with the user’s movement modes. In the turning mode, with
the help of a compass in the smartphone, different turning types, such as left turns,
right turns, and U turns can be further distinguished from one another. This orien-
tation data can enhance the accuracy of GPS-based map matching. Given the
differences between the three sensors (i.e., accelerometer, compass, GPS), they need to
be synchronized in order to ensure that they work effectively in tandem. Figure 6
shows the relationship between the three sensors’ data, and how they are fused and
synchronized for map matching.
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In the multi-sensor integration map matching, GPS data are used for absolute
positioning in recognizing user’s movement. Accelerometer data are used for rec-
ognizing four modes of movement, as described earlier. When referring to the North
direction, for example, orientation data, obtained from the compass, indicate the
orientation of user’s movement. This helps in distinguishing between different turning
modes. To recognize movement pattern as accurately as possible, accelerometer data
are sampled in the highest frequency in order to obtain sufficient samples for FFT
processing and feature extraction. Figure 7 shows a snapshot of the 3D accelerometer
data. Figure 8 shows an example of orientation data relative to the North direction.

In the multi-sensor data integration map matching, synchronization is essential to
keep all sensor data working in tandem. Data collected from different sensors have
different sampling frequencies. Knowing the user’s current movement mode, the
sampling time is determined by the synchronization function. Figure 9 shows the user
in a walking mode at time ty and in a running mode between t; and t,. Once the change
in movement pattern is detected, the sampling frequency changes to a suitable interval
for sampling data in the running mode. As the user stops between t; and ts, the
sampling frequency changes again, since no movement is detected.
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Figure 9. Timing diagram for synchronization.

For map matching, using user’s position based only on GPS data, the synchro-
nization timeline starts from the moment when the smartphone begins receiving GPS
data. While the map matching algorithm waits for the GPS receiver to provide its first
position, [this is known as the Time-To-First-Fix (TTFF) problem (Lehtinen et al.,
2008)], accelerometer and compass data can be obtained and used to detect user’s
movement behaviour. As user’s movement mode changes, the time interval of sending
GPS data and updating user’s location by map matching services will also change. In
Figure 9, each time point marked on the timeline indicates when all the sensor data are
synchronized, given user’s movement mode changes.

The flowchart of the movement pattern-recognition-assisted map matching
algorithm is shown in Figure 10. First, as GPS data and user’s heading information
provided by the compass are updated in real time, a set of nearest sidewalk segments is
chosen as candidates. By comparing heading values of the user in consecutive time,
e.g., heading in time t._; and heading in time t., heading changes above or below a
threshold are used to judge whether the user is making a turn or not. By comparing the
orientation of a currently map-matched segment with the heading of the user and
knowing the current map-matched location of the user, segment candidates can be
further limited under different circumstances during the movement. Next, map
matching decisions are made by evaluating a weighted combination of distance for
positioning data to the candidate segments, and heading differences of the positioning
trajectory and segment orientation. Once a position data is map matched, the map
matching algorithm will wait for the next set of GPS and orientation data from the
client.

5. EXPERIMENTS. To validate the proposed movement-pattern-recognition-
assisted map matching algorithm, the sidewalk network of the University of
Pittsburgh’s main campus was used and GPS points for three routes were collected
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Figure 10. Flowchart of the movement pattern-recognition-assisted map matching algorithm.

by walking and using an Android phone (Motorola BackFlip). The server was a PC
machine with an ‘Intel Core 2 2.13 GHz’ CPU.

The experiments were performed in two parts. The first part aimed to validate the
movement pattern recognition approach. The experimental data contained both train-
ing data, which were collected for movement pattern classification, and testing data,
which were used to recognize user’s movement on real routes. The second part of the
experiment aimed to evaluate the map matching performance, as assisted by user’s
movement pattern recognition.

5.1.  Data Collection and Data Sampling. This section describes the experimental
setup to collect sensor data for user’s movement pattern recognition and location
estimation. All the sensors (GPS, accelerometer, and compass) used in the experiments
are available on the Android smartphone. An image of this phone and the direction of
its 3D accelerometer are shown in Figure 11.

Figure 12 shows a sample of the recorded data in a log file. The log file includes
collected GPS, accelerometer data, and compass data with time stamps. GPS data are
tagged by GPS in the log file, which contain longitude, latitude, altitude, accuracy,
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Figure 11. Motorola Backflip smartphone and the direction of its 3D accelerometer.

15:20:36:367 ORIENTATION 61.0,-22.0,-23.0

15:20:36:398 ACCELEROMETER -3.7732618,2.8921957,5.707777
15:20:36:405 ACCELEROMETER -2.087744,1.3599066,8.025364
15:20:36:407 ACCELEROMETER -0.21068975,-0.30645782,10.515334
15:20:36:411 ACCELEROMETER 1.340753,-1.4939818,12.737153
15:20:36:439 ACCELEROMETER 2.183512,-1.9536686,14.211981
15:20:36:442 ACCELEROMETER 2.5474305,-2.183512,14.614207
15:20:36:445 ACCELEROMETER 2.5091233,-1.9919758,13.809755
15:20:36:472 ORIENTATION 76.0,4.0,5.0

15:20:36:476 ACCELEROMETER -0.47884035,0.0,10.496181
15:20:36:479 ACCELEROMETER -1.4173675,0.6512229,9.423578
15:20:36:513 ACCELEROMETER -1.5131354,0.5746084,9.308656
15:20:36:516 ACCELEROMETER -1.1683705,0.1340753,9.883265
15:20:36:519 ACCELEROMETER -0.7086837,-0.32561144,10.668563
15:20:36:524 ACCELEROMETER -0.15322891,-0.7278373,11.473015
15:20:36:538 GPS -
79.95231617,40.44751463,26.832815170288086,0.0,283.70001220703
125,0.0

15:20:36:544 ACCELEROMETER 0.34476504,-1.0726024,11.894394
15:20:36:573 ACCELEROMETER 0.6703765,-1.1492168,11.971008
15:20:36:576 ORIENTATION 77.0,4.0,1.0

Figure 12. A sample of a log file recording GPS, accelerometer, and orientation data.

bearing and speed in order. Accelerometer data are tagged by the accelerometer, and
are 3-axis acceleration data, i.e., acceleration in x-direction, y-direction, and
z-direction. Compass data consist of 3-axis orientation data, orientation in
x-direction, y-direction, and z-direction.

On Android phones, the GPS update frequency is controlled by either setting a
Minimum Time Interval (minTime) or setting a Minimum Distance Interval
(minDistance). If the value of minTime is greater than 0, the Location Manager in
smartphones could stop working for a minTime of milliseconds between location
updates to conserve power. If the value of minDistance is greater than 0, locations
will only be updated when the device (and thus the user) moves by a distance of
minDistance metres. Since GPS receivers on smartphones do not provide accurate
distance measurement in low-speed movements, distance-based location updates are
not appropriate for pedestrian/wheelchair navigation. For this reason, minDistance is
set to 0.
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Table 2. Classifier accuracy in identifying four different movement behaviours.

Correct Recognition
Accuracy Rate (%)

Walking 92-8%
No movement 97-8%
Running 93-4%
Turning 90-6%

In order to save energy and minimize computation time (map matching is
potentially a complex task and its response is needed in real time), the following
strategy, based on user’s movement pattern recognition, is executed to update user’s
location.

e Update GPS position every 3 seconds if the user’s movement mode is recognized
as walking; set minTime to 3 s.

e Update GPS position every 2 seconds if the user is running; set minTime to 2 s.

e Stop updating GPS position if the user is not moving.

The Motorola BackFlip (the smartphone used in these experiments) can provide
sampling frequency of, at most, 110 Hz on its accelerometer. A sliding window is set,
including 128 sampling data which is the same amount of data collected within a time
interval of 1-16s, in 110 Hz. With 50% overlap between two continuous sliding
windows, a three-second interval covers at least four sets of sampling values and a
two-second interval covers at least two sets of sampling values. Assuming that the user
does not change movement mode very often, continuous movement in a single mode
can provide sufficient sampling data for recognizing pedestrian/wheelchair movement
pattern.

5.2. Training and Testing. To analyse movement pattern, we collected a set of
training data by labelling user’s behaviour, such as walking, no movement, running,
and turning. The training data set was used to build a decision tree as the classifier,
and is shown in Figure 4. We then tested movement recognition on real routes within
the study area. Along the testing routes, user’s movement pattern in different places is
recorded manually as ground truth. By comparing the ground truth data with results
of the movement pattern recognition algorithm, the accuracy of recognizing different
movement behaviours is shown in Table 2.

Of the user’s total walking movements, 92-8% were recognized correctly; 1-4% were
recognized incorrectly as no movement; 2-6% were recognized incorrectly as running;
3-2% were recognized incorrectly as turning. 97-8% of no movement were recognized
correctly, but 2:2% were recognized incorrectly as walking. Similarly, 93-4% of
running movements were recognized correctly, but 6:6% were recognized incorrectly
as walking. Turning movement was recognized 90-6% correctly, but 9-4% were
recognized incorrectly as running. The confusion matrix of cross-validation on the
feature classification of movement behaviours is shown in Table 3.

Given that over 90% of all movement modes can be correctly recognized, it is
feasible to use the movement behaviour recognition algorithm to determine actual
movement behaviour. Based on the movement pattern recognition, map matching is
expected to perform more efficiently, as illustrated in the next section.
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Table 3. Confusion matrix of cross-validation on feature classification of movement behaviour.

Recognition

Movement Mode walking no movement running turning
walking 92-8% 1-4% 2:6% 3-2%
no movement 2:2% 97-8% 0 0
running 6:6% 0 93-4% 0
turning 9-4% 0 0 90-6%

5.3. Map Matching Validation. To evaluate the performance of the movement-
pattern-recognition-assisted map matching algorithm as outlined in Figure 9, we
tested the algorithm on a set of routes on the main campus of the University of
Pittsburgh. Three routes were chosen in the experiment. Route 1 was selected to
represent a short route, where the map matching algorithm was validated in a scenario
where the user moved close to buildings. The user started walking along a wide street
and then turned into a narrow street. Route 2, as a medium length route, was selected
to validate the map matching algorithm in the area with narrow streets and dense
buildings. Route 3, the longest of the three routes, was chosen to validate the map
matching algorithm in an area where GPS data are influenced by multipath reflection
due to buildings, grasslands, main streets, and small paths. The user’s movements on
Route 2 and Route 3 include all the four movement modes discussed in the earlier
section.

Figures 13-15 show the comparison of raw GPS positions and map-matched
locations in the three routes. In Figures 13-15(a), black points indicate raw GPS
positions and red points indicate map-matched locations overlapped on the sidewalk
network. Figures 13-15(b) show map matching results with ground truth labelled by
movement modes overlaid on a Google satellite map.

Table 4 shows the result of analysing the map matching performance in efficiency
and accuracy. Taking Route 1 as an example, due to correctly recognizing user’s
different movement modes, computation for map matching is reduced; 41 out of 133
GPS datasets were sent for map matching to the server. The visualized results in
Figure 13 also show that the user’s locations still can be continuously and clearly
tracked without any influences by the reduction of map matching results. By knowing
user’s turning behaviour, the map matching algorithm was only performed on the
sidewalk connected to the previously walked-on sidewalk when the user approached
an intersection. This improved the accuracy of the map matching algorithm.

Compared with the high-quality data collected on the campus using a professional-
grade GPS receiver as ground truth data, the segment identification accuracy in our
experiments is influenced largely by the poor quality of GPS data collected by a
consumer-grade GPS receiver embedded in the smartphone.

Figures 13-15 show raw GPS data received from the smartphone. It is clear that the
GPS data received from the smartphone can be noisy and inaccurate, especially when
users are on narrow streets and when users move close to tall buildings. Low GPS data
accuracy caused most of the mismatched points in the results. For example, in Route
2, mismatched points occurred during the time the user was turning to a narrow street
at the intersection. Even though the turning behaviour of the user was recognized, the
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Figure 13. Route 1 comparing map matching result with GPS raw data.
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Figure 14. Route 2 comparing map matching result with GPS raw data.
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Figure 15. Route 3 comparing map matching result with GPS raw data.
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Table 4. Map matching performance (efficiency and accuracy).

Total
Number of  Total Number Correct Link
Testing GPS Points  of GPS Points Identification
Environment per second Sent to Server (%) User movements
Route 1 133 41 100% walk->stop->walk->
turn->walk->stop
Route 2 320 100 82% walk-> turn->walk->

turn->walk->run- > stop- >
walk- > turn- > walk- > stop

Route 3 589 195 87-2% walk->turn->walk->run- > stop->
walk- > turn- > run- > stop

GPS accuracy is not high enough to distinguish between the two sides of the narrow
street. The mismatched points at the intersection led to mismatched projections on the
connected segment, as shown in Figure 14. This is the reason why the map matching
accuracy shown in Table 4 is only 82%, mainly due to the smartphone GPS’ inability
to distinguish between the two sides of the narrow street. By recognizing user’s move-
ment pattern in Route 2, out of 320 GPS datasets, 100 were sent to the server for map
matching.

In Route 3, the map-matched results also show problems with finding the side of the
street on which the user was actually walking. To distinguish between the two sides of
a street, high positional accuracy data will be needed in future works. Except for the
problem of identifying the side of a street, the experimental results show that the map
matching algorithm can correctly estimate user’s location in the majority of the routes
as compared with ground truth shown in Figure 15(b). Furthermore, the algorithm
has low cost of communication and computation. By recognizing user’s movement on
each route, shown in the last column of Table 4, instead of sending user’s location,
either based on changes of time or changes of distance, movement pattern recognition
based on location updates can significantly reduce communication costs between the
server and the clients and reduce the calculation costs of map matching. The results
shown in Figures 13-15 also demonstrated that the movement pattern recognition
based on location updates can provide location estimation continuously without
redundancy. It can be seen that the number of actual GPS data sent to the server, as
shown in the second column, is less than one-third that of the number of GPS datasets
received per second, as shown in the first column.

6. CONCLUSIONS AND FUTURE RESEARCH. In this paper, we
demonstrate that efficient outdoor localization can be achieved on existing mobile
platforms by augmenting GPS sensors with the phone’s built-in compass and accelero-
meter. Using methods that recognize user’s movement pattern provides efficient
updates of user’s locations. Furthermore, combining the geometric and topological
information of sidewalk networks with heading information obtained from compass
further improves the accuracy of positioning in map matching. The experimental
results show that the movement pattern recognition assisted map matching algo-
rithm can make the map matching process in pedestrian/wheelchair navigation
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systems/services efficient. Furthermore, the algorithm can be used as the basis for
many useful mobile location-based applications beyond pedestrian/wheelchair navi-
gation systems/services.

Our future research includes testing user’s movement pattern recognition in differ-
ent outdoor location-based activities and testing the map matching algorithm in real-
time pedestrian/wheelchair navigation systems/services.
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