
J. Fluid Mech. (2023), vol. 955, A38, doi:10.1017/jfm.2022.1089

Particle-size segregation in self-channelized
granular flows

A.N. Edwards1, F.M. Rocha2, B.P. Kokelaar3, C.G. Johnson1 and
J.M.N.T. Gray1,†
1Department of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester,
Manchester M13 9PL, UK
2Aix Marseille University, CNRS, IUSTI, Marseille 13453, France
3Earth and Ocean Sciences Department, University of Liverpool, Liverpool L69 3GP, UK

(Received 25 June 2022; revised 5 December 2022; accepted 9 December 2022)

Geophysical mass flows such as debris flows, dense pyroclastic flows and snow avalanches
can self-channelize on shallow slopes. The confinement afforded by formed levees
helps to maintain the flow depth, and hence mobility, allowing self-channelized flows
to run out significantly farther than unconfined, spreading flows. Levee formation and
self-channelization are strongly associated with particle-size segregation, but can also
occur in monodisperse flows. This paper uses the monodisperse depth-averaged theory of
Rocha et al. (J. Fluid Mech., vol. 876, 2019, pp. 591–641), which incorporates a hysteretic
friction law and second-order depth-averaged viscous terms. Both of these are vital for the
formation of a travelling wave that progressively deposits a pair of levees just behind the
front. The three-dimensional velocity field is reconstructed in a frame moving with the
front assuming Bagnold flow. This enables a bidisperse particle-size segregation theory
to be used to solve for the large and small particle concentrations and particle paths in
three-dimensions, for the first time. The model shows that the large particles tend to
segregate to the surface of the flow, forming a carapace that extends over the centre of
the channel, as well as along the external sides and base of the levee walls. The small
particles segregate downwards, and are concentrated in the main channel and in the inner
levee walls. This supports the contention that a low-friction channel lining provides a
secondary mechanism for run-out enhancement. It is also shown that the entire theory
scales with particle diameter, so experiments with millimetre-sized particles provide
important insights into geophysical-scale flows with boulders and smaller rock fragments.
The model shows that self-channelization does not need particle-size segregation to occur,
but supports the hypothesis that particle-size segregation and the associated frictional
feedback can significantly enhance both the flow mobility and the levee strength.
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1. Introduction

Debris flows consist of a concentrated mixture of water and rock fragments that range
widely in size and tend to segregate during shear (Iverson 1997). Large grains tend to
rise to the free surface, while small grains percolate down towards the base (Gray 2018).
Since the downslope velocity is greatest at the free surface, large rocks and boulders
are preferentially transported to the front, where they are overrun by the bulk flow. As
finer grained material is sheared over the top of them, these large particles segregate
upwards and are eventually transported forwards, towards the front again, by the bulk flow
field. In two-dimensional flows (that are sheared through the flow depth), this process
leads to the recirculation and accumulation of large grains at the flow front (Gray &
Kokelaar 2010). Since the large rock fragments tend to be more resistive to motion than
the finer grained material, the front becomes increasingly resistive and the flow can stop.
In three-dimensions, this increased frontal resistance can be alleviated by pushing the
large particles out of plane, towards the sides of the flow, to form static levees (Sharp
& Nobles 1953; Costa & Williams 1984; Pierson 1986; Iverson 1997; Major 1997; Iverson
& Vallance 2001; Félix & Thomas 2004; Johnson et al. 2012; Laigle & Bardou 2022). This
process generates a self-channelized flow, with a coarse-grained snout and a more mobile,
finer-grained flow in the channel which pushes the front downslope. The central channel
is bounded on either side by static large-rich levees, as shown schematically in figure 1.

The self-channelization process is important because it prevents lateral spreading,
maintaining the flow depth and hence the flow mobility for longer. This can significantly
extend the overall run-out distance (Goujon, Dalloz-Dubrujeaud & Thomas 2007;
Kokelaar et al. 2014). Coarse-fragment-rich debris flows commonly self-channelize as
they move on to shallower slopes (Iverson & Vallance 2001; Félix & Thomas 2004;
Johnson et al. 2012). Figure 2(a) shows an example from the bottom of the Biregrabe
on the Albristore, near Färmelberg, Switzerland. There is a coarse-grained snout, as
well as parallel-sided levees that are almost entirely composed of similar material. The
levees are approximately 4 m apart and extend about 217 m upstream on a 10◦ slope,
to where this small flow was diverted out of the main channel. As the flow waned, the
central channel drained almost completely, leaving just the levees as evidence of the debris
flow’s path (figure 2b). Much larger debris flows occurred in this area on the 20 August
2012 and 24 July 2015, due to melting permafrost and high rainfall (C. Berger, personal
communication). The deposits shown in figure 2 are interesting because the snout (which
is often washed out by subsequent rainfall) has been almost perfectly preserved. It was
deposits such as this and other observations of flowing debris flows that inspired Laigle &
Bardou (2022) to draw their schematic diagram shown here in figure 1.

Self-channelization also occurs in other geophysical mass flows, such as in the dense
basal layer of pyroclastic flows, water-saturated lahars and wet snow avalanches (Rowley,
Kuntz & MacLeod 1981; Wilson & Head 1981; Branney & Kokelaar 1992; Calder,
Sparks & Gardeweg 2000; Vallance 2000; Jomelli & Bertran 2001; Jessop et al. 2012;
Ancey 2012; Bartelt et al. 2012; Schweizer, Bartelt & Van Herwijnen 2014; Vallance
& Iverson 2015). Although these flows contain fluid, which helps to mobilize them,
self-channelization is not dependent on the presence of the fluid. Kokelaar et al. (2017)
identified strongly leveed, fingered rock avalanche deposits in the southeast sector of
Bessel crater in Mare Serenitatis on the Moon (see their figure 10). The fronts of
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Figure 1. Schematic diagram showing the different parts of a typical debris-flow surge (reproduced from
Laigle & Bardou 2022). The flow develops a bouldery snout which is pushed along by the concentrated
mixture of water and finer grains behind. There are a wide range of grain sizes within this mixture and larger
grains segregate to the surface of the flow. Since the downslope velocity is greatest at the free-surface, there
is a continual supply of relatively large fragments to the front, and, rather than accumulating there, these are
shouldered aside to form static levees on either side of the central channel. As the flow wanes, the tail of the
flow is a less concentrated mixture of finer grains and water that is typically more turbulent. Several surges
are generally observed during a single event. The body is longer than appears on the figure (represented by the
broken arrow).

these flows came to rest on a ∼31.5◦ slope, and all of them look remarkably similar
to the Biregrabe deposit in figure 2. These flows occurred in the complete absence of
water or atmosphere. Interstitial fluids may therefore modify the frictional properties and
significantly enhance the flow’s mobility (Iverson & George 2014; Meng, Johnson & Gray
2022), but they are not necessary for a flow to self channelize on a suitably inclined slope.

Félix & Thomas (2004) were able to generate leveed channels in small-scale analogue
experiments with monodisperse dry grains. This showed that although particle-size
segregation commonly occurs (and may be very important), it is not fundamentally
necessary to generate a self-channelized flow. The coexistence of layers of static and
flowing grains of similar thickness and at the same inclination angle, led Félix &
Thomas (2004) to suggest that self-channelization was related to frictional hysteresis.
Frictional hysteresis (Daerr & Douady 1999) is responsible for the effect that when a
steady uniform flow is brought to rest on a rough bed, a layer of grains of thickness
h = hstop(ζ ) is deposited at a slope angle ζ , but this layer does not start to flow again
until the chute is inclined to a higher angle ζstart(h) > ζ . Pouliquen & Forterre (2002)
showed how to capture this phenomenon by defining a non-monotonic basal friction
law in a depth-averaged avalanche model. This friction law had (i) a multivalued static
regime, (ii) a monotonically decreasing intermediate regime and (iii) a monotonically
increasing dynamic regime, as a function of Froude number over the flow thickness.
This friction law allowed static and flowing states to coexist for thicknesses in the range
h ∈ [hstop(ζ ), hstart(ζ )], where hstart(ζ ) is the inverse function of ζstart(h).

Mangeney et al. (2007) incorporated Pouliquen & Forterre’s (2002) friction law into
a depth-averaged avalanche model, and solved the system of equations numerically
to show that it could generate a self-channelized flow with static levees. However,
it was unclear what selected the width and height of the ensuing channel, which
had multiple steady-state solutions. This contradicted the experimental evidence, which
shows that for a given mass flux there is a well-defined channel width and height
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(a)

(b)

Figure 2. (a) Self-channelized flow front deposited at the bottom of the Biregrabe on the Albristore, near
Färmelberg, Switzerland (latitude 46◦30′43.43" N, longitude 7◦29′40.17" E, elevation 1775 m, slope ∼10◦).
This area experienced large debris flows on the 20 August 2012 and 24 July 2015 due to melting permafrost
and high rainfall (C. Berger, personal communication). This smaller deposit formed between 2017 and 2018.
(b) Parallel-sided levees (approximately 4 m apart) left stranded at the side of the central channel as the flow
waned.

(Félix & Thomas 2004; Deboeuf et al. 2006; Takagi, McElwaine & Huppert 2011;
Rocha, Johnson & Gray 2019). This conundrum was solved by Rocha et al. (2019), who
incorporated additional depth-averaged in-plane viscous terms (Gray & Edwards 2014;
Baker, Barker & Gray 2016a), which generate a downslope velocity profile across the
central channel. This provides the missing length scale that selects the steady-state flow
height and the channel width. Rocha et al. (2019) showed that the resulting model was able
to quantitatively capture experimental measurements of flow height and channel width
as a function of the mass flux for quasi-monodisperse (0.45 ± 0.15 mm) dry sand (Félix
& Thomas 2004; Takagi et al. 2011). Moreover, at low mass fluxes, Rocha et al. (2019)
also correctly showed that self-channelized flows become unstable, and break down into a
series of ‘erosion–deposition’ waves (Takagi et al. 2011; Edwards & Gray 2015; Edwards
et al. 2017, 2019). Similar surge waves that progressively erode and deposit previously
fluidized material along their path are also commonly observed in debris flows (McArdell
2016).
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The dynamic part of the non-monotonic friction law is intimately linked to the μ(I)
rheology for dry granular flows (GDR-Midi 2004; Jop, Forterre & Pouliquen 2005, 2006;
Gray & Edwards 2014; Baker et al. 2016a). Rather than having a constant Coulomb
friction, the μ(I) rheology introduces rate dependence by making the friction μ a function
of the inertial number

I = γ̇ d√
p/ρ∗

, (1.1)

where γ̇ is the shear rate, d is the particle diameter, p is the granular pressure and ρ∗ is
the intrinsic density of the grains. This has spawned intense interest in the rheology of dry
granular flows, as it provides a promising way of modelling chute flows, column collapses,
silos and flows in rotating drums (GDR-Midi 2004; Jop et al. 2006; Lagrée, Staron &
Popinet 2011; Staron, Lagrée & Popinet 2012; Barker et al. 2015; Barker & Gray 2017;
Martin et al. 2017; Schaeffer et al. 2019; Barker et al. 2021). The μ(I) rheology does not,
however, capture the formation of hstop or hstart layers. This phenomenology appears to
be a non-local effect in which the ability of grains to flow, or not, is affected by motion
some distance away (Schall & Van Hecke 2010). In the case of hstop and hstart layers, it
is the proximity of the fixed basal boundary to the free surface that has a strong effect on
the ability of the grains to remain stable. An alternative approach (to the depth-averaged
one used in this paper) is therefore to use one of the non-local models for granular flow
(Pouliquen & Forterre 2009; Kamrin & Koval 2012; Bouzid et al. 2013, 2015; Kamrin
& Henann 2015). In particular, Mowlavi & Kamrin (2021) have recently captured both
the hstop, hstart phenomenology in one-dimensional time-dependent simulations with a
non-local model that includes hysteresis. Applying such models in three dimensions to
capture self-channelization and levee formation remains, however, a significant challenge
for the future.

If the relatively simple monodisperse depth-averaged model of Rocha et al. (2019) can
quantitatively capture the self-channelization process, one may reasonably ask: (i) what
is the role of particle segregation and (ii) does the small-scale experimental evidence
have any bearing on large-scale geophysical flows? Interestingly, the strongly leveed,
fingered rock avalanche deposits that Kokelaar et al. (2017) identified in the Bessel
crater, look almost identical to small-scale segregation induced fingering experiments of
Pouliquen, Delour & Savage (1997), Woodhouse et al. (2012) and Baker, Johnson & Gray
(2016b). This led Kokelaar et al. (2017) to develop a scaling argument to show that the
depth-averaged system of equations used by Baker et al. (2016b) (which is similar to the
model of Rocha et al. (2019), but includes the depth-averaged effect of segregation) scales
with gravity g and a typical grain diameter d. Large-scale segregating bouldery dry flows
on the Moon are therefore closely similar to small-scale dry flows with millimetre-sized
particles on Earth.

In geophysical flows, the range of particle sizes is very wide, with particle diameters
varying by several orders of magnitude. This allows particles to pack much more densely
than monodisperse flows even during shear, which reduces the rate of segregation, and
can lead to intermediate and reverse segregation for very large intruders (Thomas 2000).
Such effects not only introduce bulk compressibility, but are still well beyond the scope
of current granular rheologies and polydisperse particle-size segregation models (Gray
& Ancey 2011; Marks, Rognon & Einav 2012; Gray 2018; Barker et al. 2021). Indeed,
until recently the segregation and diffusion rates in bidisperse segregation models (even
with relatively small grains-size ratios) were poorly constrained (Golick & Daniels 2009;
Thornton et al. 2012; Fan et al. 2014; Hill & Tan 2014; Schlick et al. 2015; van der Vaart
et al. 2015; Fry et al. 2019). As one of the first papers to investigate particle segregation
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in a non-trivial three-dimensional flow field, this paper uses a simple bidisperse model
with the empirical segregation law of Trewhela, Ancey & Gray (2021). Trewhela et al.
(2021) used refractive-index-matched shear-box experiments to track the segregation of
large and small intruders as a function of time, and determined a scaling law that could
collapse all their data. For grain-size ratios close to unity, they found that the segregation
velocity magnitude is linearly dependent on the shear rate, the intrinsic particle density,
the gravitational acceleration, the square of the average grain diameter and the deviation of
the grain-size ratio away from unity, and inversely proportional to the pressure. Additional
corrections, which are necessary at moderate grain-size ratios when the percolation of
small intruders can be enhanced due to the spontaneous percolation, are ignored here, as
are enhanced packing effects at large size ratios.

The inclusion of interstitial fluid also introduces additional complexity. For example,
differentially fluidized regions of the flow will produce differential friction, which provides
another mechanism to generate self-channelization without invoking frictional hysteresis.
In particular, drier coarse-grained flow fronts and lateral levees will experience more
friction than the fluid-saturated channel (Sharp & Nobles 1953; Wilson & Head 1981;
Costa & Williams 1984; Iverson & Vallance 2001; Iverson 2003). This inhomogeneous
rheology may well prove to be crucial at geophysical scale. In general, mixtures of
grains and water can form suspensions whose friction μ = μ(J) is dependent on the
viscous inertial number J = ηf γ̇ /pp, where ηf is the fluid viscosity and pp is the particle
pressure (Boyer, Guazzelli & Pouliquen 2011). This constitutive law is valid for slow flows
or small non-colloidal particles. As the shear rate is increased, the flow can transition
from viscous inertial to granular inertial regimes with the friction μ = μ(K), where
K = J + αI2 is a combination of the viscous and granular inertial numbers and α is
a constant, approximately equal to 0.1 (Tapia et al. 2022). The ratio I2/J = ρ∗d2γ̇ /ηf
defines a Stokes number St, which is particle-size dependent, and governs the extent to
which the particles are affected by the fluid. If St � 1/α, then the particles are affected
by fluid buoyancy, but do not closely follow fluid streamlines and in dense flows, they are
in the inertial granular regime (Maurin, Chauchat & Frey 2016). Particles with St 	 1/α

are strongly affected by the fluid and are in the viscous inertial regime. For debris flows,
where there is a wide range of grain sizes, it is likely that the rocks and coarse-grained
sand are in the inertial granular regime, while the very finest grains will be in the viscous
inertial regime. The implicit assumption in this paper is that the larger grains dominate the
overall debris-flow response, and hence the μ(I) rheology is most appropriate (GDR-Midi
2004; Jop et al. 2006; Gray & Edwards 2014).

In depth-averaged two-phase-flow models, the primary effect of the fluid is the
buoyancy-induced reduction in the granular friction, which may additionally be enhanced
by excess pore-pressure effects (Iverson & Denlinger 2001; Pitman & Le 2005; Pelanti,
Bouchut & Mangeney 2008; Pudasaini 2012; Iverson & George 2014; Meng & Wang
2016; Meng et al. 2022). These allow debris flows to propagate over much shallower slopes
than dry granular materials, as in the debris flow at Färmelberg (figure 2). However, on
these shallower slopes, the resulting flow dynamics and observed deposit morphologies
are closely similar to the dry small-scale experiments (Sharp & Nobles 1953; Wilson &
Head 1981; Costa & Williams 1984; Branney & Kokelaar 1992; Iverson 1997; Major 1997;
Major & Iverson 1999; Calder et al. 2000; Iverson & Vallance 2001; Iverson 2003; Félix &
Thomas 2004; Iverson et al. 2010; Takagi et al. 2011; Johnson et al. 2012; Kokelaar et al.
2014; Rocha et al. 2019).

The aim of this paper is to study the segregation in a representative three-dimensional
self-channelizing flow field (Rocha et al. 2019). A specific example is chosen which scales
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up (Kokelaar et al. 2017) to look qualitatively similar to the large-scale experimental
debris flows at the United States Geological Survey (USGS) flume (Iverson et al. 2010;
Johnson et al. 2012). This flow field therefore provides a generic test case. In § 2, the
depth-averaged theory of Rocha et al. (2019) is introduced, and this is used in § 3 to
compute a two-dimensional travelling wave solution for the process of self-channelization.
In § 4, incompressibility and assumed velocity profiles are used to reconstruct a realistic
flow field for self-channelization in three dimensions. This flow field is then held fixed for
the remainder of the paper.

Our study is motivated by the USGS debris-flow experiments (Johnson et al. 2012)
and the experiments of Kokelaar et al. (2014), which both had quite tightly constrained
particle-size distributions. In the bidisperse small-scale experiments, Kokelaar et al. (2014)
used mixtures of glass ballotini and carborundum, and glass ballotini and sand, with size
ratios of approximately 1.81 and 1.63, respectively. The flume experiments had a more
realistic continuous grain-size distribution ranging from 100 μm to 32 mm, but the most
pronounced segregation occurred between grains of modest size ratio (<5). Kokelaar
et al. (2014) used a resin impregnation and sectioning technique to reveal the internal
particle-size distribution within the levees and the central channel. The levees were not
entirely composed of large grains, as one might anticipate from surface observations,
but had an inner core of fine grains. Fine grains also line the inside of the channel.
Experimental measurements of the run-out distance as a function of flow composition
led Kokelaar et al. (2014) to infer that it was the formation of levees and a fine particle
channel lining that led to the maximum run out with 60–70 % fines. This was first because
the μ(I) rheology implies that a finer-grained flow experiences less friction (for grains of
the same shape), and can flow further and faster, than a larger grained flow of the same
depth (GDR-Midi 2004; Rognon et al. 2007; Barker et al. 2021), and second because
lateral confinement maintains flow depth, and hence mobility, for longer. Flows of pure
fine grains at the same slope angle do not self-channelize, instead spreading laterally and
stopping more rapidly (Kokelaar et al. 2014). In debris flows and pyroclastic flows, fine
grains additionally hinder the escape of water and gas, and thereby help to maintain high
pore pressures, which also convey mobility to the flow (Iverson 2003). The particle-size
distribution can therefore have a profound effect on the bulk flow behaviour, and this
paper seeks to understand how it develops in the three-dimensional self-channelizing flow
field developed in § 4. In § 5, a state-of-the-art particle segregation model (Gray 2018;
Barker et al. 2021) is introduced that uses Trewhela et al.’s (2021) empirical segregation
law. Fully three-dimensional, time-dependent, numerical solutions for the particle-size
distribution in the vicinity of the moving front are then computed in § 6. The dependence
on the grain-size ratio and the inflow concentration are investigated in § 7, and § 8
concludes.

2. Depth-averaged model for self-channelization

2.1. Governing equations
Granular material is supplied from a point source onto a rough plane that is inclined at an
angle ζ to the horizontal. A Cartesian coordinate system Oxyz is defined with the origin O
located at the top centre of the plane. The x-axis points downslope, the y-axis points across
the slope and the z-axis is the upward pointing normal. The unit normals are ex, ey and ez,
and the velocity u has components (u, v, w) in each of these three directions, respectively.
The equations are integrated through the flow depth h, measured normal to the plane, and
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the depth-averaged velocity ū has components

ū = 1
h

∫ h

0
u dz, v̄ = 1

h

∫ h

0
v dz, (2.1a,b)

in the downslope and cross-slope directions, respectively. The granular material is
assumed to be incompressible with a constant-uniform bulk density ρ. It follows that the
depth-averaged mass and momentum balance equations (Gray & Edwards 2014; Baker
et al. 2016a; Edwards et al. 2017) are

∂h
∂t

+ div (hū) = 0, (2.2)

∂

∂t
(hū) + div (hū ⊗ ū) + grad

(
1
2

h2g cos ζ

)
= hgS cos ζ + div

(
νh3/2D̄

)
, (2.3)

where ⊗ is the dyadic product and g is the constant of gravitational acceleration. Note
that the two-dimensional divergence and gradient operators, div and grad, are used
here to distinguish them from their three-dimensional counterparts, which are written in
terms of the ∇ operator in § 5. In the source term on the right-hand side of (2.3), the
non-dimensional net acceleration,

S = tan ζ ex − μbe, (2.4)

consists of the component of gravity pulling the avalanche downslope along the direction
of the unit vector ex and the effective basal friction μb. The hysteretic effective basal
friction law for μb is introduced in § 2.2. It is a generalization of Pouliquen’s (1999a)
dynamic friction law, which is directly linked to the μ(I) rheology for granular flows
(GDR-Midi 2004; Jop et al. 2005, 2006; Gray & Edwards 2014; Baker et al. 2016a).
If the avalanche is in motion, the direction of the friction, e, opposes the motion, and
when the grains are static, the friction opposes the downslope component of gravitational
acceleration and the depth-averaged pressure gradient, which implies that

e =

⎧⎪⎪⎨⎪⎪⎩
ū
|ū| if |ū| > 0,

tan ζ ex − grad h
| tan ζ ex − grad h| if |ū| = 0.

(2.5)

The final term on the right-hand side of (2.3) arises from the inclusion of depth-averaged
in-plane deviatoric stresses, which are neglected in most theories. Here, however, they
play a crucial role in selecting a unique solution for the steady-state channel width and
height. Gray & Edwards (2014) and Baker et al. (2016a) derived the specific form for this
second-order-gradient depth-averaged viscous term from the μ(I) rheology. It consists of
a depth-averaged viscosity νh1/2/2 that multiplies the depth-integrated strain-rate tensor

D̄ = 1
2

(
L̄ + L̄T

)
, (2.6)

where L̄ = grad ū is the two-dimensional gradient of the depth-averaged velocity. The
coefficient ν is determined from the μ(I) friction law (GDR-Midi 2004; Jop et al. 2006)
and an explicit formula will be given for it in § 2.3.
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2.2. The hysteretic friction law
This paper uses the hysteretic friction law of Edwards et al. (2019), which is a
generalization of Pouliquen & Forterre’s (2002) original law. It consists of three cases
that are known as the dynamic, intermediate and static friction regimes

μb(h/d, Fr) =
⎧⎨⎩μD, Fr � β∗,

μI, 0 < Fr � β∗,
μS, Fr = 0.

(2.7)

These regimes are defined respectively by the functions

μD = μ1 + μ2 − μ1

1 + hβ/(Ld(Fr + Γ ))
, (2.8)

μI =
(

Fr
β∗

)(
μ1 + μ2 − μ1

1 + hβ/(Ld(β∗ + Γ ))
− μ3 − μ2 − μ1

1 + h/(Ld)

)
+ μ3 + μ2 − μ1

1 + h/(Ld)
,

(2.9)

μS = min
(

μ3 + μ2 − μ1

1 + h/(Ld)
, | tan ζ ex − grad h|

)
, (2.10)

where μ1 = tan ζ1, μ2 = tan ζ2 and μ3 = tan ζ3 are the tangents of the friction angles ζ1,
ζ2 and ζ3. These parameters are determined from experimental fits to the deposit depth
hstop(ζ ) and initiation thickness hstart(ζ ) as a function of ζ . The fitting functions contain
a frictional length scale L, which Forterre & Pouliquen (2003) showed scales with the
grain size d. This grain-size dependence has explicitly been included in (2.8)–(2.10) by
defining the non-dimensional friction length scale L = L/d. The regime boundaries are
determined by the Froude number Fr, which is the ratio of the flow speed to the gravity
wave speed

Fr = |ū|√
gh cos ζ

. (2.11)

If Fr is above the minimum Froude number β∗ for steady-uniform flow, then the flow
is in the dynamic regime, if the Froude number equals zero, it is in the static regime
and if Fr ∈ (0, β∗), then it is in the intermediate regime. The remaining non-dimensional
constants β and Γ are determined from a pair of best fits to the steady-uniform-flow law
for angular particles (Forterre & Pouliquen 2003)

Fr = β
h

hstop
− Γ. (2.12)

Edwards et al. (2019) assumed that the minimum observable steady-uniform flow occurs
at the same Froude number Fr = β∗ at all slope angles. It follows from (2.12) that the
minimum steady-uniform-flow depth

h∗ =
(

β∗ + Γ

β

)
hstop(ζ ), (2.13)

which implies that h∗ is a multiple of hstop. The frictional parameters must be chosen
so that hstop < h∗ < hstart for the hysteretic friction law to be well defined. A necessary,
but not sufficient condition is that μ1 < μ3 < μ2. This paper adopts the parameters for
sand used by Rocha et al. (2019), except for ζ3, which is increased from 31◦ to 33◦. This
increases the maximum static friction and hence the thickness range (h ∈ [hstop, hstart])

955 A38-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1089


A.N. Edwards and others

ζ1 ζ2 ζ3 L β Γ β∗ d ρ g

29.0◦ 45.5◦ 33.0◦ 2 0.71 0.84 0.11 0.45 mm 1500 kg m−3 9.81 m s−2

Table 1. Material properties for flows of sand with a mean diameter of 0.45 mm. The values of ζ1, ζ2 and L
were calculated from the hstop curve of Takagi et al. (2011) by Rocha et al. (2019). The values of β and Γ differ
from those in Pouliquen & Forterre (2002) and Forterre & Pouliquen (2003) to account for the factor

√
cos ζ in

the Froude number (2.11). All the values are the same as those used by Rocha et al. (2019) except for ζ3, which
is increased from 31◦ to 33◦ to give the sand slightly more stability in the hysteretic flow regime.

with coexisting flowing and static states. Increasing μ3 gives the levees slightly greater
stability than in the simulations of Rocha et al. (2019), which suppresses the periodically
upslope propagating erosion-deposition waves seen in their movie 5. All the parameters
(see table 1) are tightly constrained by existing experiments in the literature and are typical
of those for sand flowing on a bed of glass beads. Rocha et al. (2019) also gave parameters
for flows of glass beads, which also form levees even though Γ = 0 (Félix & Thomas
2004). The values of μ1 and μ3 are, however, very close to one another, which leads to
weak non-monotonic dependence of the friction μ on the Froude number Fr, as shown in
figure 6(b) of Rocha et al. (2019). This leads to very weak levees. Indeed, Deboeuf et al.
(2006) have observed experimentally that levees of glass beads slowly creep outwards over
very long periods of time, which is not the case for sand.

2.3. The coefficient ν

Gray & Edwards (2014) and Baker et al. (2016a) derived the depth-averaged viscous terms
in (2.3) from the μ(I) rheology (GDR-Midi 2004; Jop et al. 2006). In this equation, the
coefficient

ν = 2
9
Ld

√
g

β

sin ζ√
cos ζ

(
μ2 − tan ζ

tan ζ − μ1

)
, (2.14)

is explicitly determined during the integration process in terms of the existing friction
parameters, summarized in table 1, and the slope angle ζ . Equation (2.14) is valid for
slope inclinations in the range ζ ∈ [ζ1, ζ2], when steady-uniform flows are predicted to
exist by the dynamic frictional law (2.8). In reality, the lowest observable steady-uniform
flow occurs at Fr = β∗ and one might anticipate that the form of ν might change when the
flow is in the intermediate (2.9) and static (2.10) regimes. However, in the computations
presented in this paper, (2.14) is assumed to apply to all regimes.

2.4. Particle size and gravitational dependence
The governing equations can be made non-dimensional by introducing scalings based on
a typical particle diameter d and gravity g

(x, y, z, h) = d (x̃, ỹ, z̃, h̃), t = √
d/g t̃,

ū = √
gd ˜̄u, D̄ = √

g/d ˜̄D, ν = d
√

g ν̃,

}
(2.15a–e)
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Particle-size segregation in self-channelized granular flows

where the tilde is used to indicate a non-dimensional variable. It follows that the
non-dimensional form of the mass and momentum balances (2.2) and (2.3) are

∂ h̃
∂ t̃

+ d̃iv
(

h̃ ˜̄u
)

= 0, (2.16)

∂

∂ t̃

(
h̃ ˜̄u
)

+ d̃iv
(

h̃ ˜̄u ⊗ ˜̄u
)

+ g̃rad
(

1
2

h̃2 cos ζ

)
= h̃S cos ζ + d̃iv

(
ν̃h̃3/2 ˜̄D

)
, (2.17)

respectively, where d̃iv and g̃rad are the non-dimensionalized divergence and gradient
operators and the non-dimensional coefficient in the viscous term

ν̃ = 2
9
L
β

sin ζ√
cos ζ

(
μ2 − tan ζ

tan ζ − μ1

)
. (2.18)

Moreover, the non-dimensional net acceleration S, the unit vector e and the friction μb,
defined in (2.4), (2.5) and (2.7), respectively, are already written in dimensionless form,
since ū/|ū| = ˜̄u/| ˜̄u|, grad h = g̃rad h̃ and μb(h/d, Fr) = μb(h̃, Fr). The non-dimensional
system of equations is therefore independent of any additional non-dimensional groups
involving d or g dependence. These non-dimensionalized equations are therefore scale and
gravity independent. This remarkable result is due to Kokelaar et al. (2017), and implies
that provided all the length scales (height, width and length) scale up with the particle size,
the results will be the same. A self-channelized geophysical flow of large boulders, such as
that shown in figure 2, may therefore be exactly equivalent to a small-scale experimental
flow involving millimetre-sized grains (Rocha et al. 2019). This scaling on the particle
size relies on the fact that the frictional length scale L = Ld scales linearly on d. Forterre
& Pouliquen (2003) showed that L = 1.65d for glass beads and L = 2.03d for sand. In
this paper, the non-dimensional frictional length L = L/d is assumed to be equal to 2
(table 1).

Kokelaar et al. (2017) applied these ideas to large-scale dry granular flows on the
Moon, which occur during crater wall collapses. The reduced gravity on the Moon
implies that the velocities will be slower than an equivalent sized flow on Earth and the
flows would therefore have taken correspondingly longer to run out. However, Kokelaar
et al.’s (2017) figure 10 shows self-channelized fingered deposits in the Bessel crater
in Mare Serenitatis (latitude 21.8◦N, longitude 17.9◦E) that are closely analogous to
the small-scale segregation induced fingering experiments of Pouliquen et al. (1997),
Woodhouse et al. (2012) and Baker et al. (2016b). The presence of water in debris flows
on Earth modifies the friction law and the scaling properties. However, the essential flow
dynamics and morphological features remain closely similar as demonstrated by the USGS
debris-flow-flume experiments (Johnson et al. 2012).

3. Depth-averaged simulations of a self-channelized flow

The governing equations in § 2 are now solved numerically to generate thickness and
depth-averaged velocity fields that quantitatively capture the small-scale self-channelized
flow experiments of Takagi et al. (2011) and Rocha et al. (2019). The scaling behaviour
with particle size (see § 2.4) ensures that this solution is also appropriate for geophysical
flows, whose average grain size is much larger than that in the small-scale experiments.
The solution is then transformed to a frame of reference moving with the flow front, to
show that over longer integration periods, a travelling-wave solution develops that is steady
in the moving frame.
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hstop h∗ hstart ν

5.0 mm 6.7 mm undefined 2.8 × 10−3 m3/2 s−1

Table 2. Critical layer thicknesses hstop, h∗ and hstart as well as the coefficient ν (in the depth-averaged
viscosity νh1/2/2) for the material properties for sand in table 1 and the fixed slope angle of ζ = 32.0◦ used in
the numerical computations.

3.1. Continuous release of grains on an inclined plane
A numerical simulation is first performed to capture the continuous release of sand from a
point source onto a rough plane inclined at ζ = 32◦. The values of the critical thicknesses
hstop, h∗ and hstart as well as ν are therefore constant, and their specific values are
summarized in table 2. The computational domain consists of a rectangle covering the area
0 m � x � 2.5 m and −10 cm � y � 10 cm, discretized to 2500 × 200 finite volume cells
(1 grid point per mm in both directions). The conservation equations (2.2) and (2.3) are
solved numerically with a semi-discrete non-oscillatory central (NOC) scheme, which uses
a generalized minmod limiter with θ = 2 (Kurganov & Tadmor 2000). The time-stepping
is performed with a second-order Runge–Kutta method, with the step size determined
by a CFL (Courant–Friedrichs–Lewy) number of 0.225 and limited to a maximum of
�t = 10−4 s (LeVeque 2002) to minimize the creep in the levees.

The initial conditions at t = 0 are h = h0 = 0.01 mm (around 50 times smaller than the
mean particle diameter) and ū = 0 m s−1 everywhere. This thin static layer is required to
mitigate numerical errors caused by the degeneracy of the governing equations at h = 0.
Following Rocha et al. (2019), a source term Sinflow is included on the right-hand side of
(2.2) to give

∂h
∂t

+ div (hū) = Sinflow, (3.1)

which allows grains to be added in a small circular region of radius r0 = 2.5 cm centred
at (x0, y0) = (15 cm, 0) at a flow rate of Qm = 130 g s−1, i.e.

Sinflow =
⎧⎨⎩

3QM

πρr6
0

(
r2

0 −
(
(x − x0)

2 + y2
))2

, (x − x0)
2 + y2 � r2

0,

0, (x − x0)
2 + y2 > r2

0.

(3.2)

The inflowing particles move downslope and some of them eventually reach the
downstream boundary x = 2.5 m, where a free outflow condition is imposed by linear
extrapolation of the values of h and hū from the final two columns of interior cells.
The conditions h = h0 and ū = 0 m s−1 are trivially satisfied at the top x = 0 and sides
y = ±10 cm of the domain where no flow reaches.

The results of this numerical simulation are plotted in figure 3 at times t = 7, 14, 21
and 28 s. The continuous release of grains is shown to quickly form a self-channelized
flow with static levees. In the central flowing channel, which is of approximately constant
thickness 9 mm and uniform width 16 cm, material is transported towards the flow front.
When it reaches the front, the lateral confinement is lost and the flow spreads out,
rapidly coming to rest and building up new sections of the levees just behind the flow
front. The levees are approximately 2.5 cm wide and have a thickness that starts at the
flowing channel depth and decreases to zero. As a result, the front in figure 3 appears
to propagate steadily downslope at constant velocity uF � 0.07 m s−1, suggesting that a
two-dimensional travelling wave is generated.
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(a) (b) (c) (d )

x (m)

0

0.5

1.0

1.5

2.0

2.5
–10

y (cm)
10
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Figure 3. Surface plots of the flow thickness h for the numerical simulation of a release of particles at a
flow rate of Qm = 130 g s−1 on a plane inclined at ζ = 32◦, coloured by the downslope component of
depth-averaged velocity ū and shown at times (a) t = 7, (b) 14, (c) 21 and (d) 28 s. The filled black circles
indicate the non-zero source region where Sinflow is given by (3.2) and the solid horizontal white lines
indicate cross-slope flow thickness, mimicking the displacement of an experimental laser line. The online
supplementary movie 1 available at https://doi.org/10.1017/jfm.2022.1089 shows the time dependent evolution
of the flow.

3.2. Depth-averaged travelling frame simulation
For the travelling wave to be fully realised, it is useful to perform simulations in a frame
moving at the front speed uF. Using the change of coordinates

τ = t − t0, ξ = x − uFt, (3.3a,b)

the mass and momentum conservation laws (2.2) and (2.3) can be written

∂h
∂τ

+ div′ (hū′) = S′
inflow, (3.4)

∂

∂τ

(
hū′)+ div′ (hū′ ⊗ ū′)+ grad′

(
1
2

h2g cos ζ

)
= hgS cos ζ + div′

(
νh3/2D′

)
, (3.5)

where div′ and grad′ are now the two-dimensional divergence and gradient operators in
the moving frame (ξ, y). The depth-averaged velocity in the moving frame is equal to ū′ =
ū − uFex. The strain-rate tensor is unchanged in the moving frame, i.e. D̄′ = D̄. Note that
the elimination of ū in the transformed momentum balance (3.5) relies on subtracting uF
times the moving frame mass balance (3.4) from the transformed downslope momentum
balance.

955 A38-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1089
https://doi.org/10.1017/jfm.2022.1089


A.N. Edwards and others

Since (3.4) and (3.5) have the same structure as the original mass and momentum
balance equations (2.2) and (2.3), the numerical method described in § 3.1 can be used
to compute the flow in the moving frame. This time, the computational domain is a
rectangle covering the area −0.8 m � ξ � 0.8 m and −10 cm � y � 10 cm, discretized
to 1600 × 200 finite volume cells (with the same resolution of 1 grid point per mm in
both directions as the continuous release simulation). The initial conditions at τ = 0 are
the t = t0 = 28 s state of the continuous release simulation, which is shown in figure 3(d).
At the downstream boundary, at ξ = 0.8 m, the precursor layer enters the domain with
thickness h = h0 and velocity ū′ = −uFex, which is equivalent to zero velocity in the
stationary frame. This condition is also trivially satisfied at the sides y = ±10 cm.

The upstream boundary condition is more complex. Physically, this is because some of
the grains in the central channel are moving downslope towards the front, and therefore
must enter the domain at ξ = −0.8 m, whilst other grains at the sides and base of the
central channel, as well as in the static levees, are moving slower than the front and leave
the domain. This has to be accounted for in a depth-averaged model by allowing an inflow
along part of the upstream boundary and an outflow along the rest. To achieve this, a
novel procedure has been developed. First, the net mass flux leaving the domain across the
upstream boundary is calculated by evaluating the integral

Qout = −ρ

∫ +W/2

−W/2
hū′|ξ=−0.8 m dy. (3.6)

At steady state, the inflowing and outflowing grains should be in exact balance and Qout
should equal zero. However, the initial state is not yet quite in steady state and therefore
Qout is non-zero. To correct for the net loss/gain of particles across ξ = −0.8 m, a mass
source term (similar to that applied in (3.1)) is applied across the first row of interior grid
cells. The new source term in the moving frame simulations is therefore

S′
inflow = Qouth|ξ=−0.8 m

ρ�x
∫ +W/2

−W/2
h|ξ=−0.8 m dy

(3.7)

inside the first grid cell and zero otherwise, where �x = 10−3 m is the length of a
grid cell in the downslope direction. The inflow is weighted so that more mass is
supplied in thicker parts of the flow. It follows that when (3.7) is integrated over the
domain (−0.8, −0.8 + �x m) × (−W, W), it resupplies the material lost through the
upstream boundary. An iterative procedure is required to refine the initial guess of uF =
0.07065 m s−1 to ensure convergence towards a steady state. Figure 4 shows the results
of a numerical simulation with uF = 0.07053 m s−1. Figure 4(a,b) show that the initial
thickness is almost indistinguishable from the final thickness 100 s later, implying that by
t = 28 s, the simulations in figure 3(d) were already close to steady state. The temporal
evolution of Qout is shown in figure 4(c). By τ = 100 s, the simulation has converged on
a steady state with Qout = 0, and this is now used to reconstruct the three-dimensional
velocity field near the front of a self-channelized flow with static levees.

4. Reconstruction of the three-dimensional velocity field

4.1. Reconstruction of the bulk flow velocity components
The depth-averaged theory in § 2 is able to quantitatively model the formation of
self-channelized flows with static levees as shown by Rocha et al. (2019) and the
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Figure 4. Colour maps of flow thickness h in a frame moving with the front speed uF = 0.07053 m s−1

plotted (a) at the initial time τ = 0 s (equivalent to t = t0 = 28 s of the continuous release simulation shown
in figure 3d) and (b) after τ = 100 s in the travelling frame simulation. (c) Mass flux Qout leaving the domain
as a function of time τ . This tends to zero for large times confirming that a travelling wave solution is achieved.

simulations in § 3. Following Gray & Ancey (2009) and Johnson et al. (2012), the
three-dimensional velocity field u = (u, v, w) is reconstructed from ū by assuming a
velocity profile through the depth of the flow. For a general function f (z/h), the horizontal
components of the three-dimensional velocity field parallel to the slope are related to their
depth-averaged counterparts by

(u, v) = f
( z

h

)
(ū, v̄). (4.1)

This paper assumes a Bagnold velocity profile (Silbert et al. 2001; GDR-Midi 2004; Jop
et al. 2005; Gray & Edwards 2014; Baker et al. 2016a) which implies

f
( z

h

)
= 5

3

[
1 −

(
1 − z

h

)3/2
]

. (4.2)

It is possible to reconstruct the three-dimensional velocity field using other profiles.
For instance, Johnson et al. (2012) reconstructed a qualitatively similar depth-averaged
velocity field ū using (i) plug flow, (ii) simple shear and (iii) linear shear with basal slip.
As shown in their figure 11, this has an important affect on the surface trajectories of
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particles and determines the degree to which they reach the front and are overturned, or are
deposited at the surface of the static levees. For plug flow, there is no overturning, which
is unrealistic, and simple shear has too much overturning compared with measurements of
debris flows at the USGS flume. Johnson et al. (2012) found that a combination of linear
shear and basal slip was the most realistic. This is also consistent with the Bagnold profile
used here (Baker et al. 2016b).

Saingier, Deboeuf & Lagrée (2016) showed that when there is velocity shear, non-unity
values of the velocity shape factor χ = u2/(ū)2 in the momentum transport terms lead to
the formation of a precursor layer in depth-averaged avalanche models. Since a precursor
layer is not observed in experiments, they inferred that the velocity profile must become
plug-like at the front, i.e. χ → 1 as h → 0. Many avalanche computations therefore
assume χ = 1. Despite this, frontal overturning is often observed in experiments (Johnson
et al. 2012), and also occurs in non-depth-averaged numerical simulations using the
μ(I) rheology (see figures 3 and 6 of Barker et al. 2021). This paper therefore takes
the pragmatic view. The shape factors are assumed to be unity in the depth-averaged
momentum balance (2.3), but Bagnold velocity profiles are assumed everywhere, which
allows the flow to overturn at the front. Support for this approach comes from Saingier
et al. (2016) who showed that at low Froude numbers (Fr < 1), the Bagnold shape factor
(χ = 5/4) barely changes the free surface shape. Since Fr � 0.3 in the simulations in
figure 3, this is therefore a good approximation. Open questions still remain about whether
the velocity profile should also be Bagnold-like in the cross-stream direction, but it is a
reasonable first approximation. In addition, this paper neglects all feedback of the evolving
particle-size distribution on the local velocity profile (Rognon et al. 2007) or the basal
friction. This would require a fully coupled theory such as the depth-averaged one of Baker
et al. (2016b) or the non-depth-averaged one of Barker et al. (2021).

Using the Bagnold profile (4.2), it follows that the horizontal components of the
three-dimensional velocity field (u′, v′) in a frame moving with the speed of the front
(3.3a,b) are

u′ = −uF + 5
3
(ū′ + uF)

[
1 −

(
1 − z

h

)3/2
]

, (4.3)

v′ = 5
3
v̄′
[

1 −
(

1 − z
h

)3/2
]

, (4.4)

respectively. Figures 5 and 6 show the three-dimensional downslope and cross-slope
velocity fields reconstructed from the two-dimensional travelling wave solutions in § 3.2
at τ = 100 s. In these figures, panels (a–d) show longitudinal cross-sections at equally
spaced positions across the width of the flow (as indicated in panel h), whereas panels
(e–h) show sections across the flow at regular downslope intervals (as indicated in
panel d). The central plane (panel a) looks similar to a Pouliquen (1999b) front, with a
monotonically decreasing free surface, but the downslope free-surface velocity decreases
towards the front indicating that there must be lateral motion. The highest downslope
velocities are attained in the thickest part of the flow in the centre of the channel, and
the velocity decreases to zero towards the bottom and sides of the flow. Within the levees
(panel d and panels e–g), the downslope velocity u is zero in the stationary frame, but in
the moving frame, it appears to move upslope with velocity u′ = −uF � −0.07 m s−1.
The static/slow-moving region is broadly consistent with that inferred experimentally by
Deboeuf et al. (2006) in their figure 4, although a direct comparison with the steady state
used here is not possible, due to the partial collapse of the levee walls and drainage of
the channel as their flow was brought to rest. Note that Rocha et al. (2019) showed that

955 A38-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1089


Particle-size segregation in self-channelized granular flows

the same depth-averaged model used here is able to capture this drainage and collapse
(see their figures 14 and 15, and movies 5 and 6). Their model could therefore be used to
reconstruct the full three-dimensional temporally evolving flow field, but that is beyond
the scope of this paper.

The central flowing channel is of almost constant depth at ξ = 0.1 m (panel e) indicating
that the flow is close to the steady-state solutions of Rocha et al. (2019) and becomes
progressively more curved as the front is approached and the lateral motion advects
the incoming grains into the slower moving parts of the flow and the static levees. The
cross-slope velocity (figure 6) is antisymmetric about y = 0, indicating that the oncoming
flow is pushed out laterally on either side of the centre plane with the highest cross-slope
speeds achieved along the free surface at the sides of the spreading front. The no-net-flow
line, where u′ = 0, is shown in figure 5(e). Material that is above the no-net-flow line
moves faster than the flow front (u′ > 0) and is advected downslope, while material that
is below the no-net-flow line moves slower than the front (u′ < 0) and is transported
back upstream. In the fixed laboratory frame, however, all the material is either moving
downslope or is stationary.

An expression for the normal component w′ of the three-dimensional velocity in the
moving frame is derived by integrating the incompressibility condition (upon which the
depth-averaged theory is based, see e.g. Gray & Edwards 2014; Baker et al. 2016a) with
respect to z, subject to the condition that w′ = 0 at z = 0, to give

w′(ξ, y, z) = −
∫ z

0

(
∂u′

∂ξ
+ ∂v′

∂y

)
dẑ, (4.5)

where ẑ is a dummy variable. Substituting the horizontal velocity components (4.3) and
(4.4) into (4.5), and using the steady-state mass balance equation in the moving frame (3.4)
to simplify the result, implies that the normal velocity

w′ = f1
( z

h

)
uF

∂h
∂ξ

− f2
( z

h

)
h
[
∂ ū′

∂ξ
+ ∂v̄′

∂y

]
, (4.6)

where the functions

f1
( z

h

)
= 1

3

[
2 − 5

(
1 − z

h

)3/2 + 3
(

1 − z
h

)5/2
]

, (4.7)

f2
( z

h

)
= 5

3

[
z
h

−
(

1 − z
h

)3/2 +
(

1 − z
h

)5/2
]

. (4.8)

The reconstructed normal component of velocity for the two-dimensional travelling wave
solution computed in § 3.2 is illustrated in figure 7, using the same format as in figures 5
and 6. This indicates that the flow moves rapidly downwards along the free surface of the
front and that there is no normal velocity in the levees. Just like u′, w′ is symmetric about
the centreline y = 0.

4.2. Reconstruction of the free-surface velocity and particle trajectories
Figure 8(a) shows the velocity vectors in the stationary frame superimposed on top of
a colour map of the downslope component of the free-surface velocity. Sufficiently far
upstream, the static levees are close to their steady-state widths and there is a pronounced
velocity profile across the central channel. Material is transported to the flow front
along the central channel and as it nears the front, the levees decrease in width and the
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Figure 5. Colour maps of the downslope component of the three-dimensional velocity field u reconstructed
from the depth-averaged travelling wave computed in § 3.2 (at τ = 100 s) with front speed uF = 0.07 m s−1.
The colour maps are shown at cross-slope positions (a) y = 0, (b) ±2, (c) ±4 and (d) ±6 cm, and downslope
positions (e) ξ = 0.1, ( f ) 0.3, (g) 0.5 and (h) 0.7 m. The relative positions of the various cross-sections are
indicated by the black tick marks and corresponding labels in panels (d,h). A single colour scale is used to
show both u and u′ = u − uF . The dashed white line in panel (e) is the no-net-flow line. It separates the region
above, where the particles are moving towards the front (u′ > 0), from the region beneath, where particles are
moving away from the front (u′ < 0). The depth-averaged flow parameters are summarized in tables 1 and 2,
and a Bagnold velocity profile (4.2) is used in the reconstruction.
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Figure 6. Colour maps of the cross-slope component v = v′ of the three-dimensional velocity field u
reconstructed from the depth-averaged travelling wave computed in § 3.2 (at τ = 100 s) with front speed
uF = 0.07 m s−1. The colour maps are shown at cross-slope positions (a) y = 0, (b) −2, (c) −4 and
(d) −6 cm, and downslope positions (e) ξ = 0.1, ( f ) 0.3, (g) 0.5 and (h) 0.7 m. The relative positions of
the various cross-sections are indicated by the black tick marks and corresponding labels in panels (d) and (h).
Note that cross-slope velocity is antisymmetric about the centre line y = 0. The depth-averaged flow parameters
are summarized in tables 1 and 2, and a Bagnold velocity profile (4.2) is used in the reconstruction.

flow spreads out laterally and slows down. This is qualitatively similar to large-scale
debris-flow experiments (see figure 9a of Johnson et al. 2012), so this relatively simple
small-scale simulation captures the essential features of much larger scale geophysical
flows. Figure 8(b) shows the same solution, but in the moving frame, so it is now
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Figure 7. Colour maps of the cross-slope component w = w′ of the three-dimensional velocity field u
reconstructed from the depth-averaged travelling wave computed in § 3.2 (at τ = 100 s) with front speed
uF = 0.07 m s−1. The colour maps are shown at cross-slope positions (a) y = 0, (b) ±2, (c) ±4 and
(d) ±6 cm, and downslope positions (e) ξ = 0.1, ( f ) 0.3, (g) 0.5 and (h) 0.7 m. The relative positions of
the various cross-sections are indicated by the black tick marks and corresponding labels in panels (d,h). The
depth-averaged flow parameters are summarized in tables 1 and 2, and a Bagnold velocity profile (4.2) is used
in the reconstruction.

possible to see that relative to the moving front, the static levees are moving backwards in
accordance with the large-scale experiments in figure 9(b) of Johnson et al. (2012).

The motion of a particle at position ξp = (ξp, yp, zp) that is advected by the
three-dimensional velocity field (u′, v′, w′) in the moving frame of reference is determined
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Figure 8. Plots of the surface values of (a) laboratory frame velocity u (white arrows), (b) moving frame
velocity u′ (white arrows), and (c) moving frame streamlines (solid and dashed white lines) on top of colour
maps of the depth-averaged downslope velocity component ū. The surface velocity is shown to be greatest along
y = 0 and the levees are stationary in the laboratory frame of reference (a) or equivalently propagating upslope
with the front speed uF in the moving frame (b). Surface material flowing down the central channel is pushed
around at the lateral extents of the snout where the magnitude of the cross-slope velocity is greatest. This is
depicted by the streamlines in (c), where the outermost trajectories in the y-direction turn back on themselves
(solid white lines) whilst the central ones (dashed white lines) are turned over by the flow front.

by

dξp

dτ
= u′(ξp),

dyp

dτ
= v′(ξp),

dzp

dτ
= w′(ξp). (4.9a–c)

These three-dimensional particle paths coincide with the streamlines of the bulk flow field.
Figure 8(c) shows the reconstructed free-surface particle trajectories for the travelling
wave solution in § 3.2. Particles in the centre of the channel are transported to the flow
front and disappear from view as the flow overturns. Particles in the central channel that
start closer to the static levees are advected downslope and are either recirculated back
into the more slowly moving boundary layer adjacent to the levees, or deposited at the
surface of the static levees and then move backwards away from the moving front. Again,
this is exactly the behaviour that was observed in Johnson et al.’s (2012) large-scale
debris-flow experiments (see their figures 6 and 8). This underlines the fact that the
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travelling wave solution in § 3.2 and the reconstructed velocity field produces a bulk flow
that is qualitatively very similar to self-channelized geophysical flows.

5. Particle-size segregation equations

In §§ 3 and 4, the thickness h and the three-dimensional velocity field u have been
computed near the front of a steadily propagating monodisperse self-channelized flow. In
reality, debris flows, dense pyroclastic flows and rock avalanches are composed of a wide
variety of grain sizes that may segregate during motion and feedback on the bulk motion
(Costa & Williams 1984; Pierson 1986; Iverson 1997; Iverson & Vallance 2001; Félix &
Thomas 2004; Johnson et al. 2012; Kokelaar et al. 2014; Baker et al. 2016b; Kokelaar
et al. 2017; Denissen et al. 2019; Barker et al. 2021). This paper focusses on how a simple
bidisperse mixture is advected, segregated and deposited in a generic self-channelizing
flow, without feedback effects.

5.1. The bidisperse segregation equation
The flow is assumed to be composed of a bidisperse mixture of large and small particles
that occupy volume fractions φl and φs per unit granular volume, respectively. The volume
fractions (or concentrations) necessarily sum to unity

φs + φl = 1. (5.1)

During shear, the large grains tend to rise above smaller grains. The segregation is
governed by the segregation–advection–diffusion equation for the concentration of small
particles (Gray & Thornton 2005; Gray & Chugunov 2006; Gray 2018)

∂φs

∂t
+ ∇ · (φsu

)+ ∇ ·
(

fslφ
sφl g

|g|
)

= ∇ · (Dsl∇φs) , (5.2)

where ∇ is the three-dimensional gradient operator, fsl is the segregation-velocity
magnitude, Dsl is the diffusivity of the small and large particles, and g = g sin ζ ex −
g cos ζ ez is the gravitational acceleration vector expressed in slope aligned coordinates.
Equation (5.2) implies that the rate of change of the small particle concentration is
balanced by an advective flux due to the bulk flow, a segregation flux that shuts off when
a pure region of large or small particles is formed (i.e. when φs = 0 or 1) and a diffusive
flux that smooths out the sharp concentration shocks that can otherwise form.

5.2. Expressions for the diffusivity and the segregation-velocity magnitude
There has been considerable recent progress in determining the functional form of fsl
and Dsl. For monodisperse flows of disks, Utter & Behringer (2004) showed that the
self diffusivity of the particles is of the form D = Aγ̇ d2, where A is a non-dimensional
constant of proportionality, d is the grain diameter and the shear rate

γ̇ =
√

1
2 tr(D2), where D = 1

2

(∇u + (∇u)T) , (5.3)

is the strain-rate tensor. Trewhela et al. (2021) generalized this to bidisperse flows by
replacing d by the volume fraction weighted local mean grain diameter

d̄ = φldl + φsds, (5.4)
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A B C Φ R dl ds

0.108 0.7125 0.2712 0.5 1.49 0.61 mm 0.41 mm

Table 3. The universal constants A, B and C in the diffusivity (5.5) and the segregation-velocity magnitude
(5.9) measured by Utter & Behringer (2004) and Trewhela et al. (2021), as well as the parameter values used
in § 6. Note that for the simulations presented in this paper, Dsl is assumed to be zero.

where dl and ds are the diameters of the large and small particles, respectively. It follows
that the bidisperse diffusivity

Dsl = Aγ̇ d̄2. (5.5)

Refractive index matched shear box experiments (Trewhela et al. 2021) have also been
used to show that for grain-size ratios

R = dl/ds (5.6)

close to unity, the segregation-velocity magnitude fsl scales as

fsl = Bρ∗gγ̇ d̄2(R − 1)

Cρ∗gd̄ + p
, (5.7)

where B and C are non-dimensional empirical constants, ρ∗ is the intrinsic density of the
grains and p is the pressure. In the theories of Gray & Edwards (2014) and Baker et al.
(2016a), which underly the depth-averaged model used to calculate the bulk flow field in
§§ 2 and 3, the pressure is lithostatic, i.e.

p = ρ∗Φg(h − z) cos ζ, (5.8)

where Φ is the constant solids volume fraction (GDR-Midi 2004). Substituting (5.8) into
(5.7) implies that the segregation-velocity magnitude,

fsl = Bγ̇ d̄2(R − 1)

Cd̄ + Φ(h − z) cos ζ
, (5.9)

is independent of the intrinsic particle density ρ∗ and the constant of gravitational
acceleration g. Equation (5.9) also implies that fsl is linearly dependent on the shear rate
γ̇ and is approximately inversely proportional to the local particle depth h − z. All other
conditions being equal, particles at the base of the flow will therefore segregate slower than
particles near the free surface. The non-dimensional constant C was included by Trewhela
et al. (2021) to prevent the segregation-velocity magnitude from having a singularity at
z = h. The values of the universal non-dimensional constants A, B and C determined
by Utter & Behringer (2004) and Trewhela et al. (2021) are summarized in table 3.
For moderate particle-size ratios (2 < R < 4) and low small particle concentrations,
Trewhela et al. (2021) observed individual small particle intruders could percolate more
rapidly through a shearing matrix of large grains than suggested by (5.9). This enhanced
segregation rate was related to the transition to spontaneous percolation at large size ratios.
Such effects are neglected in this paper, as are enhanced packing effects at large size ratios,
which can reduce the segregation rate as mixtures of grains pack more densely together.
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5.3. Scale dependence of the segregation equation
It is also possible to show that the segregation equation (5.2) in conjunction with the
diffusivity (5.5) and the segregation-velocity magnitude (5.9) are dependent on the typical
particle diameter d. Introducing the general set of scalings

(x, y, z, h, d̄, dl, ds) = d (x̃, ỹ, z̃, h̃, ˜̄d, d̃l, d̃s), t = (d/U) t̃, g = g g̃,

(u, fsl) = U(ũ, f̃sl), γ̇ = (U/d) ˜̇γ, Dsl = (Ud) D̃sl,

}
(5.10a–f )

where U is a typical velocity magnitude, it follows that the non-dimensional segregation
equation

∂φs

∂ t̃
+ ∇̃ · (φsũ

)+ ∇̃ ·
(

f̃slφ
sφl g̃

|g̃|
)

= ∇̃ ·
(
D̃sl∇̃φs

)
, (5.11)

the non-dimensional diffusivity

D̃sl = A ˜̇γ ˜̄d2 (5.12)

and the non-dimensional segregation velocity

f̃sl = B ˜̇γ ˜̄d2(R − 1)

C ˜̄d + Φ(h̃ − z̃) cos ζ
(5.13)

are independent of any new non-dimensional groups. The non-dimensional segregation
equation (5.11) is therefore scale invariant, and the typical particle diameter d completely
scales out of the problem. When U = √

gd, the scalings (5.10a–f ) are consistent with
those for the bulk dry flow (2.15a–e) and the whole system scales with the typical particle
diameter d and gravity g. It is this fact that explains why the self-channelized fingered
deposits in the Bessel crater in Mare Serenitatis (Kokelaar et al. 2017) show very similar
segregation to that observed in the small-scale experiments of Pouliquen et al. (1997),
Woodhouse et al. (2012) and Baker et al. (2016b), but with particles that have a much
larger average grain diameter in a reduced gravity. Importantly, the typical particle size
d scales out of the equations even when U does not scale as

√
gd. This implies that the

solutions in §§ 6 and 7 are of direct relevance to general self-channelized flows that may
have more complex scalings, e.g. the USGS debris-flow flume experiments (Johnson et al.
2012) where the interstitial fluid may significantly influence the rheology (Iverson 1997;
Denlinger & Iverson 2001; Iverson & Vallance 2001; George & Iverson 2014).

5.4. Reduced segregation equation in the moving frame
Considerable insights into the effects of segregation have been obtained by constructing
solutions to (5.2) in the absence of diffusion, which has the advantage that it allows the
large and small particle paths to be tracked explicitly (Gray & Thornton 2005; Thornton,
Gray & Hogg 2006; Thornton & Gray 2008; Gray & Ancey 2009). In this paper, it is
therefore assumed that the diffusivity

Dsl = 0. (5.14)

In addition, the flow computed in §§ 3 and 4 is shallow, i.e. the typical length of the
flow L is much larger than a typical flow depth H. This can be exploited to simplify the
segregation term. If typical downslope and cross-slope velocities are of order U, then
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incompressibility implies that slope normal velocities are of order εU, where ε = H/L is
a small parameter. Introducing the scalings

(x, y, z) = L(x̂, ŷ, εẑ), (u, v, w, fsl) = U(û, v̂, εŵ, εf̂sl), t = (L/U)t̂, (5.15a–c)

where the segregation-velocity magnitude fsl is also assumed to scale as εU, the
non-dimensional segregation equation (5.2) becomes

∂φs

∂ t̂
+ ∂

∂ x̂

(
φs(û + εf̂slφ

l sin ζ )
)

+ ∂

∂ ŷ

(
φsv̂

)+ ∂

∂ ẑ

(
φs(ŵ − f̂slφ

l cos ζ )
)

= 0. (5.16)

This shows that the downslope component of segregation (the sin ζ term) is small
compared with all the other terms and can therefore be neglected. Returning to
dimensional variables and using the change of coordinates (3.3a,b), it follows that the
reduced segregation equation in the moving frame is

∂φs

∂τ
+ ∂

∂ξ

(
φsu′)+ ∂

∂y

(
φsv′)+ ∂

∂z

(
φs
(

w′ − fslφ
l cos ζ

))
= 0, (5.17)

where the physical domain z = h(ξ, y) and the velocity field u′(ξ, y, z) of the travelling
wave (computed in § 3 and reconstructed in § 4) are now steady in the moving coordinates
(ξ, y, z).

6. Particle-size segregation in a self-channelized flow

6.1. Numerical method
The numerical solution of the advection-segregation equation (5.17) is obtained using the
method of Kurganov & Tadmor (2000), extended straightforwardly to three dimensions
in the domain −0.4 m � ξ � 0.8 m × −10 cm � y � 10 cm × 0 � z � 10 mm. The
flow thickness h(ξ, y) and the velocity field u′(ξ, y, z) are assumed to be steady in
time and given by the depth-averaged self-channelized flow simulations in § 3 and the
reconstruction procedure in § 4. To accurately resolve steady solutions to (5.17), the
numerical discretization must be well-balanced, in the sense that the constant solutions
of the segregation equation φs = 0 and φs = 1 are preserved exactly. Well-balanced
discretizations often involve a balancing of discretized numerical fluxes with source terms
to preserve exact solutions. Here there are no source terms, but instead, the numerically
discretized form of the advection velocity field u′ is required to be exactly divergence free
and satisfy an appropriate discretization of u′ · n = 0 on z = 0 and z = h(ξ, y), so that no
numerical flux enters or leaves the domain over these surfaces. This procedure is described
in Appendix A.

6.2. Initial and boundary conditions
Initially, the flow is assumed to be entirely composed of small particles, i.e. φs

0(ξ, y, z, 0) =
1.0 everywhere, and a mixture of large and small grains are fed into the domain across the
upstream boundary at ξ = −0.4 m. There is no flux of large or small grains across z = 0
and z = h(ξ, y). By construction, u′ · n = 0 on z = 0, h(ξ, y), so this boundary condition
reduces to the requirement that the small particle segregation flux normal to the boundary
equals zero

F s · n = −fslφ
sφl cos ζ ez · n = 0, at z = 0, h(ξ, y). (6.1)

The upstream boundary condition along ξ = −0.4 m is more complicated, because, in
the moving frame, large and small grains flow in and out of the domain dependent on
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Figure 9. Colour map of the small particle concentration φs plotted at ξ = −0.3 m and τ = 100 s for an
inflow concentration φ̄s

in = 0.8 and R = 1.49 with dl = 0.61 mm and ds = 0.41 mm. The dashed white line
is the no-net-flow line, where u′ = 0, or equivalently u = uF . Above the no-net-flow line, the concentration
is prescribed at the inflow at ξ = −0.4 m, with the large particles being sharply segregated from the small
particles beneath. All the grains entering above the no-net-flow line are advected towards the flow front,
segregate and eventually flow out of the domain below the no-net-flow line. The concentration below the
no-net-flow line is determined by the downstream problem, and no boundary conditions are required. The
white dotted lines indicate the levee-channel boundary.

whether they lie above or below the no-net-flow line. The no-net-flow line is illustrated in
figure 9. The inflowing grains are assumed to be inversely graded, with the large grains
separated from the small grains beneath by a sharp interface η( y). This is assumed to be a
multiple of the inflow thickness

η( y) = φ̄s
inh(−0.4, y), (6.2)

where φ̄s
in is a constant. Since the inflow thickness is almost constant across the flowing

part of the channel, the interface height η is almost constant, as illustrated in figure 9.
The small particle concentration for the inflowing particles (above the no-net-flow line) is
therefore

φs(−0.4, y, z, t) =
{

0, z > η( y),
1, z � η( y). (6.3)

For the out-flowing grains that lie below the no-net-flow line in figure 9, no boundary
condition is required, and the concentration that develops within the domain is simply
advected upstream out of the domain.

Note that in figure 9, the large and small particles in the levees are not subject to further
segregation because the shear rate γ̇ = 0. Segregation does, however, continue in the
mixed regions that lie in the central channel. The segregation rate is small, vanishingly so
right at the margins, so it takes a very long time for the large particles to fully segregate. As
a result of this and the finite domain size, some large particles flow out of the domain in an
unstably stratified configuration. For example, all the mixed material in the central channel
has further to segregate in figure 9. The steady-state results presented here are therefore
dependent on the domain size, but only weakly so, since most of the large particles in the
mixed regions would ultimately segregate to positions that lie below the no-net-flow line,
so they do not affect the inflow. In reality, debris flows are only sustained in quasi-steady
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Particle-size segregation in self-channelized granular flows

configurations for finite periods of time, so applying the upstream boundary condition at a
finite distance from the front is more realistic than considering a semi-infinite avalanche.

Provided that the inflow is sufficiently far back, the outflowing grains on the centreline
of the channel are small. It follows that φ̄s

in is actually the depth-averaged small particle
concentration in the centre of the channel. The parameter φ̄s

in will therefore be used to
describe the mixture composition. Note that φ̄s

in is not equal to the composition of the
arrested mixture, because the large particles near the free surface are moving faster than
the small particles beneath, and a thin layer of large particles may therefore produce a
larger flux than a thicker layer of small grains (Gray & Ancey 2009; Wiederseiner et al.
2011).

For the simulations in this section,

φ̄s
in = 0.8, φ̄l

in = 1 − φ̄s
in = 0.2. (6.4a,b)

The volume fraction weighted mean particle diameter of the inflowing mixture,

d̄in = φ̄l
indl + φ̄s

inds, (6.5)

is chosen to equal the particle diameter d = 0.45 mm (table 1) used to compute the bulk
flow field in § 3. The diameters of the large and small grains, dl and ds, are still free
to be chosen, allowing flows with different grain-size ratios R to be investigated, whilst
preserving d̄in = 0.45 mm. For the simulations in this section, dl = 0.61 mm and ds =
0.41 mm, giving a grain-size ratio R = 1.49.

6.3. Concentration profiles
The three-dimensional small-particle concentration φs(ξ, y, z, τ ) is computed as a
function of time τ , subject to the initial and boundary conditions described in § 6.2. The
temporal evolution of the depth-averaged small-particle concentration

φ̄s(ξ, y, τ ) = 1
h

∫ h

0
φs(ξ, y, z, τ ) dz, (6.6)

towards a steady-state solution is shown in figure 10. Vertical downslope and cross-slope
sections across the steady-state are shown in figure 11. Movie 2 shows the simultaneous
temporal evolution of the small-particle concentration φs(ξ, y, z, τ ) in each of the
cross-sections, as well as the depth-averaged small-particle concentration φ̄s(ξ, y, τ ). The
large and small particle trajectories on the centreline are superimposed on top of the
small-particle concentration distribution in figure 12. Note that although the solutions are
computed for −0.4 m < ξ , all these plots focus on the solution near the front in the range
0 � ξ ≤ 0.8 m.

At early times (τ < 10 s), the grains that flow into the domain at the upstream boundary
(at ξ = −0.4 m) are already inversely graded and do not need to segregate vertically.
The surface layer of large particles is therefore simply advected downstream by the bulk
velocity field u′, and consequently moves rapidly towards the front in the centre of the
channel, spreading very little laterally, as shown in figure 10(a). It is only when this
layer approaches the front, where the lateral velocity v′ becomes significant for ξ > 0.5 m
(figure 6), that the large particles begin to spread laterally at the surface (figure 10b).

At approximately τ = 10 s, the leading edge of the free-surface layer of large particles
reaches the front (figure 10b). Since the bulk flow wraps back on itself (figure 5),
the large basal particles are transported backwards relative to the moving front.
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Figure 10. Colour maps of depth-averaged small-particle concentration φs at (a) τ = 5, (b) 10, (c) 15,
(d) 20 and (e) 25 s in the moving frame for φ̄s

in = 0.8, dl = 0.61 mm and ds = 0.41 mm, which implies the
grain-size ratio R = 1.49. The white dotted lines in panel (e) indicate the levee–channel boundary. The online
supplementary movie 2 shows the time dependent evolution of the flow towards steady state.
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Figure 11. Colour maps of the small particle concentration φs at time τ = 100 s for φ̄s
in = 0.8, dl = 0.61 mm

and ds = 0.41 mm (R = 1.49) are plotted at cross-slope positions (a) y = 0, (b) ±2, (c) ±4 and (d) ±6 cm, and
downslope positions (e) ξ = 0.1, ( f ) 0.3, (g) 0.5 and (h) 0.7 m. These locations are indicated by the black tick
marks and corresponding labels in panels (d,h). The online supplementary movie 2 shows the time-dependent
evolution towards the steady state in each of the sections.

Physically, this corresponds to fast moving large grains at the free surface, flowing down
over the front and entering a stationary or slow moving basal region, where the downstream
velocity u is much slower than the front speed uF (figure 5). Large basal particles in the
centre of the channel are therefore overrun by finer grained material, and begin to segregate
upwards again (see movie 2 panels (a–c) at τ = 10–35 s). In the moving frame, the
segregating basal large particles initially appear to move backwards away from the front,
because u < uF near the base, but they eventually reach a flow height where u > uF and
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Figure 12. Steady-state small-particle concentration φs for φ̄s
in = 0.8, dl = 0.61 mm and ds = 0.41 mm

(R = 1.49) showing an enlarged view (ξ ∈ [0.2, 0.8]) of the breaking-size-segregation wave on the centreline
y = 0. The plot also shows the large-particle paths (solid white lines), the small-particle paths (dashed black
lines) and the no-net-flow line (dashed white line).

start moving forwards towards the front again. This forms a recirculating loop. This process
of large particle transport, segregation and recirculation generates a diffuse small-particle
concentration region that is called a breaking size-segregation wave (Thornton & Gray
2008; Gray & Ancey 2009; Gray & Kokelaar 2010; Johnson et al. 2012; Barker et al.
2021). In this three-dimensional flow, the breaking-size-segregation wave reaches a steady
travelling state (figure 11) that moves downslope at the same speed as the front.

Thornton & Gray (2008) derived an exact solution for the structure of the
breaking-size-segregation wave in a two-dimensional flow field. They showed it consisted
of two expansion fans and two concentration shocks that were arranged in a lens-like
structure that travelled downslope at a speed that was equal to the depth average of the
downslope velocity over the height of the wave. Since breaking waves do not occupy the
full height of the flow, this implies that in two dimensions, they move slower than the
depth-averaged speed of the flow. Above them, there is a layer of large grains that moves
faster than the breaking wave, and these large particles are therefore transported forwards.
In two dimensions, this allows a large-rich region to form ahead of the wave, and grow in
time as increasingly more large grains accumulate there (Gray & Kokelaar 2010).

Figures 10(c–e) and 11 show that in a fully three-dimensional flow, a large-rich snout
also develops, but it travels at the same speed as the breaking-size-segregation wave just
behind it. For the breaking wave to move at the same speed as the flow front, there must be
a physical mechanism that removes the large particles that are transported to the flow front.
In two dimensions, Gray & Ancey (2009) showed it was possible to do this by depositing
the large frontal grains in a static layer at the base of the flow. In three dimensions, the
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frontal large particles can instead be removed by transporting them laterally out of plane.
This is what happens in the self-channelized flows studied here.

On the centreline of the channel, v′ = 0, and the small-particle concentration equation
(5.17) can be written in the form

∂φs

∂τ
+ ∂

∂ξ

(
φsu′)+ ∂

∂z

(
φs
(

w′ − fslφ
l cos ζ

))
= −φs ∂v′

∂y
. (6.7)

Since this equation is no longer dependent on cross-slope gradients of φs, the
small-particle concentration φs(ξ, 0, z, τ ) can be solved for on the centreline provided u′ is
prescribed. Johnson et al. (2012) exploited this to compute the steady-state concentration
on the centreline in a qualitatively similar flow field to that used here. This showed that
the structure of the breaking-size-segregation wave was much more complicated than the
two-dimensional solution of Thornton & Gray (2008).

This paper goes much further by computing the three-dimensional time-dependent
structure of the breaking-size-segregation wave in a self-channelized flow field. On either
side of the centreline (figure 11b,c), the concentration distribution looks qualitatively
similar to that on the centreline (figure 11a). However, the breaking wave extends
progressively further upstream (figure 11c) as the slower moving sides of the central
channel are approached. This is due to the reduced shear rate in the channel margins,
which reduces the segregation rate (5.9). As a consequence, the basal large particles take
longer to segregate upwards and then be transported towards the front again, which extends
the length of the breaking wave. If the large particles are incorporated into the static levees,
they do not segregate further at all (figure 11d–h).

In the centre of the channel, the breaking size-segregation wave has a high small-particle
concentration eye, which sits just behind the flow front, on the no-net-flow line. A
swirl of high large-particle concentration wraps underneath and around the eye, as
shown in an enlarged view in figure 12, and progressively diminishes in strength. This
characteristic breaking-wave swirl is present throughout the central channel (figure 11a–c).
At the sides of the front, the bulk flow rotates the concentration distribution in the
breaking-size-segregation wave through ninety degrees and transports it laterally, partially
depositing it into the static levees (figure 11e–g). The levees are therefore not solely
composed of large particles. Instead, there is a carapace of large particles that is wrapped
around the top and bottom surfaces, and a central mixed core with higher concentrations
of fine grains. This is consistent with the experimental observations of Kokelaar et al.
(2014) who used a resin impregnation technique to make sections across the levees (see
their figures 5–7).

Movie 2 shows how the small-particle concentration distribution is advected from the
central channel into the levees, where it is frozen in to the static deposit. In particular, as
the large particles reach the front and are advected sideways and deposited into the levee
walls, a large-particle-rich deposited region propagates backwards relative to the moving
front in the overhead views in figure 10(c–e). The large-rich carapace is fully developed by
τ = 25 s. The steady-state development of the finer grained levee core takes considerably
longer (approximately τ = 50–60 s). This is because the large particles, which form this
structure, have been recirculated by the breaking-size-segregation wave and take longer to
get there. Movie 2 shows this as a concentration swirl that progressively develops in the
levee walls. It is important to realize that this swirl is not caused by motion of the large
particles in the static levees, but just by their different arrival times in the static deposit
and subsequent transport away from the front in the moving frame of reference. In the
final, fully developed steady state, shown in figure 11, all the large and small particles that
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enter above the no-net-flow line at the upstream boundary at ξ = −0.4 m, exit the domain
below the no-net-flow line (figure 9).

6.4. Particle trajectories
As in § 4.2 for the bulk flow, the large and small particle paths ξ ν

p = (ξν
p , yν

p, zν
p) can be

reconstructed by solving the particle-path equations

dξν
p

dτ
= uν(ξ ν

p),
dyν

p

dτ
= vν(ξ ν

p),
dzν

p

dτ
= wν(ξ ν

p), (6.8a–c)

for each particle phase ν = l, s. In the absence of diffusion, the bidisperse segregation
equation (5.17) implies (Gray & Ancey 2009; Johnson et al. 2012; Gray 2018) that in the
moving frame of reference, the large and small-particle velocity components are

ul = u′, vl = v′, wl = w′ + fslφ
s cos ζ, (6.9a–c)

us = u′, vs = v′, ws = w′ − fslφ
l cos ζ, (6.10a–c)

respectively. Equations (6.8a–c) are integrated forwards in time, from the particle’s
initial position ξ ν

p0 = (−0.4, yν
p0, zν

p0), above the no-net-flow line in figure 9, through the
downstream flow field, until the particle exits the domain (below the no-net-flow line)
across the ξ = −0.4 m plane.

The centreline y = 0 is a somewhat pathological case, because v′ = 0. The particle
trajectories therefore stay on the centreline, even though mass is constantly being
transported laterally out of plane by the velocity gradient term ∂v′/∂y on the right-hand
side of (6.7). The large and small particle trajectories on the centreline are superimposed
on top of the small-particle concentration distribution in a zoomed-in view (ξ ∈ [0.2, 0.8])
in figure 12. Large particles enter the flow adjacent to the free surface, and move parallel
to it until they near the flow front. At the front, all the large particles are overrun, and
then move backwards (in the moving frame of reference) in the slower moving flow
below the no-net-flow line. As they do so, they segregate upwards into progressively faster
moving parts of the flow, and when they eventually cross the no-net-flow line, they begin
moving forwards towards the front again. This process of being overrun by the bulk flow,
segregating upwards and recirculating forwards is repeated many times. However, unlike
the two-dimensional depositing flow of Gray & Ancey (2009), the large-particle paths do
not form closed recirculating loops, but instead spiral in to an eye of high small-particle
concentration that is centred on the no-net-flow line.

Large particles that initially move along the free surface are transported to the bottom
of the flow and take longest to recirculate forwards. The free-surface large-particle
trajectories therefore delineate the back of the breaking-size-segregation wave. Small
particles enter the domain above the no-net-flow line, but beneath the sharp interface
with the large particles (at z = φ̄s

inh) imposed by the inflow conditions (6.2) and (6.3).
All the small particle trajectories shown in figure 12 move towards the front, pass through
the breaking-size segregation wave, exit beneath the no-net-flow line and then move
backwards out of the domain. It is also possible (not shown) for small particles to be
recirculated further upstream by the bulk flow field alone, without ever reaching the
breaking-size-segregation wave. In both cases, small particles that start in the highest
fastest moving part of the flow end up at or near the base, whereas those that start just
above the no-net-flow line exit the domain just beneath it. However, it should be noted that
the lateral velocity gradient ∂v′/∂y term in (6.7) also continuously transports a mass of
small particles laterally during the recirculation.
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Figure 13(a) and movie 3 show selected three-dimensional particle paths for the bulk
flow field, reconstructed using (4.9a–c). The particle paths are colour coded by their inflow
position above the no-net-flow line in the ξ = 0 plane to help identify them. From their
initial location above the no-net-flow line, the particles are initially transported towards
the flow front, but are then recirculated by the bulk flow field into regions of the flow that
are moving slower than the front speed, and move backwards out of the domain below the
no-net-flow line. Bulk particle paths near the centre of the channel move towards the front,
where they are overrun by the bulk flow, whilst particles starting closer to the sides of the
central channel are advected outwards and deposited into the levees before moving out of
the frontal domain.

The start and end positions of the trajectories on the ξ = 0 plane can be interpreted
as a mapping. Figure 14(a) shows such a mapping using the same colour map that is
used to identify the trajectories in figure 13(a). The colour map is defined on a regular
grid that lies above the no-net-flow line. This is where the particles flow into the domain
towards the front. The outgoing trajectories are shown on a deformed grid and colour map
below the no-net-flow line. By comparing regions of the same colour above and below the
no-net-flow line in figure 14(a), one can identify where inflowing material flows out of the
domain. Material entering at the surface of the flow in the centre of the channel therefore
flows out of the domain close to the base of the central channel, while material that starts
closer to the sides of the central channel ends up in the levees. In particular, for starting
positions that are sufficiently far off centre, particles starting on the surface remain at the
surface and are deposited near the top of the levees.

Figure 13(b) and movie 4 show selected three-dimensional large-particle paths starting
from their inflow position above the concentration discontinuity near the free surface.
Large particles in the centre of the flow are transported forwards to the front, where they
are overridden by the bulk flow and appear to move backwards. However, they are able
to segregate in the breaking-size-segregation wave and move up into progressively faster
moving regions of the flow. This allows them to eventually move forwards and create
looping trajectories as the grains are subsequently transported laterally into the levee
walls. The mapping between the inflow and outflow positions is shown in figure 14(b).
The recirculating loops generate a swirl-like structure in the core of the levee, as shown in
the mapping in figure 14(b). Conversely, large particles that start closer to the sides of the
central channel end up on the surface of the levee to form a large-rich carapace.

Figure 13(c) and movie 5 show selected three-dimensional small-particle paths that start
between the no-net-flow line and the concentration discontinuity. They look qualitatively
very similar to those of the bulk flow field, although particle segregation speeds their
descent to the base of the flow. The small particles are all recirculated internally to the
flow, so that none appear on the free surface. As shown in figure 14(c), small particles that
start closer to the sides of the central channel tend to mix with the large grains and form the
swirls that are deposited in the levee cores, consistent with the experimental observations
of Kokelaar et al. (2014). These simulations also explicitly show that a pure layer of fine
particles forms at the base of the flow, and that the lateral margins of the central channel
and the internal levee wall are fines rich. As Kokelaar et al. (2014) pointed out, this fines
lining could be very significant, because in fully coupled simulations (Barker et al. 2021,
figure 7) a basal fine-grained layer significantly enhances the flow’s speed.

7. Dependence on the particle-size ratio and inflow concentration

There are many parameters in the theory that are summarized in tables 1 and 3, and it
is useful to say something about the values that have been chosen. Those in table 1 are
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(a)

(b)

z

y

ξ

(c)

Figure 13. Three-dimensional particle trajectories starting and ending in the ξ = 0 plane for (a) the bulk flow,
(b) large particles and (c) small particles. The small particle concentration φs is shown at the back of the flow
in the ξ = 0 plane and the area of the base of the flow at z = 0 is filled in grey. The trajectories are coloured
by their starting positions above the no-net-flow line to help identify them. These trajectory colours are used
in figure 14 to show where inflowing particles starting at different locations are mapped to in the outflow.
Movies 3–5 in the online supplementary material show flyby animations of the paths.

associated with the bulk flow and are tightly constrained by existing experiments and
discrete element simulations (Silbert et al. 2001; Pouliquen & Forterre 2002; GDR-Midi
2004; Jop et al. 2006; Edwards et al. 2019; Rocha et al. 2019). Moreover, Takagi et al.
(2011) performed monodisperse self-channelization experiments over a range of fluxes
and showed that the flow height in the centre of the channel stayed constant, whilst the
channel width increased linearly with increasing mass flux. Rocha et al. (2019) were able
to quantitatively match these observations with the avalanche model used in this paper.
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Figure 14. Mapping between the inflow and outflow positions on the ξ = 0 plane of the three-dimensional
particles trajectories shown in figure 13 for (a) the bulk flow field, (b) large particles and (c) small particles.
The colour scheme is the same as that used to identify the trajectories in figure 13. The initial positions of
the particles are shown with a colour map and regular grid above the no-net-flow line (dashed white line).
The corresponding outgoing positions are shown with the deformed grid and colour map. The steady-state
concentration φs(0, y, z) is shown in the background.

The qualitative features of the flow field are therefore already understood in detail from
the work of Rocha et al. (2019), and a representative case has been chosen here to look at
its effects on the resultant segregation.

The non-dimensional parameters A, B, C (table 3) are universal constants that are
associated with the diffusivity (5.5) and the segregation velocity magnitude (5.9) and do
not need to be varied (Utter & Behringer 2004; Trewhela et al. 2021). The most important
parameters in the system are the input conditions, i.e. the mass flux, the particle sizes
and the mixing ratio. However, §§ 2.4 and 5.3 have shown that both the bulk flow and the
segregation scale with the particle size. Large-scale flows of boulders and rock fragments
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Panels R = dl/ds dl ds

(a,e) 1.63 0.65 mm 0.40 mm
(b, f ) 1.49 0.61 mm 0.41 mm
(c,g) 1.36 0.57 mm 0.42 mm
(d,h) 1.23 0.53 mm 0.43 mm

Table 4. The particle diameters corresponding to the assumed particle-size ratio in each panel of figure 15.
The particle diameters are chosen so that when φ̄s

in = 0.8, the average particle diameter at the inflow d̄in =
φ̄l

indl + φ̄s
inds = 0.45 mm.

may therefore be directly equivalent to small-scale bidisperse flows with millimetre-sized
grains. This leaves the dependence on the particle-size ratio and the input composition,
which are investigated here.

7.1. Varying the particle-size ratio
To change the particle-size ratio R = dl/ds, the particle sizes need to be changed. As a
result, the local volume-fraction-weighted average particle size d̄, defined in (5.4), also
changes, and this in turn affects the segregation-velocity magnitude (5.9). To minimize
this secondary effect, the particle sizes are changed in such a way that the mean
inflow particle diameter d̄in = φ̄l

indl + φ̄s
inds = 0.45 mm. This is the same value as that

used in the simulations of the self-channelized flow in §§ 3 and 4, as well as for the
small-particle concentration in § 6. The values of the particle diameters used in this section
are summarized in table 4.

Figure 15 shows the concentration distribution on the centreline y = 0 and on the
plane ξ = 0.1 m for four values of the grain-size ratio R. The case R = 1.49 is the same
as in § 6 and serves as a benchmark for comparison. Figure 15(a–d) show that as the
grain-size ratio is decreased, the breaking-size-segregation wave becomes progressively
longer and extends further upstream. In addition, the swirl of large particles that wraps
around the central eye of small particles, develops a more noticeable structure. Note that
when R = 1.23, the back of the breaking-size segregation wave extends out of the plotted
domain in figure 15(d), but it is still within the computational domain ξ ∈ [−0.4, 0.8] m.
Figure 15(e, f ), show that when R is decreased from 1.63 to 1.49, the width of the swirl
of large grains that gets partially deposited in the levee core widens, and develops more
structure. This is also true for R = 1.36 and R = 1.23, but it can not solely be deduced
from figure 15(g,h), because the sections at ξ = 0.1 m also cut across the back of the
breaking-size segregation wave in the central channel. This widening of the partially
deposited breaking-size-segregation waves implies that when R is decreased, there are
more fine grains in the levee core.

Movies 6–8 show the full temporal evolution of the solution for the cases R = 1.63,
1.36 and 1.23, using the same format as movie 2 for R = 1.49. The surface layer of large
particles still reaches the flow front at approximately τ = 10 s. However, as R decreases,
it takes longer for the large particles that are overrun to segregate upwards and then
recirculate towards the front again. The time to reach steady state therefore increases, from
approximately 50 s for the case R = 1.63 to 90 s for the case R = 1.23.
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Figure 15. Colour maps of the small particle concentration φs at time τ = 100 s with φ̄s
in = 0.8 and for

particle-size ratios (a,e) R = 1.63, (b, f ) R = 1.49, (c,g) R = 1.36, (d,h) R = 1.23. The average particle
diameter at the inflow d̄in = 0.45 mm. This constrains the particle diameters, which are summarized in table 4.
Panels (a–d) show the y = 0 centre plane, while panels (e–h) show the cross-section at ξ = 0.1 m. The
complete temporal evolution for R = 1.63, 1.36 and 1.23 are shown in movies 6–8. The case R = 1.49 is
the same as that in § 6.

7.2. Varying the inflow concentration
The inflow concentration φ̄s

in is now varied, whereas the particle sizes and hence the
particle-size ratio are held fixed at the same values as § 6. Figure 16 shows three new
cases, for φ̄s

in = 0.9, 0.7 and 0.6, respectively, as well as the existing case of φ̄in
s = 0.8 as

a benchmark for comparison. As φ̄s
in is decreased, the interface z = φ̄s

inh between the large
and small particles at the inflow reduces in height, and the incoming layer of large particles
gets thicker. Since the inflowing particles are inversely graded, they do not segregate and
are simply transported by the bulk flow towards the front. The primary effect of reducing
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Figure 16. Colour maps of the small particle concentration φs at time τ = 100 s for depth-averaged
small-particle inflow concentrations (a,e) φ̄s

in = 0.9, (b, f ) φ̄s
in = 0.8, (c,g) φ̄s

in = 0.7, (d,h) φ̄s
in = 0.6. The

particle diameters are dl = 0.61 mm and ds = 0.41 mm, which corresponds to a particle-size ratio R = 1.49.
Panels (a–d) show the y = 0 centre plane, whereas panels (e–h) show the cross-section at ξ = 0.1 m. The
complete temporal evolution for φ̄s

in = 0.9, 0.7 and 0.6 are shown in movies 9–11. The case φ̄in
s = 0.8 is the

same as that in § 6.

the inflow concentration is therefore to increase the thickness of the layer of large particles
that develops at the free surface, as shown in figure 16(a,d). These large particles are then
either advected and deposited onto the top of the levee to form a carapace, or overrun and
recirculated before being deposited internally within the levees.

For the case φ̄s
in = 0.9, the surface carapace of large particles on the levee walls gets very

thin. As a result, the steady-state depth-integrated concentration (movie 9) has alternating
bands of large/fine/large/fine material parallel to the downslope direction as one moves
inwards from the levee margins towards the centre of the channel. These bands are due to
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the fact that a significant amount of large material that was in the breaking-size-segregation
wave gets trapped close to the inner margin of the levee wall, and the carapace of large
grains is thicker at both the levee margin and close to the interface between the levee and
the central channel. This effect can also be seen for the original simulation in figures 10
and 11 for φ̄s

in = 0.8 with R = 1.49 and movie 2, but seems less pronounced. It is also
evident in movie 7, but is a weak effect in the other movies.

Movies 9–11 show the temporal evolution for the cases φ̄s
in = 0.9, 0.7 and 0.6.

Once the large particles pass over the front at approximately τ = 10 s again, a
breaking-size-segregation wave forms. As φ̄s

in decreases, there are more large particles that
are overrun at the front, and the breaking wave is consequently richer in large particles, and
the low concentration eye of fine grains diminishes in size and appears to move towards the
front of the wave. Due to the increased thickness of the free-surface layer of large particles,
the breaking size segregation wave gets shifted progressively upslope as φ̄s

in is reduced.
The length of the breaking-size-segregation wave increases as the proportion of large
grains is increased, but the change in length is not as strong as the dependence on the size
ratio R. This reflects the fact that although the segregation-velocity magnitude increases
with increasing local mean particle diameter d̄ = φldl + φsds, the normal component of
the large particle segregation velocity (6.9a–c) decreases with increasing large particle
concentration.

The increased depth of the incoming layer of large particles at the free surface also
increases the thickness of the carapace of large particles that flows out of the domain at the
sides of the main channel and in the cross-sections of the levees shown in figure 16(e–h).
As the small-particle concentration φ̄s

in is decreased, the mixed central core in the levee
wall diminishes in size and the levees become almost entirely composed of large particles
(figure 16h). This imposes a limit on the ability of self-channelized flows to transport the
incoming mixture in a steady manner. If there are too many large particles, they cannot be
accommodated in the levee walls or in the narrow boundary layers on either side of the
no-net-flow line (in the central moving channel) and instead, large particles will continue
to accumulate at the flow front, as in the solutions of Gray & Ancey (2009) and Gray &
Kokelaar (2010).

8. Conclusions

This paper uses the depth-averaged theory of Rocha et al. (2019) to solve for a
two-dimensional travelling wave that propagates steadily downslope and self-channelizes
a flow of monodisperse dry grains. Material in the central channel is continuously
transported to the flow front, where it spreads laterally and emplaces a pair of static
levees just behind the front. These levees are responsible for the self-channelization of
the flow, as shown in figures 3 and 4, as well as movie 1. Importantly, this theory does
not rely on particle-size segregation to explain the creation of static levees. Instead, it
relies on (i) frictional hysteresis (Pouliquen & Forterre 2002; Félix & Thomas 2004;
Deboeuf et al. 2006; Mangeney et al. 2007; Edwards & Gray 2015; Edwards et al. 2017,
2019) and (ii) depth-averaged in-plane viscous stresses (Gray & Edwards 2014; Baker
et al. 2016a). Frictional hysteresis allows static and flowing layers to coexist under the
same flow conditions and, importantly, the higher-order gradient viscous terms allow a
non-uniform velocity profile to develop across the central channel, providing a mechanism
that determines the channel width.

Rocha et al. (2019) demonstrated that their theory was in quantitative agreement with
small-scale experimental measurements of the variation in channel height and width, with
changing mass flux (Félix & Thomas 2004; Takagi et al. 2011). The theory is also relevant
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for large-scale geophysical flows. This is because Kokelaar et al. (2017) showed that the
equations scale with a typical particle size. Large-scale geophysical flows of rocky regolith
on the Moon are therefore mathematically equivalent, and may in reality be closely similar
to small-scale experiments with approximately millimetre-scale grains (Pouliquen et al.
1997; Woodhouse et al. 2012; Baker et al. 2016b). This argument is reprised here, in § 2.4,
to show that this is also true for Rocha et al.’s (2019) model with the full complexity of
the non-monotonic friction law, defined in § 2.2, and the depth-averaged viscous terms.
The solutions shown here are therefore relevant for large-scale levee-channelled flows,
even those, such as debris flows and dense pyroclastic avalanches, that contain interstitial
fluid. The fluid significantly reduces the apparent friction, but the resulting velocity field
and flow morphology may nonetheless be very similar to that of dry flows. Here, a dry
granular flow is chosen that is qualitatively similar to large-scale fluid-saturated flows at
the USGS debris-flow flume (Johnson et al. 2012).

To solve for the evolving particle-size distribution in a self-channelized flow, it is
necessary to reconstruct the three-dimensional velocity field from the two-dimensional
depth-averaged one computed in § 3. This is done in § 4 by assuming Bagnold down- and
cross-slope velocity profiles (4.1) and (4.2) through the flow depth, and then using the bulk
incompressibility to infer the normal velocity component. The resulting three-dimensional
velocity field, shown in figures 5–7, is qualitatively similar in any self-channelized flow
that continuously forms static levees, whatever the context.

Geophysical mass flows contain a very wide range of particle sizes, and trying to resolve
the full complexity of these distributions is difficult. However, considerable insights into
where larger and smaller grains accumulate can be obtained by using a simple bidisperse
theory. This paper uses the generalized bidisperse segregation model of Gray (2018) and
Barker et al. (2021), with the empirical segregation law of Trewhela et al. (2021). This
combined model also scales with a typical particle size, as shown in § 5.3, i.e. large
boulders and smaller rocks in geophysical mass flows will segregate from one another
in a similar manner to millimetre-sized grains in small-scale experiments. This makes the
computations of the small-particle size distribution, shown in figures 10 and 12, as well as
movie 2, pertinent for both geophysical flows and small-scale experiments.

The solutions are performed in a moving frame of reference, which moves with the
speed of the flow front. Initially, the flow is assumed to be entirely composed of small
particles. A pre-segregated layer of large particles is then fed into the domain across the
upstream boundary. The upstream boundary condition is complicated, because large and
small particles flow into the domain above the no-net-flow line (figure 9), pass through the
downstream flow and eventually exit below the no-net-flow line. The three-dimensional
large and small particle trajectories are visualized in figure 13 and movies 4–5. These
trajectories provide a mapping between the inflow and outflow positions, above and below
the no-net-flow line. A colour coded mapping for both large and small particles is shown
in figure 14.

Large particles at the surface of the flow, and in the centre of the channel, are sheared
towards the front where they are overrun by the bulk flow. They are, however, able to
segregate upwards again in a breaking-size-segregation wave (Thornton & Gray 2008;
Gray & Ancey 2009; Gray & Kokelaar 2010; Johnson et al. 2012; Barker et al. 2021), which
forms just behind the large-rich front. This wave moves at the same speed as the front, and
enables large grains to rise up into faster regions of the flow. The large particles that are
overrun are therefore recirculated forwards again by the bulk flow, and are simultaneously
pushed laterally to form looping trajectories in figure 13(b). Most of these large grains
eventually get deposited in a mixed region within the central levee core. In the travelling
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frame of reference, these deposited large grains appear to move upstream out of the flow
domain. In reality, all the grains that get deposited in the levees are static.

Large particles that start closer to the sides of the central flowing channel, do not reach
the front, and are pushed laterally aside, before being partially overrun, to form a carapace
of large grains that covers the exterior surface and base of the levees. This is precisely what
was observed in the resin-impregnated sections by Kokelaar et al. (2014). Small particles,
however, segregate down towards the base of the flow, and either get deposited into a
mixed region in the levee core or are recirculated away from the front near the base. This
is due to the base of the central channel moving slower than the front speed. As a result,
the small grains provide a sheared low friction internal channel lining, just as Kokelaar
et al. (2014) observed. In fully coupled computations, this would feedback on the bulk
flow by increasing the downslope velocity in the channel (Barker et al. 2021), although
this is not resolved in the computations presented here. It does, however, confirm that
particle-size segregation in self-channelized flows automatically lines the channels with
low friction material, which provides a secondary mechanism for run-out enhancement
(Kokelaar et al. 2014).

Some large particles are not deposited in the levees, but remain in the central channel.
These large particles are concentrated in the boundary layers on either side of the
no-net-flow line (figure 9). In these regions, the shear rate is lower than in the centre of
the channel, vanishingly so at the channel/levee margins, so the large particles segregate
very slowly towards the surface. Steady-state small-particle concentration solutions would
therefore require a semi-infinite domain to fully resolve the steady-state solution. The
computations performed here are in a finite domain, so a small proportion of the large
particles exit the back of the domain within the main channel in a mixed, or not fully
segregated, state. For these particles, segregation will continue further upstream, and
given an infinite domain, they would segregate completely to form an inversely graded
layer adjacent to the free surface. Of these mixed large particles, there is an even smaller
proportion that lie beneath a region of small grains that are being sheared forwards, toward
the front (above the no-net-flow line). Continued upstream segregation would allow these
large particles to recirculate forwards again. Steady states are therefore weakly domain-size
dependent. However, quasi-steady conditions are only ever realized in geophysical mass
flows for short periods of time, so solving on a finite domain is more realistic than trying
to consider a semi-infinite avalanche.

The particle-size distributions and particle paths in figures 9–16 show how large and
small particles are transported, recirculated and deposited during sustained inflow. In
reality, the flow will eventually wane and stop, which leads to partial draining of the
channel (Félix & Thomas 2004; Johnson et al. 2012; Woodhouse et al. 2012; Rocha
et al. 2019). Much of the material that lies above the no-net-flow line in figure 14 will
therefore drain out to leave a layer of material close to hstop between the levee walls, which
themselves may also partially collapse. After the flow has ceased, the levees will therefore
be higher than the material in the central channel, rather than having the approximately
trapezoidal cross-section shown in figure 14. It is possible to capture this partial drainage
with the same depth-averaged model used here (see figures 14 and 15, and movies 5
and 6 of Rocha et al. 2019). In principle, the same reconstruction method can be used
to determine the evolving three-dimensional velocity field u, and hence simultaneously
solve the segregation equation (5.2) for the particle-size distribution during the flow and
within the eventual deposit. This remains a significant challenge for the future, but it is
this partially drained deposit that geologists and geophysicists observe in the field (see e.g.
figure 2b).
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The simple bidisperse theory used in this paper provides considerable insight into the
structure of the levees and the central channel. Particle-size segregation, combined with
the self-channelization wave that emplaces the levees, leads to the flow front and the levee
walls being rich in large grains, while small particles are concentrated at the base of the
channel and the internal levee walls. Although the current theory ignores diffusive effects,
the central levee core is deposited in an arrested mixed state of large and small grains.
In debris flows, this overall structure naturally leads to strong differential fluidization.
Regions of large particles rapidly dissipate pore pressure and lose mobility (Iverson &
Vallance 2001; Iverson 2003), which generates highly frictional flow fronts and stronger
levees. However, this paper shows that it is not necessarily differential fluidization that
leads to self-channelization itself. Instead, the scaling arguments, in § 2.4, show that
frictional hysteresis is a plausible mechanism for self-channelization and levee formation
at geophysical scale. Particle-size segregation in combination with the μ(I) rheology does
however support the hypotheses that the large-rich levees are stronger, and the fines lining
in the central channel enhances the flow mobility (Kokelaar et al. 2014). Particle-size
segregation is therefore an important effect that promotes self-channelization, and should
more generally be resolved in geophysical mass flow models.

Supplementary movies. Supplementary movies 1–10 are available at https://doi.org/10.1017/jfm.2022.1089
and movie 11 is available from https://doi.org/10.48420/21747086.
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Appendix A. Well balancing of the three-dimensional velocity field

The method of Kurganov & Tadmor (2000) divides the domain into a three-dimensional
grid of cuboidal finite volume cells of size �ξ × �y × �z and indexed by integer
coordinates (i, j, k). If the central point of a grid cell is within the flow domain (0 � z �
h(ξ, y)), then the entirety of that cell is designated to be within the flow, with all other cells
designated as being outside the flow.

Within each grid cell in the flow domain, the volume average of the small particle
concentration φs evolves through fluxes evaluated on the six faces surrounding a grid
cell. These fluxes depend on the advection velocity field u′, and require the average of
the velocity component u′ to be specified on each of the two faces normal to the ξ -axis,
and likewise the average of v′ and w′ components on the faces normal to the y- and z-axes.
An approximation to these velocity components, which are denoted ua, va, wa, is obtained
by evaluating (4.3), (4.4) and (4.6) at the centre of each face, except at faces separating
a cell inside the flow from one outside, at which the velocity component is set to zero.
Specifically, ua

i+1/2,j,k represents this approximate u′-component of the velocity on the
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face separating grid cells with indices (i, j, k) and (i + 1, j, k), with va
i,j+1/2,k and wa

i,j,k+1/2
similarly defined on appropriate faces.

Numerical solutions to the segregation equation (5.17) are obtained using corrected
velocity components, uc, vc, wc, defined by

uc = ua + ŭ, vc = va + v̆, wc = wa + w̆. (A1a–c)

At each cell within the flow domain, a spatial discretization of (5.17) using the
semi-discrete form of Kurganov & Tadmor (2000) preserves the uniform states φs = 0
and φs = 1 exactly only when the corrected velocities satisfy a discretized divergence-free
condition,

uc
i+1/2,j,k − uc

i−1/2,j,k

�x
+

vc
i,j+1/2,k − vc

i,j−1/2,k

�y
+

wc
i,j,k+1/2 − wc

i,j,k−1/2

�z
= 0. (A2)

Corrections ŭ = (ŭ, v̆, w̆) are found below, such that (A2) is satisfied exactly.
Because u′ is constructed to be divergence free in (4.6), the divergence-free condition

(A2) is satisfied approximately even by the uncorrected velocity ua. The divergence
errors in the uncorrected velocity arise for three reasons: (a) a small divergence of the
depth-integrated flux hū due to small errors in the numerical solution of these fields;
(b) the approximation of the average u′ on a cell face by its value at the centre of this
face; and (c) the approximation of the flow boundary z = h by axis-aligned cell faces.

To eliminate these errors in the corrected velocity field uc, a potential Ψi,j,k is defined at
the centre of each grid cell, and the velocity corrections ŭ, v̆, w̆ at the centre of each grid
face are written in terms of Ψ

ŭi+1/2,j,k = Ψi+1,j,k − Ψi,j,k

�x
, v̆i,j+1/2,k = Ψi,j+1,k − Ψi,j,k

�y
,

w̆i,j,k+1/2 = Ψi,j,k+1 − Ψi,j,k

�z
, (A3a–c)

at interior faces, and ŭ, v̆, w̆ are set to zero at faces on the boundary of the flow domain.
Substituting (A1a–c) and (A3a–c) into (A2) gives a linear equation for the unknowns

Ψi,j,k at every grid cell, which for interior cells is

Ψi+1,j,k − 2Ψi,j,k + Ψi−1,j,k

(�x)2 + Ψi,j+1,k − 2Ψi,j,k + Ψi,j−1,k

(�y)2 + Ψi,j,k+1 − 2Ψi,j,k + Ψi,j,k−1

(�z)2

= −
(

ua
i+1/2,j,k − ua

i−1/2,j,k

�x
+

va
i,j+1/2,k − va

i,j−1/2,k

�y
+

wa
i,j,k+1/2 − wa

i,j,k−1/2

�z

)
.

(A4)

This discretized Poisson equation is applied at all except one of the grid cells within the
flow domain, with the final equation in the linear system being that Ψ = 0 in the single
(arbitrarily chosen) remaining grid cell. Summing (A2) over every grid cell in the solution
domain reveals that (A2) can be satisfied also in the grid cell where Ψ = 0 is set by
choosing the frame speed such that the sum of the fluxes across the back of the flow domain
ξ = −0.4 m is zero. This gives a slightly modified front velocity uF = 0.07058 m s−1.

A solution for Ψi,j,k is required at every interior flow point, which number approximately
4 × 107. The resulting large linear system is solved using the preconditioned conjugate
gradient method with a diagonal preconditioner, and the corrected velocity field obtained
through (A3a–c)–(A1a–c). This procedure produces a corrected velocity field uc that is
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very similar to the uncorrected one, but with a numerical divergence (and consequent
‘drift’ in steady solutions of φs) reduced by a factor of ∼108. The remaining, negligible,
divergence error arises from truncation error and a finite convergence tolerance for the
iterative linear solver.

This correction can be thought of as a discrete analogue of the Helmholtz
decomposition, in which the prescribed velocity field is decomposed into curl-free and
divergence-free components, and the small curl-free component subtracted off to leave
only the divergence-free component of the original field.
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