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COMPUTING STATIONARY EXPECTATIONS
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Abstract

Stationary expectations corresponding to long-run averages of additive functionals on
level-dependent quasi-birth-and-death processes are considered. Special cases include
long-run average costs or rewards, moments and cumulants of steady-state queueing
network performance measures, and many others. We provide a matrix-analytic scheme
for numerically computing such stationary expectations without explicitly computing the
stationary distribution of the process, which yields an algorithm that is as quick as its
counterparts for stationary distributions but requires far less computer storage. Specific
problems arising in the case of infinite state spaces are discussed and the application of
the algorithm is demonstrated by a queueing network example.
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1. Introduction

Suppose that we are given an ergodic continuous-time Markov chain (CTMC) (Xt )t≥0 with
discrete state space S and generator matrix Q = (qij )i,j∈S . Then the stationary distribution
is the unique probability measure π = (πi)i∈S satisfying πQ = 0 and it coincides with the
limiting distribution. Hence, (Xt )t≥0 converges to a random variable X∞ with distribution π .
Furthermore, if, for a function f : S → R, which may be written as a function in the usual way
or as a column vector,

Eπ [|f |] :=
∑
i∈S

πi |f (i)| = π |f | < ∞,

then the ergodic theorem

lim
t→∞

1

t

∫ t

0
f (Xs) ds =

∑
i∈S

πif (i) = πf = Eπ [f ] with probability 1 (1)

holds, which is actually a strong law of large numbers for CTMCs [1, pp. 52–54], [15, pp. 264–
265].

In many cases where the CTMC describes the behavior of a complex real-world system,
one is not primarily interested in the limiting or stationary distribution π but rather in certain
associated steady-state system measures expressed by (1). For instance, if f is interpreted
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as a cost or reward function then (1) gives the long-run average cost or reward rate, which
is often of higher practical interest than π . Similarly, performance or availability measures
in queueing networks or reliability models can be expressed by f . More abstractly, when
analyzing additive functionals on (Xt ), that is, functions of the form

∫ t
0 f (Xs) ds, the value

of the long-run average Eπ [f ] is often of primary interest. For example, in the case S ⊆ N,
by a suitable choice of f , moments or cumulants of the limiting distribution of (Xt ) can be
computed. It is straightforward to generalize the scope to vector-valued functions f : S → R

m

and expectations Eπ [f (1)], . . . ,Eπ [f (m)], or, compactly written, Eπ [f ].
An obvious approach for determining Eπ [f ] if no analytical expressions are available is to

compute at first the stationary distribution numerically and then to calculate Eπ [f ] according
to the sum in (1), but, in general, if the Markov chain does not have a specific structure that
can be exploited, due to prohibitively large state spaces, the requirements of the numerical
computations may easily exhaust the computer storage capacity. In some cases one may be
content with bounds on the stationary expectations [7], [11], [13]. An alternative is to estimate
Eπ [f ] by simulation, but simulation is inherently costly and only provides estimates that are
subject to statistical uncertainty. Depending on the characteristics of the Markov chain and the
function f , an extremely large number of simulation runs may be required in order to obtain
estimates with reasonable statistical accuracy.

In this paper we provide an efficient algorithm for computing stationary expectations of
functions on the (typically multidimensional) state space of Markov chains with a specific
structure, namely level-dependent quasi-birth-and-death (LDQBD) processes, where according
to an appropriate ordering of the states the generator matrix is block tridiagonal. Our algorithm
builds upon matrix-analytic methods for computing the stationary distribution of LDQBD
processes [2], [4], [5], [6], [9], [17], but rather than directly invoking these methods as a
first computational step, we develop a matrix-analytic scheme for numerically computing the
stationary expectations without at first explicitly computing the stationary distribution of the
process. Thereby, the costly storage of a large family of matrices as required by matrix-
analytic computations of the stationary distribution is avoided, yielding a memory-efficient
algorithm that is as quick as its counterparts for stationary distributions but requires far less
computer storage. Note that though we have formulated the problem statement for processes in
continuous time and will continue to focus on continuous-time LDQBD processes, an ergodic
theorem analogous to (1) holds for discrete-time Markov chains, too [1, pp. 16–19], [15, pp. 45–
47]. Accordingly, with only slight modifications, our algorithm can also be applied to compute
stationary expectations in discrete-time LDQBD processes, as will be demonstrated later.

In the next section we provide the necessary background on LDQBD processes and matrix-
analytic computations of their stationary distributions, which serves as the basis of our algorithm
as well as the starting point for improvements with regard to the memory requirements when
computing stationary expectations. In Section 3 we present our algorithm where its development
and description show that it indeed obviously requires far less computer storage than the matrix-
analytic computations of stationary distributions. In Section 4 we demonstrate how moments
and cumulants of LDQBD process components can be computed as special cases of our general
framework. In Section 5 we discuss how to start the computations in the case of infinite state
spaces that have to be truncated in some manner. In particular, we address the choice of the
matrix that is needed as an initial value of the matrix-analytic computations. In Section 6
we consider an example of a tandem queueing network with Markovian arrival processes and
phase-type-distributed service times in order to demonstrate how our algorithm applies to
model analysis, where we first show how to describe the model and its performance measures

https://doi.org/10.1239/jap/1363784430 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784430


Computing stationary expectations in LDQBD processes 153

appropriately within our LDQBD framework and then give some numerical results for specific
settings. Finally, in Section 7 we conclude the paper and outline further research directions.

2. Stationary distributions of QBD processes

Suppose that the state space S of (Xt )t≥0 is partitioned such that

S =
∞⋃
n=0

S(n), S(n) = {s(n)1 , s
(n)
2 , . . . , s

(n)
dn

}, S(m) ∩ S(n) = ∅ for m �= n,

and
P(Xt+h ∈ S(m) | Xt ∈ S(n)) = o(h) for |m− n| > 1.

Then the states can be arranged such that the generator matrix is of block-tridiagonal form, that
is,

Q =

⎛
⎜⎜⎜⎝
Q00 Q01
Q10 Q11 Q12

Q21 Q22 Q23
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ ,

Qij ∈ R
di×dj . In this case, (Xt )t≥0 is said to be a quasi-birth-and-death (QBD) process [12,

pp. 129–130], [14, pp. 81–83], and, for all n ∈ N, the subset S(n) of states is referred to as
the process level with level number n. It is important to note that a QBD process can have an
infinite state space of potentially arbitrary dimension. In order to obtain the desired structure,
the levels can be defined in such a manner that the level number is determined by a function of
the values of multiple components of the state variables; cf., e.g. [5] and Section 6.

When computing the stationary distribution π of a QBD process, it is quite natural to use
a partition π = (π0, π1, π2, . . . ) with πn = (πn,1, πn,2, . . . , πn,dn). In the case of a level-
independent QBD process, the transition rates do not depend on the level and the stationary
distribution is simply given by πn = π0R

n, where the matrix R is defined by the matrix
quadratic equation

Q01 + RQ11 + R2Q21 = 0,

and π0 is a solution of π0(Q00 + RQ10) = 0, normalized by π0(I − R)−1e = 1 with identity
matrix I and vector e = (1, 1, . . . , 1)	, both of appropriate dimension. See [12, pp. 141–142]
and [14, pp. 30–33, 81–83] for details.

In the more general case of a level-dependent QBD (LDQBD) process, sometimes also
referred to as nonhomogeneous QBD [12, Chapter 12], (some of) the transition rates depend
on the level and the stationary distribution satisfies

πn+1 = πnRn (2)

with nonnegative matrices Rn ∈ R
dn×dn+1 that depend on the level. The basic idea behind the

efficient numerical computation of matrix-analytic methods [2], [4], [5], [6], [9], [17] is to
exploit the fact that these matrices satisfy the infinite recurrence scheme

Rn = −Qn,n+1(Qn+1,n+1 + Rn+1Qn+2,n+1)
−1 (3)

and π0 is a solution of the equation

π0(Q00 + R0Q10) = 0. (4)
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Using a physical interpretation of the entries of the matrices Rn (as conditional expected state
sojourn times), it can be shown that the inverse matrices in (3) exist (irreducibility of the Markov
chain is required), and that Q00 + R0Q10 has the characteristics of a generator matrix of an
irreducible CTMC with finite state space (ergodicity is required); see [4]. Thus, the solution
π0 of (4) is unique up to a multiplicative constant and can be chosen to be nonnegative.

For finite state spaces with maximum level N , (3) must be modified for n = N − 1 by

RN−1 = −QN−1,NQ
−1
NN. (5)

Thus, an exact (up to numerical errors) algorithm for computing the stationary distribution
of finite LDQBDs proceeds as follows. Determine RN−1 by (5), then compute (3) for n =
N − 2, . . . , 0, determine π0 by choosing a nontrivial solution of (4), and use (2) for computing
π1, π2, . . . , πN . Finally, normalize π in the unit 1-norm.

If the state space is infinite, it has to be truncated. The simplest way consists of using the
‘dishonest’ generator

Q =

⎛
⎜⎜⎜⎜⎜⎝

Q00 Q01
Q10 Q11 Q12

Q21 Q22 Q23
. . .

. . .
. . .

QN,N−1 QNN

⎞
⎟⎟⎟⎟⎟⎠

and the above algorithm for finite state spaces. To make things as simple as possible, here
we define RN = 0 ∈ R

dN×dN+1 and use (3) for computing RN−1, too. Instead of setting
RN = 0, there are approaches to approximating a suitable RN [2], [4], [9] that we will discuss
in Section 5 with a special focus on our goal of computing stationary expectations rather than
explicitly computing the stationary distribution. Altogether, the corresponding algorithm for
computing the stationary distribution works as follows.

Algorithm 1. (Computing stationary distributions of LDQBD processes.)

• Choose N large and define RN = 0 ∈ R
dN×dN+1 .

• For n = N − 1, N − 2, . . . , 0, compute and store

Rn = −Qn,n+1(Qn+1,n+1 + Rn+1Qn+2,n+1)
−1.

• Determine a nontrivial solution of

x0(Q00 + R0Q10) = 0.

• For n = 0, 1, . . . , N − 1, compute xn+1 = xnRn.

• By normalizing x = (x0, . . . , xN), determine π , that is,

πn = xn

c
, c =

N∑
n=0

‖xn‖,

where ‖ · ‖ is the row sum norm.
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Note that all the matrices RN−1, RN−2, . . . , R0 have to be stored. Furthermore, note
that, whether RN = 0 is used or any approximation, we will not figure out the exact
matrixRN . Thus, the approximationsR∗

N,R
∗
N−1, . . . , R

∗
0 are used rather than the exact matrices

RN,RN−1, . . . , R0. Using the approximation R∗
0 instead of R0, (4) has no exact solution, the

matrix Q00 + R∗
0Q10 has full rank d0. In practice, one of the scalar equations is ignored

and one of the components is fixed. For N → ∞, the matrices R∗
0 , R

∗
1 , R

∗
2 , . . . and, thus,

Q00 + R∗
0Q10 tend to their exact values R0, R1, R2, . . . and Q00 + R0Q10, entailing that the

computed approximation π∗ = (π∗
0 , π

∗
1 , . . . , π

∗
N, 0, . . . ) actually converges to the stationary

distribution π = (π0, π1, π2, . . . ).
The stated matrix-analytic algorithm is very quick and definitely outperforms all standard

methods for numerically computing stationary distributions of Markov chains [16, pp. 121–
230] as long as the block sizes are small compared to the maximum level or the truncation level.
Usually, the block matrices themselves are sparse, entailing that iterative methods get by with
smaller memory. In [2] a variant of the matrix-analytic algorithm is discussed using smaller
memory (O(

√
Nd2) for constant block dimensions di = d), but paying the price of nearly

double computing time. Nevertheless, the regular version still outperforms standard methods
with regard to memory capacity and computing time in many examples.

3. Stationary expectations of LDQBD processes

Now we are prepared for approaching the task of computing Eπ [f ] for some function
f = (f (1), . . . , f (m)) : S → R

m, where π is the stationary distribution of an LDQBD process.
The goal is to obtain Eπ [f ] without explicitly computing π and without the need for storing
all the matrices RN,RN−1, . . . , R0 as necessary for computing π by Algorithm 1.

Since the state space S is discrete, we can interpret f (µ) as a column vector, partitioned into

f (µ) = (f
(µ)
0 , f

(µ)
1 , . . . )	 with f (µ)n = (f

(µ)
n,1 , . . . , f

(µ)
n,dn

)	,

using the notation f (µ)n,v = f (µ)(s
(n)
v ), where s(n)v ∈ S. Hence, for µ = 1, . . . , m, we can write

Eπ [f (µ)] = πf (µ) =
∞∑
n=0

dn∑
v=1

πn,vf
(µ)(s(n)v ) =

∞∑
n=0

πnf
(µ)
n

and, thus,

Eπ [f ] =
∞∑
n=0

πnfn with fn = (f (1)n , . . . , f (m)n ).

Computing the exact value is impossible as long as the state space is infinitely large and there is
no analytic expression forπ . Thus, the sum has to be truncated, that is, we compute

∑N
n=0 πnfn

for some N ∈ N, implicitly using the approximation for π given above. But, instead of first
computing π and then summing up, we use a Horner-type scheme, which is normally used to
evaluate polynomials at linear time [8, pp. 568–569], [10, pp. 486–489]. Applying (2) yields

N∑
n=0

πnfn = π0

N∑
n=0

(n−1∏
k=0

Rk

)
fn

= π0(f0 + R0(f1 + R1(f2 + R2(· · · + RN−1(fN−1 + RN−1fN))))).

The term
f0 + R0(f1 + R1(f2 + R2(· · · + RN−1(fN−1 + RN−1fN))))
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can be computed by Z = fn + RnZ for n = N − 1, N − 2, . . . , 0, starting from Z = fN .
With c being the same normalization constant as in Algorithm 1 for computing the stationary
distribution, using (4), we can determine x0 = cπ0, and, thus, by updatingZ = x0Z, we obtain
Z = cEπ [f ].

Note that, for an algorithm corresponding to this just developed computational scheme, there
is indeed no need for storing the matrices Rn since they are only used once for updating Z and
computing the next matrix Rn−1.

The remaining problem is to determine the normalization constant c, which is obtained by
summing up ‖πn‖ when computing the stationary distribution, but now, we do not want to
compute πn via (2) anymore. In fact, the normalization constant c can be determined in another
way as follows. We simply extend the function f to f̄ = (f (0), f (1), . . . , f (m))with f (0)n,v = 1.
Then the normalization condition can be expressed as Eπ [f (0)] = 1. Applying our algorithm
to f̄ we obtain a vector (z(0), z(1), . . . , z(m)) = cEπ [f̄ ], and, thus, our final result will be

Eπ [f ] =
(
z(1)

z(0)
, . . . ,

z(m)

z(0)

)
.

Hence, let Q be the generator matrix of an ergodic LDQBD and let f (µ)n ∈ R
dn be given for

n ∈ N and µ = 1, . . . , m. Define z(µ) = ∑∞
n=0 πnf

(µ)
n . Then approximations for z(1), . . . ,

z(m) can be obtained by the following algorithm.

Algorithm 2. (Computing stationary expectations of LDQBD processes.)

• Define f (0)n = (1, 1, . . . , 1)	 ∈ R
dn and f̄n = (f

(0)
n , f

(1)
n , . . . , f

(m)
n ) ∈ R

dn×(m+1).

• Choose N large, R = 0 ∈ R
dN×dN+1 , Z = fN .

• For n = N − 1, N − 2, . . . , 1, 0,

• update R = −Qn,n+1(Qn+1,n+1 + RQn+2,n+1)
−1,

• update Z = fn + RZ.

• Compute a nontrivial vector x0 by solving d0 −1 scalar equations of the system x0(Q00 +
RQ10) = 0 of size d0 × d0 and update Z = x0Z ∈ R

1×(m+1).

• Define Z = (z(0), z(1), . . . , z(m)) and replace Z = Z/z(0).

As stated above, the main advantage of this algorithm is that it is memory efficient. Since
justR andZ are stored and immediately substituted by their new values, the maximum number
of real numbers to be stored at the same time is

max
n=0,...,N

(dndn+1 + dn(m+ 1)).

The main time cost is updating R, which is also part of the algorithm for computing
stationary distributions. Thus, the new algorithm needs a similar amount of time for computing
stationary expectations, but clearly outperforms the algorithm for computing stationary
distributions with regard to memory efficiency. Especially for applications in which the block
sizes dn are small but a very high truncation level N has to be chosen, the new algorithm is
highly efficient.

Remarks. 1. Similarly as in [4] and [9] in the context of computing the stationary distribution,
instead of choosing R = 0 at the beginning, approximations for RN may be used. As stated
before, we will discuss these approaches in Section 5.
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2. An analogous algorithm for discrete-time Markov chains with transition probability matrix
P of block-tridiagonal form can easily be deduced. Only slight modifications have to be made.
The update for R is given by

Pn,n+1(Idn+1 − Pn+1,n+1 − RPn+2,n+1)
−1

and x0 is determined by
x0(Id0 − P00 − RP10) = 0,

where Id denotes the identity matrix of size d × d and the Pij are the blocks of the transition
probability matrices.

4. Special case: moments and cumulants

Consider an ergodic p-dimensional LDQBD (Xt )t≥0, Xt = (X
(1)
t , . . . , X

(p)
t ), with state

space

S =
∞⋃
n=0

S(n) ⊆ N
p.

A natural goal is to obtain moments and cumulants of the various components. This task can
be simply cast in our framework and solved by means of our general algorithm for calculating
stationary expectations. For computing the qth steady-state moment of the kth component, we
choose fn,v = (s

(n)
v )

q
k . Then our algorithm yields

Eπ [f ] =
∞∑
n=0

πnfn =
∞∑
n=0

dn∑
v=1

πn,v(s
(n)
v )

q
k = E[(X(k)∞ )q ].

Cumulants can be easily composed through moments. Of course, when computing moments
and cumulants of the components, we have to compute all the moments we need at the same
time, since, otherwise, we would solve for the R in the algorithm more than once.

For example, consider an ergodic two-dimensional LDQBD (Lt , Pt )t≥0 on the state space
S ⊆ N × N, where the level number is defined as the value of the state variable of the first
component. Choose

f̄n =

⎛
⎜⎜⎜⎜⎜⎝

1 n n2 n3 n4 (s
(n)
1 )2 (s

(n)
1 )22 (s

(n)
1 )32 (s

(n)
1 )42

1 n n2 n3 n4 (s
(n)
2 )2 (s

(n)
2 )22 (s

(n)
2 )32 (s

(n)
2 )42

...
...

...
...

...
...

...
...

...

1 n n2 n3 n4 (s
(n)
dn
)2 (s

(n)
dn
)22 (s

(n)
dn
)32 (s

(n)
dn
)42

⎞
⎟⎟⎟⎟⎟⎠
.

Then after performing our algorithm we obtain

E[L∞] = z(1), E[L2∞] = z(2), E[L3∞] = z(3), E[L4∞] = z(4),

E[P∞] = z(5), E[P 2∞] = z(6), E[P 3∞] = z(7), E[P 4∞] = z(8).

Since the algorithm is based on a finite vector π∗ as an approximation for the stationary
distribution π , it does not verify whether or not these moments exist, but it will provide results
in either case. Thus, in order to check the existence of the moments, if not guaranteed by certain
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knowledge of the underlying system that is modeled, other methods may be used in advance
before invoking our algorithm. For instance, one may consider bounds as given in [7], [11],
and [13]. In particular, if there is a finite upper bound on a moment, the respective moment
exists. However, this is not the scope of the present paper.

Using the first four moments, we can compose cumulants, i.e.

κL∞,2 = z(2) − (z(1))2,

κL∞,3 = z(3) − 3z(2)z(1) + 2(z(1))3,

κL∞,4 = z(4) − 4z(3)z(1) − 3(z(2))2 + 12z(2)(z(1))2 − 6(z(1))4,

and, thus, variance, skewness, and kurtosis of L∞:

var[L∞] = κL∞,2 = z(2) − (z(1))2,

skew[L∞] = κL∞,3

κ
3/2
L∞,2

= z(3) − 3z(2)z(1) + 2(z(1))3

(z(2) − (z(1))2)3/2
,

kurt[L∞] = κL∞,4
κ2
L∞,2

= z(4) − 4z(3)z(1) − 3(z(2))2 + 12z(2)(z(1))2 − 6(z(1))4

(z(2) − (z(1))2)2
.

Variance, skewness, and kurtosis ofP∞ can be obtained analogously using z(5), . . . , z(8) instead
of z(1), . . . , z(4).

To further illustrate the choice of f̄n, note that if the dn states contained in level n take the
values 1, . . . , dn then f̄n is simply

f̄n =

⎛
⎜⎜⎜⎜⎝

1 n n2 n3 n4 1 12 13 14

1 n n2 n3 n4 2 22 23 24

...
...

...
...

...

1 n n2 n3 n4 dn d2
n d3

n d4
n

⎞
⎟⎟⎟⎟⎠ .

5. Getting started in the case of infinite state spaces

The remaining question for the algorithm is how to choose the starting matrix R, that is,
the approximation R∗

N for RN . The method suggested by Bright and Taylor [4] consists of
choosing L ≥ 0 and computing

R∗
N = RN(L) :=

L∑
�=0

U
(�)
N

�−1∑
i=0

D
(�−1−i)
N+2�−i ,

where
U
(0)
k = Q

(k)
0 (−Q(k+1)

1 )−1, (6)

D
(0)
k+2 = Q

(k+2)
2 (−Q(k+1)

1 )−1, (7)

U
(�)
k = U

(�−1)
k U

(�−1)
k+2�−1(I − U

(�−1)
k+2�

D
(�−1)
k+3·2�−1 −D

(�−1)
k+2�

U
(�−1)
k+2�−1)

−1, (8)

D
(�)

k+2�+1 = D
(�−1)
k+2�+1D

(�−1)
k+3·2�−1(I − U

(�−1)
k+2�

D
(�−1)
k+3·2�−1 −D

(�−1)
k+2�

U
(�−1)
k+2�−1)

−1. (9)

They proved that, for L → ∞, the approximation RN(L) tends to RN and gave an algorithm
exploiting the facts that the inverse matrices in (6) and (7) are the same and the inverse matrices
in (8) and (9) are the same. By avoiding to compute the same inverse twice, the computational
effort of their method was dominated by 4 · 2L matrix inversions to be done.
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In fact, this method is equivalent to a preprocessing step associated with the truncation
level. Another method of preprocessing was suggested in [9] in the context of computing
stationary distributions. Let us denoteR∗

N as the matrix defined by choosingRN∗ = 0 for some
N∗ > N and then computing RN∗−1, RN∗−2, . . . , RN using recursion (3). Of course, this
method delivers a better approximation for RN too, since, for N∗ → ∞, we have R∗

N → RN .
Actually, one can prove (by induction) that R∗

N = RN(L)when choosingN∗ = N + 2L+1 − 1.
Thus, using (3) for a preprocessing, we need 2L+1 matrix inversions, that is, about as many
as in the more complicated (with regard to the formulae) version discussed in [4]. In some
examples there is a difference with regard to numerical stability of the matrix inversions.

We now discuss the influence of a preprocessing step associated with the truncation level.
For this purpose, we consider the example of a simple birth–death process with constant rates,
that is,

Q =

⎛
⎜⎜⎜⎝

−λ λ

µ −(λ+ µ) λ

µ −(λ+ µ) λ

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ .

We neglect any numerical errors and focus on the influence of the parametersN (truncation level)
and N∗ (referred to as the preprocessing level). In this analysis, we do not need to distinguish
which variant of the matrix-analytic algorithm we use. First computing an approximation
(π∗

0 , . . . , π
∗
N) and then calculating steady-state system measures will yield the same result as

our direct algorithm.
In this simple example we have dn = 1 and, of course, we know the exact stationary

distribution, which is given by πn = (1 − ρ)ρn with ρ = λ/µ, provided ρ < 1 such that a
unique stationary distribution exists. Define L as the stationary population size (or number of
customers in an M/M/1 queue). Then E[L] = ρ/(1 − ρ) and var[L] = ρ/(1 − ρ)2. Now,
we determine the values that our algorithm will yield for E[L] (up to numerical errors) and
compare the variants without preprocessing, that is, RN = 0, and with preprocessing, that is,
RN∗ = 0 for some N∗ > N .

With preprocessing we have RN∗ = 0 and

Rn = λ(λ+ µ− Rn+1µ)
−1 = ρ

1 + ρ − Rn+1
, n < N∗,

and simple induction shows that

Rn = ρ
1 − ρN

∗−n

1 − ρN
∗+1−n .

By another simple induction we see that the approximation for the stationary distribution is
given by π∗

n = xn/S with

xn = ρn − ρN
∗+1

1 − ρN
∗+1 , S =

N∑
n=0

xn = 1 − ρN+1 − (N + 1)(1 − ρ)ρN
∗+1

(1 − ρ)(1 − ρN
∗+1)

.

Theoretically, x0 as a multiple of π0 has to satisfy x0(−λ + R0µ) = 0, and, since R0 �= ρ,
this yields x0 = 0. But, as stated above, due to the truncation procedure, the determination of
x0 has to be modified where one scalar equation is ignored and one component of x0 is fixed.
Hence, in the scalar case we can choose an arbitrary x0 �= 0, and for convenience we choose
x0 = 1.
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Some simple algebra yields

N∑
n=0

nπ∗
n = ρ

2 − 2(N + 1)ρN + 2NρN+1 −N(N + 1)ρN
∗
(1 − 2ρ + ρ2)

2(1 − ρ)(1 − ρN+1 − (N + 1)(1 − ρ)ρN
∗+1)

as an approximation for E[L] and, thus, the error is

err(N,N∗) = E[L] −
N∑
n=0

nπ∗
n = N + 1

2
ρN+1 2 +NρN

∗−N − (N + 2)ρN
∗+1−N

1 − ρN+1 − (N + 1)(1 − ρ)ρN
∗+1 .

Studying this function depending on N and N∗ we observe that, for N∗ → ∞, we have
monotonically decreasing convergence to (N + 1)ρN+1/(1 − ρN+1) and, for N → ∞, we
have monotonically decreasing convergence to 0. Thus, the influence of a higher truncation
level N is much stronger than that of a higher preprocessing level N∗. Hence, N has to be
chosen as large as possible, and without additional effort the best choice is N = N∗, yielding
the error

err(N,N) = (N + 1)(N + 2)

2

(1 − ρ)ρN+1

1 − (N + 2)ρN+1 + (N + 1)ρN+2 .

In the general case of an arbitrary LDQBD process and an arbitrary function f the error
functions may be more complicated, but it seems reasonable that instead of choosing a prepro-
cessing level N∗ > N it is more efficient to increase the truncation level N itself. With and
without preprocessing, most of the algorithm’s computational time is spent calculating Rn. In
the case of computing the stationary distribution a preprocessing might thus make sense with
regard to memory capacity. Preprocessing according to [4] requires the storage ofN∗ −N + 1
pairs of U and D matrices as given in (8) and (9), but the matrices RN∗ , . . . , RN calculated
within the preprocessing using RN∗ = 0 and (3) as suggested in [9] do not have to be stored,
whereas RN−1, RN−2, . . . , R0 do.

In our algorithm for computing stationary expectations no matrix Rn has to be stored for
more than one computational step and, thus, a preprocessing does not make much sense. While
choosing largeN seriously influences the memory requirement when computing the stationary
distribution, our algorithm does not seriously suffer from a large N in that it requires storing a
matrix of corresponding size only once.

6. Tandem queueing network example

We now demonstrate how the performance analysis of a queueing network can be cast in
our framework for computing stationary expectations of LDQBD processes. First we consider
a general description of an open tandem queueing network with Markovian arrival processes
and phase-type-distributed service times. Then we present numerical results for a model with
specific choices of the arrival processes and the service time distributions.

6.1. LDQBD modeling framework

We consider a tandem queueing network with two single-server queues of infinite capacity,
phase-type-distributed service times, and Markovian arrival processes (MAPs) at both nodes.
After service completion at the first node, customers move to the second node with probability
p(n2) and leave the network with probability 1 − p(n2), where n2 is the number of customers
at the second node. Since leaving can be interpreted as customers being discouraged by the
length of the second queue, it makes sense to assume that p(n2) is decreasing.
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A MAP itself is a special case of a QBD process, namely a two-dimensional level-independent
QBD with block-tridiagonal generator matrix

⎛
⎝D E

D E
.. .

. . .

⎞
⎠ .

The first component—corresponding to the level—describes the number of arrivals and the
second component is some kind of ‘environmental state’. If E is a diagonal matrix, the MAP
reduces to a Markov-modulated Poisson process (MMPP) [12, pp. 72–75].

Phase-type distributions [12, Chapter 2], [14, Chapter 2], defined as distributions of the time
to absorption in an absorbing Markov chain, are characterized by a probability distribution
giving the initial distribution for the transient phases, and a dishonest generator giving the
transition rates of the transient phases. More precisely, for a CTMC with finite state space
{1, . . . , n, n + 1} and initial distribution ν = (ν1, . . . , νn+1), where the states 1, . . . , n are
transient and the staten+1 is absorbing, the generator matrixQof the chain can be represented as

Q =
(
T t

0 0

)
, T ∈ R

n×n, t ∈ R
n,

and ((ν1, . . . , νn), T ) is a representation of the phase-type distribution.
In our model we assume a (D1, E1)-MAP for arrivals at the first queueing node, where the

service time is (α1, T1)-phase-type distributed, and a (D2, E2)-MAP for arrivals at the second
queueing node, where the service time is (α2, T2)-phase-type distributed. Altogether, we obtain
a six-dimensional Markov chain, in which a state (n1, n2, u1, u2, v1, v2) consists of

• the number n1 of customers at the first node,

• the number n2 of customers at the second node,

• the state u1 of the environment for the first MAP,

• the state u2 of the environment for the second MAP,

• the phase v1 of the service time at the first node,

• the phase v2 of the service time at the second node.

The state space is

S = N>0 × N>0 × {1, . . . , e1} × {1, . . . , e2} × {1, . . . , m1} × {1, . . . , m2}
∪ N>0 × {0} × {1, . . . , e1} × {1, . . . , e2} × {1, . . . , m1} × {1}
∪ {0} × N>0 × {1, . . . , e1} × {1, . . . , e2} × {1} × {1, . . . , m2}
∪ {0} × {0} × {1, . . . , e1} × {1, . . . , e2} × {1} × {1},

where ei denotes the number of environmental states for the ith MAP and mi denotes the
number of transient phases for the ith phase-type distribution. With ti = −Tie, i = 1, 2, we
have transitions as given in Table 1.

Now let us choose S(n) = {(n1, n2, u1, u2, v1, v2) ∈ S : n1 + n2 = n}. Then we have a QBD
process, which is level dependent due to the probability p(n2) and because of the different
numbers of states at each level. Within the levels we enumerate the states in lexicographic
order, that is,

s
(n)
1 = (0, n, 1, 1, 1, 1), . . . , s(n)dn = (n, 0, e1, e2,m1, 1).
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Table 1: State transitions of the tandem queueing network model.

From state To state Rate Condition

(n1, n2, u1, u2, v1, v2) (n1, n2, u
′
1, u2, v1, v2) (D1)u1,u

′
1

(0, n2, u1, u2, 1, v2) (1, n2, u
′
1, u2, v

′
1, v2) (E1)u1,u

′
1
(α1)v′

1

(n1, n2, u1, u2, v1, v2) (n1 + 1, n2, u
′
1, u2, v1, v2) (E1)u1,u

′
1

n1 > 0

(n1, n2, u1, u2, v1, v2) (n1, n2, u1, u
′
2, v1, v2) (D2)u2,u

′
2

(n1, 0, u1, u2, v1, 1) (n1, 1, u1, u
′
2, v1, v

′
2) (E2)u2,u

′
2
(α2)v′

2

(n1, n2, u1, u2, v1, v2) (n1, n2 + 1, u1, u
′
2, v1, v2) (E2)u2,u

′
2

n2 > 0

(n1, n2, u1, u2, v1, v2) (n1, n2, u1, u2, v
′
1, v2) (T1)v1,v

′
1

n1 > 0
(1, 0, u1, u2, v1, 1) (0, 1, u1, u2, 1, v′

2) (t1)v1(α2)v′
2
p(0)

(n1, 0, u1, u2, v1, 1) (n1 − 1, 1, u1, u2, v
′
1, v

′
2) (t1)v1(α1)v′

1
(α2)v′

2
p(0) n1 > 1

(1, n2, u1, u2, v1, v2) (0, n2 + 1, u1, u2, 1, v2) (t1)v1p(n2) n2 > 0
(n1, n2, u1, u2, v1, v2) (n1 − 1, n2 + 1, u1, u2, v

′
1, v2) (t1)v1(α1)v′

1
p(n2) n1 > 1, n2 > 0

(1, n2, u1, u2, v1, v2) (0, n2, u1, u2, 1, v2) (t1)v1(1 − p(n2))

(n1, n2, u1, u2, v1, v2) (n1 − 1, n2, u1, u2, v
′
1, v2) (t1)v1(α1)v′

1
(1 − p(n2)) n1 > 1

(n1, n2, u1, u2, v1, v2) (n1, n2, u1, u2, v1, v
′
2) (T2)v2,v

′
2

n2 > 0
(n1, 1, u1, u2, v1, v2) (n1, 0, u1, u2, v1, 1) (t2)v2

(n1, n2, u1, u2, v1, v2) (n1, n2 − 1, u1, u2, v1, v
′
2) (t2)v2 (α2)v′

2
n2 > 1

Important system measures are the mean steady-state queue lengths, the mean queueing time
(computed by Little’s law), and the probability of ‘loss’, that is, the probability that a customer
leaves the network after service completion at the first node. Since the output of the first node
is not a Poisson process, this probability does not depend only on the queue length distribution
of the second node, but it also depends on the service completion times at the first node.

It is quite easy to find functions ñ1(n, v), ñ2(n, v), ũ1(n, v), . . . for recomputing n1, n2,

u1, . . . for the vth state of level n. When defining

f̄ (0)n,v = 1,

f̄ (1)n,v = ñ1(n, v),

f̄ (2)n,v = ñ2(n, v),

f̄ (3)n,v = 1{ñ1(n,v)>0}ṽ1(n, v)p(ñ2(n, v)),

f̄ (4)n,v = 1{ñ1(n,v)>0}ṽ1(n, v),

f̄ (5)n,v = 1 − p(ñ2(n, v)),

f̄ (6)n,v =
e1∑
i=1

(E1)ũ1(n,v),i ,

f̄ (7)n,v =
e2∑
i=1

(E2)ũ2(n,v),i ,

our algorithm provides

• z(1) = E[N1]: the stationary mean number of customers at the first node,

• z(2) = E[N2]: the stationary mean number of customers at the second node,
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• z(3): the stationary rate of customers joining the second node after having been served at
the first node,

• z(4): the stationary total rate of customers served at the first node,

• ploss,Poi = z(5): the stationary probability for discourage when arriving at the second
node according to a Poisson process,

• z(6): the stationary total arrival rate (from outside) at the first node,

• z(7): the stationary total arrival rate (from outside) at the second node.

For model analysis, we additionally compute

• E[R1] = z(1)/z(6): the stationary mean residence time at the first node,

• E[R2] = z(2)/(z(3) + z(7)): the stationary mean residence time at the second node,

• ploss = 1 − z(3)/z(4): the stationary probability for customers leaving after having been
served at the first node.

The value ploss,Poi is just computed for means of comparison to ploss. The stationary arrival
rates, that is, z(6) and z(7), could be computed in an alternative manner: D1 + E1 is a finite
generator of an irreducible Markov chain. Therefore, a unique stationary distribution ψ exists,
which is the stationary marginal distribution of the first environmental state. Thus, z(6) = ψE1e.
Analogously, z(7) can be expressed in terms of the stationary distribution ofD2 +E2. Usually,
this way of determining the arrival rates is more efficient, but the additional effort for computing
z(6) and z(7) is small. More importantly, in a more general framework in which the arrival rates
may depend on the number of customers waiting, the approach used for computing z(6) and
z(7) is still valid, too.

6.2. Numerical example

As a specific numerical example, we consider an MMPP with

e1 = 2, D1 =
(−3.1 0.1

0.1 −2.1

)
, E1 =

(
3 0
0 2

)

for arrivals at the first node, an MMPP with

e2 = 3, D2 =
⎛
⎝−3.4 0.3 0.1

0.5 −2.8 0.3
1.0 1.0 −12.0

⎞
⎠ , E2 =

⎛
⎝3 0 0

0 2 0
0 0 10

⎞
⎠

for arrivals at the second node, a hyperexponential distribution with

m2 = 2, α2 = (0.9, 0.1), T2 =
(−6 0

0 −3

)
, t2 =

(
6
3

)

for the service times at the second node, and probabilities

p(n2) =

⎧⎪⎨
⎪⎩

1, n2 = 0,

1

n2
, n2 ≥ 1,
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Table 2: Numerical examples for the tandem queueing network model.

k E[N1] E[N2] E[R1] E[R2] ploss ploss,Poi

1 1.869 18 3.743 45 0.747 668 0.830 160 0.486 578 0.481 788
2 1.574 54 3.740 89 0.629 811 0.825 137 0.476 849 0.481 493
4 1.424 49 3.738 15 0.569 794 0.822 171 0.471 638 0.480 993
6 1.374 00 3.736 96 0.549 595 0.821 103 0.469 854 0.480 756
8 1.348 65 3.736 31 0.539 456 0.820 553 0.468 953 0.480 623

for moving to the second node after having been served at the first node. At the first node
we assume Erlang-distributed service times with k phases and parameter 4k, that is, the mean
service time is 1

4 , and, for large k, the variance becomes small, implying that the service time
becomes more and more deterministic. Varying k, we can compute the stationary characteristics
described above. Numerical examples are given in Table 2.

The truncation level was chosen as 50 for k = 1, we used the matrix-analytic algorithm as
described in Section 2 for determining the stationary distribution π and observed a residual
error norm of ‖πQ‖ ≈ 10−3.5. For this algorithm, in general, we have to store approximately
144k2N3/3 floating-point numbers, whereas for our new algorithm, the maximum number of
floating-point numbers to be stored at the same time is approximately 144k2N2. The running
time is similar for both algorithms, the order of magnitude is O(k3N4).

The numerical results are consistent with intuition. When increasing the number of phases,
and, thus, decreasing the variance of the service times at the first node, both the mean number
of customers and the mean residence time in the first node decrease. Hence, the customer flow
from the first to the second node becomes more and more deterministic. We can observe a
similar effect at the second node where the effect is weaker since the external arrivals at the
second node are not influenced by the service time distribution at the first node. Naturally,
since the number of customers at the second node decreases, the probability of discouraging
customers after having been served at the first node slowly decreases, too.

7. Conclusion

We have shown how stationary expectations corresponding to long-run averages of additive
functionals on LDQBD processes can be efficiently computed by matrix-analytic methods.
Applications include long-run average costs, reward rates, steady-state queueing network
performance measures, and availability measures in reliability models, amongst many others.

Our new matrix-analytic algorithm computes stationary expectations directly without at first
computing the stationary distribution. In this way, compared to matrix-analytic computations
of the stationary distribution, the run time of our algorithm is of the same order of magnitude,
but we achieve a significant reduction of computer storage requirements by avoiding the storage
of a large family of matrices. Similarly as in the case of computing stationary distributions, if
the state space is infinite, it must be truncated at a certain level and an appropriate initial matrix
for the computations has to be chosen, but rather than performing some kind of preprocessing
step associated with the truncation level, we recommend a high truncation level. The costs
(in terms of run time and memory requirements) for increasing the truncation level and for
preprocessing are similar in our algorithm, but increasing the truncation level appears to be
more effective than a preprocessing step associated with the truncation level.
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Currently, ongoing research is concerned with obtaining error bounds where techniques
based on Lyapunov functions [5], [7] are a potentially viable approach to determine truncation
levels dependent on a prescribed maximum error. Furthermore, extensions of the algorithm
beyond LDQBD processes are considered, for example, along the lines of [3], in which matrix-
analytic methods were applied to compute stationary distributions of LDQBD processes with
catastrophes where in each state the level component may drop to zero such that the generator
matrix deviates from the block-tridiagonal form in its first block column.
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