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Summary

Over recent years, selection methodologies have been developed to allow the maximization of
genetic gain whilst constraining the rate of inbreeding. The desired rate of inbreeding is achieved by
constraining the group coancestry using the numerator relationship matrix computed from pedigree.
It is shown that when the method is applied to mixed inheritance models, where a QTL is
segregating together with polygenes, the rate of inbreeding achieved in the region around a QTL is
greater than the desired level. The constraint on group coancestry at specific positions around the
QTL is achieved by using a relationship matrix computed from pedigree and genetic markers.
However, the rate of inbreeding realized at the position of constraint is lower than that expected
given the assumed relationship between group coancestry and the subsequent rate of inbreeding. The
use of markers in the calculation of the relationship matrix allows the selection of candidates with
very low or zero relationships because they are homozygous for alternative alleles, which results in a
heterozygosity amongst their offspring higher than would be expected given their allele frequencies.
A generation of random selection restored the expected relationship between group coancestry and

inbreeding.

1. Introduction

The need to restrict the increase in the rate of in-
breeding (AF) in genetic improvement programmes
has been widely recognized. Restricting AF allows
restriction of the decrease in genetic variability and,
most importantly, the reduction in fitness-related
traits. Over recent years, selection methodologies
(‘optimized selection’) have been developed to maxi-
mize genetic gain whilst constraining AF by optimiz-
ing the contributions made by parents to the next
generation (Meuwissen, 1997; Grundy et al., 1998).
Although these methodologies were developed as-
suming the infinitesimal genetic model, they are also
effective for mixed inheritance models where the
identified QTL are known to be segregating with the
polygenes (Villanueva et al., 2002).

A key component of optimized selection is the nu-
merator relationship matrix, as the selection method
takes into account all genetic relationships between
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selection candidates together with their estimated
breeding values. The use of the numerator relation-
ship matrix conditional on pedigree (Ap) to restrict
global coancestry in the optimization tool ensures
maintenance of AF and genetic variation at the de-
sired level for loci unlinked to those under selection
but not for selected loci or loci linked to them
(Villanueva et al., 2005).

It may be desirable to maintain genetic variation in
specific genome regions close to loci under selection.
An example would be the MHC region where loci
affecting traits selected by breeders (e.g., performance
traits) might be located. Bot ez al. (2004) suggested
that loci affecting clean fleece weight are segregating
in the MHC region in sheep. In pigs, the SLA region
on chromosome 7 has possible associations with
many production and reproduction traits (Vaiman
et al., 1988). QTL detection studies have reported
back fat thickness effects between —3 and +3-7 mm
for specific SLA haplotypes (de Koning et al., 1999).
A restriction on AF at a specific region in the genome
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could be achieved by applying optimized selection
using a numerator relationship matrix constructed
using pedigree and molecular markers located in and
around that region.

The study aims to assess (i) the effect of optimized
selection (using a numerator relationship matrix
based on pedigree only) on genetic gain and inbreed-
ing at a specific region of the genome where a QTL
affecting the selected trait is located; (i) the com-
parative effectiveness of using marker information
combined with pedigree for restricting inbreeding at
that position; and (iii) to explore how controlling in-
breeding with markers fits into existing theory.

2. Materials and methods
(1) Genetic and population models

A trait under the genetic control of a single known
additive bi-allelic QTL and polygenes was simulated.
The total genetic value for the ith individual was
G,=v;+u;, where v; is the QTL effect and u; is the
polygenic effect. The genotypic values due to the QTL
for individuals with genotypes BB, Bb and bb were
respectively ¢, 0 and —a, where a is defined as half the
difference between the two homozygotes (Falconer &
MacKay, 1996). The additive genetic variance con-
tributed by the QTL in the base generation (=0) was
thus 02 =2p(1 —p)a?, where p is the initial frequency of
the favourable allele B (Falconer & MacKay, 1996),
which was equal to 0-15.

The QTL was located 50 cM from one end of a
250 cM long continuous segment of the genome.
Across the segment, m markers (markers M;), spaced
evenly at 10 ¢cM intervals from positions 0 to 250 cM
were simulated. At =0, the number of alleles per
marker was 10 for all M; markers. Marker alleles for
a particular individual born at t=0 were sampled
from a uniform distribution with an equal probability
given to all allelic variants. The M; markers were
used to compute the numerator relationship matrices
conditional on pedigree and markers to be used in
the optimized selection. In addition, another set of
markers (markers M;) was simulated at 1 cM intervals
and was used to estimate the observed inbreeding
coefficients calculated as the homozygosity by de-
scent, at each position along the genome segment. For
each of these M, markers, all N unrelated individuals
(N/2 males and N/2 females) at =0 were sequentially
allocated two unique alleles, i.e., 2N alleles in total
were allocated to each M, marker. Information from
these markers was not utilized in the optimized selec-
tion procedure. All M; markers were simulated in
linkage equilibrium with each other and with the
QTL.

Selection was carried out for eight discrete gener-
ations with N offspring produced in each generation
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providing N/2 male and N/2 female candidates for
selection as parents of the next generation. At r=1,
the polygenic effect of each individual was sampled
from a normal distribution with mean zero and vari-
ance o2. Alleles at the QTL were randomly allocated
according to the starting QTL allelic frequencies. The
QTL and polygenes were in linkage equilibrium at
t=0. The phenotype of individual j (P;) was obtained
by adding the total genetic value (G)) to a normally
distributed environmental component with mean
zero and variance o2. In subsequent generations, the
polygenic effect was calculated as the average poly-
genic effect of the parents plus a random Mendelian
term sampled from a normal distribution with mean
zero and variance (0%/2)[1 — (Fs+ Fy)/2], where F, and
Fyq are the pedigree relationship matrix inbreeding
coefficients of the sire and dam, respectively. Marker
and QTL alleles were inherited from the parent
chromosome segments in classical Mendelian fashion,
allowing for recombination assuming the Haldane
mapping function. It was assumed that all individ-
uals were genotyped for all M; markers and for the
QTL.

(i1) Estimation of breeding values

The effect of the QTL was assumed to be known
without error. The total estimated breeding value
was the polygenic estimated breeding value plus the
assumed known QTL breeding value. Polygenic esti-
mated breeding values were obtained from best linear
unbiased prediction (BLUP) using phenotypic data
corrected for the QTL effect (P;—v;), and the poly-
genic heritability. The breeding value for the QTL was
calculated as 2(1—p)a, (1—2p)a and —2pa for in-
dividuals with genotype BB, Bb and bb, respectively
(Falconer & MacKay, 1996), and p was updated at
each generation.

(1) Selection and mating

The optimization algorithm, described by Meuwissen
(1997), for obtaining maximum genetic gain whilst
constraining AF to a specified level was used
(Appendix A). The A matrix utilized in the optimiz-
ation to constrain AF was either the numerator re-
lationship matrix conditional on pedigree (Ap) or the
numerator relationship matrix conditional on pedi-
gree and markers (Am). The Am matrix was calcu-
lated at the position of the genome where there was an
intention to restrict AF for a particular scenario. The
deterministic method of Pong-Wong et al. (2001) was
used to compute Am. Matrix Am becomes the same
as Ap when the flanking markers around a genome
position become uninformative. Mating of parents
resulting from the optimized selection procedure was
at random.
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(iv) Genetic gain and inbreeding

Average polygenic, QTL and total true breeding
values and inbreeding coefficient of individuals born
at each generation were computed. The average in-
breeding coefficient (F) was calculated as:

1 N
F=N<izlz4ii—l), (1)

where A;; refers to the diagonal element of the nu-
merator relationship matrix. The rate of inbreeding
(AF) at generation ¢ was calculated as (F,—F,_;)/
(1—F,_,). Both F and AF were obtained using three
different relationship matrices: Ap (Fp), Am (Fyg) and
An (Fyvp), the numerator relationship matrix con-
ditional on M, markers. Matrix An was calculated at
all positions on the genome where M, markers were
simulated. Elements of An for a particular position
were obtained using:

1
A= 5 (riy. oy Py, oy Pty m ) »

2

where /1, is 1 if allele x of individual i is identical
to allele y of individual j and 0 otherwise. Alleles x
and y are either paternally () or maternally (m) in-
herited. The Fy;, and AFy, calculated using the An
matrix are considered the observed inbreeding coef-
ficient and rate of inbreeding determined by homo-
zygosity by descent for that position on the genome.
Each founder received a unique pair of alleles at each
locus and therefore identical M, alleles can only be
identical by descent.

(v) Coancestry

Different coancestry parameters were calculated in
order to gain insight into the mechanism by which the
optimization tool restricts AF (Appendix B). These
included the calculation of the group coancestry
weighted by the candidate contribution solutions of
the optimized selection algorithm, the group coan-
cestry based on equal contributions of candidates and
the average pairwise coancestry between the males
and females weighted by the contribution solutions of
the optimized selection algorithm.

(vi) Scenarios investigated

Six scenarios were simulated. In all scenarios, o2 was
0-2, 02 was 0-8 and N was 120. Scenario 1 was used to
investigate the effect that optimized selection using
Ap has on the inbreeding in a genome segment where
there are no QTL affecting the trait under selection.
In scenario 2, Ap was again used but a QTL with ef-
fect a=0-1 on the trait was placed on the genome
segment. Scenarios 3—5 were used to investigate the
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Table 1. Total (Gt), polygenic (Gp) and QTL (Gg)
genetic means and frequency of the favourable QTL
allele (p) at generations four and eight under different
scenarios with QTL effect (a) and varying the
numerator relationship matrix used in the optimization
procedure (A) to constrain the rate of inbreeding. The
QTL was at position 50 cM

Scen-
ario a A t Gp® GQ(/7 Gt¢ p
2 0-1 Ap 4 1:03 004 1-:07  0-60
8 195 009 204 094
3 0-1 Am at 4 1-08  0-01 1-:09 043
55cM 8§ 206 002 208 061
4 0-1 Am at 4 1:08  0-04 1-12  0-61
105 cM 8§ 204 009 213 095
5 0-1  Amat 4 108 005 113 060
155cM 8 201 0-09 210 096

¢ Measured in genetic standard deviations. Standard error:
from 0-005 to 0-015.

effectiveness of Am constructed 5, 55 and 105 cM
away from the QTL locus for constraining inbreeding
in the region around the QTL that has effect a=0-1.
Scenario 6 was the same as scenario 3 except that the
QTL effect was set to zero in order to examine the
effect of the restriction achieved in the absence of a
QTL under selection. The constraint applied to the
desired rate of inbreeding was to 0-02 across all
scenarios.

3. Results

When using Am in the optimization, approximately
half of the replicates failed to give a solution for all
eight generations of selection due to the constraint C
not being met (4, was negative). Only those replicates
where a solution was successfully achieved (positive
Ao) in all generations contributed to the results pres-
ented. Results for the successful generations of those
replicates that did not achieve all eight generations
were the same as those observed in replicates that
successfully achieved eight generations (results not
shown).

(1) Genetic gain and QTL allele frequency

Polygenic (Gp), QTL (Gg) and total (Gt) genetic gains
and frequency of the favourable QTL allele (p) for
scenarios 2—5 are shown in Table 1. Results for scen-
ario 1 are not comparable with those from the other
scenarios (the QTL effect was zero in scenario 1,
making the overall genetic variation lower for this
scenario).
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When the QTL had an effect on the selected trait
and Ap was used in the optimization (scenario 2),
p increased from 0-15 at =0 to 0-94 at t=8. In con-
trast, when Am calculated at 5cM from the QTL
position was used (scenario 3), p rose to only 0-61 in
generation 8. However, Gt was higher in scenario 3
compared with scenario 2, with lower Gq being over-
compensated by a higher Gp.

Results in terms of p and Gq from scenarios where
the Am used in the optimization was calculated at
55and 105 cM from the QTL (scenarios 4 and 5) were
very similar to those when using Ap, where no con-
straint was specifically applied to the QTL region
(scenario 2). However, Gp was higher in scenarios 4
and 5 than in scenario 2, resulting in a 4 and 3%
greater G in scenarios 4 and 5, respectively.

(ii) Rate of inbreeding

It can be seen that for scenario 2 (Fig. 1b) the use of
Ap to restrict the rate of inbreeding across the genome
did not restrict inbreeding in the region around the
QTL under positive selection. This is a demonstration
of the hitch-hiking effect (Maynard-Smith & Haigh,
1974), which results in a signature selective sweep
in which neutral loci close to a QTL under selection
change in frequency, resulting in reduced variation in
that region. When Am constructed 5cM from the
QTL was used to restrict the rate of inbreeding, the
effect of the selective sweep was eliminated (Fig. 1c¢).
However, when Am constructed 55 ¢cM from the QTL
position was used in the restriction (Fig. 1d), the effect
of the selective sweep led to an asymmetric pattern of
restriction with the inbreeding coefficients rising more
rapidly at positions away from the restriction position
adjacent to the QTL. The observed average rate of
inbreeding (AFy,) achieved in scenarios 1-6 is shown
in Table 2. The rate of inbreeding computed from the
pedigree (AF,) is also shown for comparison. In
scenario 1, no QTL effect was simulated and Ap was
used in the optimization and, as expected, both AFyy,
and AFp were restricted to the desired value (0-02).
However, in scenario 2, when the QTL had an effect
on the selected trait, Ap no longer constrained AFyy,
at the QTL position to the desired value and AFyy, at
that position rose by 50 % relative to scenario 1.

In scenario 3, where the Am calculated 5 cM from
the QTL position was used in the optimization, AFp
rose to 0-039, nearly 2-5 times greater than the desired
value (Table 2). However, the observed AFyp at
the QTL position and at the position where the Am
imposed the restriction were approximately half the
desired value. At positions further from the position
of restriction, the observed Fy, in this scenario rose
and reached the value of the Fp approximately 80 cM
from the restriction position (results not shown). The
asymptotic value of Fp and Fy, (observed at positions
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away from the QTL) was higher than those seen in
scenario 2.

In scenarios 4 and 5, the AFp was similar to
that observed in scenario 3 and the observed AFy,
at the position of restriction in scenarios 4 and 5
(55 and 105 cM from the QTL, respectively) was also
approximately half the desired value as in scenario 3
(Table 2). At the QTL position, the observed AFy,
was higher than that seen in scenario 3 and also
higher than that seen in scenario 2 where Ap was used
and no specific restriction was imposed at the QTL
region.

(ii1) Coancestry

The previous section showed a clear discrepancy be-
tween the observed and expected AFyp, values at the
position of restriction. In order to investigate further
the lower than expected observed AFy; when Am was
used in the optimization, additional parameters were
calculated: (i) the average group coancestry weighted
by the optimal contributions (f,); (i) the average
group coancestry assuming that all candidates have
equal contributions ( f.); and (iii) the average pairwise
coancestry between the male and female selected
parents weighted by the optimal contributions, i.e.,
excluding self and within-sex coancestries ( f; ) at a
given generation. Results are shown for these par-
ameters in Table 3 for two scenarios: scenario 1, where
the QTL had no effect on the trait and the matrix used
in the optimization was the Ap matrix, and scenario 6,
where the QTL had no effect and the matrix used in
the optimization was Am calculated at 55 cM.

As expected, when Ap was used in the optimization
(scenario 1), the constraint on AFp was achieved at
each generation and the values of observed coancestry
and inbreeding coefficients at position 55cM com-
puted from An, and at all other positions along the
genome segment computed from An (results not
shown), were very similar to those computed from the
pedigree. The specific constraint applied was achieved
(fo=0C) at each generation and f, at ¢ was equal to f;
at t+ 1. The parents selected from the group of can-
didates had f5 equal to f. and their matings resulted
in a group of offspring with F equal to f5 of their
parents (i.e., F at ¢t was equal to fo at r—1). This
clearly shows that when Ap is used in the optimization
in a situation where there is no QTL, then the desired
constraint is achieved across the genome.

When Am calculated at 55 ¢cM was used in the op-
timization (scenario 6), the observed f,, at the restric-
tion position achieved the desired value in each
generation ( f,=C). However, the pedigree f,, which
represents the optimally weighted group coancestry
across all neutral loci in an infinitesimal model, had
an increased value, which relates to the higher AFp
observed in scenarios 3—6. When Am was used in the
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Fig. 1. Observed inbreeding coeflicient (Fy;5) computed from An calculated as homozygosity by descent, at different
positions along the genome segment at generations 2 (¢), 4 (H), 6 (A) and 8 (x) when optimized selection was practised

under different scenarios varying in the QTL effect () and the relationship matrix used in the optimization procedure (A).
The average inbreeding coefficient calculated using Ap (ped) is also shown for comparison.
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Table 2. Observed rate of inbreeding (AFy,)
calculated as homozygosity by descent using An at
different positions, and pedigree rate of inbreeding
computed from Ap (AFp), when different numerator
relationship matrices (A) were used in the optimization
to constrain the rate of inbreeding. The optimization
aimed to restrict AF to 0-02. Values in boldface
indicate AFyy, at the position where the constraint was
targeted. The QTL was at position 50 cM with
additive effect (a)

AFy, at position (in cM¥%)

Scen-
ario a A 50 55 105 155 AFp
1 0-0 Ap 0-019 0-019 0-019 0-019 0-019
0-1 Ap 0-033 0-029 0-019 0-019 0-019
3 0-1 Am at 0-009 0-009 0-032 0-038 0-039
55cM
4 0-1 Am at 0-055 0048 0-009 0-034 0-039
105cM
5 0-1 Am at 0-061 0-054 0-033 0:009 0-039
155cM
6 00 Am at 0-010 0-010 0-035 0-039 0041
55cM

¢ Averaged across generations 3-8. Standard error for
scenarios 1 and 2: ~0-001. Standard error for scenarios
3-6: ~0-002.

optimization, the magnitude of the observed pairwise
coancestry between the selected males and females
(fo) calculated using An was less than that seen when
Ap was used in the optimization (scenarios 1 and 2).
Lower observed f;- when Am was used in the optimi-
zation compared to when Ap was used resulted in a
lower observed Fy, in the offspring at the position of
restriction, leading to a lower observed AFy, than
that used to calculate the desired constraint (C). The
same effect was seen when Am was used in the coan-
cestry calculation. The coancestries and inbreeding
coefficients calculated using Ap in scenario 6, though
higher than the observed values in the QTL region
using An, followed the expectation, i.e., fo was of a
similar magnitude to f;, the group coancestry, and the
average inbreeding coefficient of the offspring was
that expected from f; .

4. Discussion

This study has quantified inbreeding in the region
around a QTL under selection when the AF was con-
strained using a numerator relationship matrix either
conditional on pedigree (Ap) or conditional on pedi-
gree and markers (Am) constructed at different pos-
itions on the genome. The constraint on AF was
achieved using optimized seclection that constrained
the level of group coancestry amongst the candidates
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selected as parents weighted by the contributions each
makes to the next generation.

It has been shown that Am constructed at a specific
position on the genome can be used to constrain the
level of weighted group coancestry ( f,) at that pos-
ition within the optimization to the desired level (C).
This resulted in the desired rate of increase in un-
weighted group coancestry (Af.) at that position on
the genome. However, the consequent rate of in-
breeding measured using the inbreeding coefficients,
at the same position, did not follow our expectation as
determined by C. The AF;, measured by the ob-
served inbreeding coefficients (Fy;) at the restriction
position was consistently below our expectation, our
expectation being that the rate of inbreeding would
follow the rate of coancestry across generations. At
positions away from the restriction, the observed
AFy, was seen to rise and reach a maximum equal to
the unconstrained rate of inbreeding observed in the
rate of pedigree inbreeding (AFp). The quantitative
results of this study were specific to a single QTL allele
starting frequency and assumed marker information
content; however, qualitatively we have no reason to
believe why they should not exemplify more general
phenomena.

In the simulation of the base population, the QTL
and M; markers were simulated in linkage equilib-
rium. However, this should not have a direct impact
on the schemes simulated where the QTL is assumed
to be known and the marker information is only
related to the calculation of Am. By definition, all
animals at the base population are assumed to be
unrelated regardless of whether they share the same
marker allele or not. During the calculation of Am,
the marker information is used to determine the
inheritance pattern from the parents to offspring, not
to determine any further degree of relationship arising
before the base generation. However, linkage dis-
equilibrium would have an indirect impact by in-
creasing the need to utilize more distant markers
for inferring IBD (Identity By Descent). Hence, the
assumption of linkage equilibrium introduces no bias
but a small increase in the precision of IBD estimation
that could otherwise be achieved by including ad-
ditional markers.

Under random mating in the absence of self-
fertilization, we expect fo)= I, (Caballero & Toro,
2000), which holds with our expectation from eqn (7)
where f; is equivalent to f, as no constraint on group
coancestry was assumed. Under pedigree relationship,
the use of Ap in optimized selection constrains f, to a
desired level, which is then expected to produce an
equal restriction on AF. This relationship between f,
and AF was shown to hold true in this and previous
studies (e.g., Grundy et al., 1998).

When Am is constructed at a single position on the
genome and used in the optimization, as a mechanism
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Table 3. Coancestry, inbreeding coefficients® and rate of inbreeding computed from Ap (pedigree) or An
(observed) over generations (t) when Ap was used in the optimization (scenario 1) and when Am constructed at

55 ¢M was used in the optimization (scenario 6). The QTL had no effect on the trait. Last column shows desired
constraint imposed on coancestry (C) in optimization in each generation

205

Computed from Ap“

Computed from An at 55 cM“

Scenario t o fe fo F AF fo fe fo F AF C

1 1 0-:020 0-002 0-000 0-000 0-000 0-020 0-002 0-000 0-000 0-000 0-020
2 0-040 0-020 0-020 0-000 0-000 0-040 0-020 0-020 0-000 0-000 0-040
3 0-059 0-040 0-039 0-020 0-020 0-059 0-039 0-039 0-020 0-020 0-059
4 0-078 0-059 0-057 0-039 0-019 0-077 0-058 0-057 0-039 0-019 0-078
8 0-149 0-132 0-132 0-114 0-021 0-148 0-130 0-130 0-111 0-018 0-149

6 1 0-020 0-002 0-000 0-000 0-000 0-020 0-002 0-000 0-000 0-000 0-020
2 0-048 0-020 0-019 0-000 0-000 0-040 0-020 0-009 0-000 0-000 0-040
3 0-088 0-048 0-047 0-019 0-019 0-059 0-040 0-017 0-009 0-009 0-059
4 0-135 0-088 0-086 0-048 0-030 0-078 0-059 0-023 0-016 0-007 0-078
8 0-355 0-297 0-295 0-234 0-066 0-152 0-133 0-067 0-050 0-008 0-149

@ fo: average group coancestry weighted by the optimal contributions from eqn (B1); f.: average group coancestry assuming

that all candidates have equal contributions from eqn (B2); f5 :

average pairwise coancestry between selected male and

female parents from eqn (B3); F: average inbreeding coefficient from eqn (1); AF is the rate of inbreeding.

to restrict AF at that position to a predefined level, the
observed AFy;; was found to be lower than expected.
The theory behind the expectation that fo,)=F, .,
is dependent on the average frequency of the alleles
in the selected male parents being the same as those
in the selected female parents. If due to sampling or
other effects the gene frequencies of the two sexes of
parents selected were different, then we would expect
an excess of heterozygous individuals in comparison
to our expectation under Hardy—Weinberg equilib-
rium (Robertson, 1965). If our hypothesis is that such
a situation arose when Am was used in the optimiz-
ation, then we would expect that f,>f5 and a AF
lower than expected. This was tested using a single
replicate of the scenario 3 simulation. In the simu-
lation, Am calculated at 5cM away from the QTL
was used to constrain the group coancestry in the
optimization. The gene frequencies of the M, markers
at the position of restriction for the male and female
parents weighted by their relative contributions and
the expected excess of heterozygotes were calculated
following Robertson (1965) as shown in Appendix C.
The results of this exercise demonstrated that the dif-
ference between f, and f; was equal to the expected
deviation from heterozygosity (Table 4). This explains
why f, was not subsequently realized in F, as
F =f o(t—1)-

In the previous illustration, an excess of hetero-
zygotes due to variation in sample gene frequency
between the parent sexes was demonstrated, which in
turn resulted in F being lower than we would expect
from f,. There is, however, no reason to expect this
pattern of variation in the sampling of alleles between
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Table 4. Demonstration that the deviation of observed
average pairwise coancestry between selected male and

female parents (f, ) from the observed average group

coancestry weighted by the optimal contributions ( f,)
calculated using An at 55 cM, can be attributed to the
excess of heterozygotes created due to the non-random
segregation of alleles between sexes. Results are from
eight generations (t) of a single replicate of the
scenario 3, where Am at 55 ¢cM was used in the
optimization

Excess
heterozygote
t ce f.b 1ot fo—f5  deviation®
1 0-020 0-020 0-000 0-020 0-020
2 0-040 0-040 0-006 0-034 0-034
3 0-059 0-057 0-015 0-042 0-042
4 0-078 0-074 0-010 0-064 0-064
5 0-096 0-094 0-056 0-038 0-038
6 0-114 0-099 0-036 0-063 0-063
7 0-132 0-128 0-051 0-077 0-077
8 0-149 0-152 0-091 0-061 0-061

¢ Desired constraint used in optimization.
" foreqn (B1); fo : eqn (B3).
¢ Predicted using eqn (C1) in Appendix C.

the two sexes of selected candidates. In fact, the sex of
the candidates was not a factor in the non-random
sampling of alleles. This was tested by randomizing
the sex of the selected candidates following selection
subject to there being equal numbers of gametes con-
tributed from male and female candidates. Following
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randomization, the same outcome was obtained as
seen in Table 4, with the expected deviation from
heterozygosity again being equal to the difference
between f, and f; . This demonstrates that sex does
not have a bearing on the non-random sampling of
alleles; rather, there is a between-selected-individual
non-random sampling of alleles, which results in an
excess of heterozygous offspring.

We can explain the repeated excess of heterozygous
offspring observed in the following way. The optimi-
zation maximizes gain at a given rate of inbreeding. In
the scenarios where Am was used in the restriction
rather than Ap, fewer individuals were selected with
higher average individual contributions, potentially
increasing intensity. This potential increase in inten-
sity is facilitated by the nature of Am, which has more
variable diagonals and many more small off-diagonal
elements than Ap, which estimates average neutral
relationship derived from probabilities. The N(N—1)
off-diagonal values drive the constraint in the opti-
mization and it is therefore possible to select in-
dividuals who have a high proportion of very low or
zero relationships with other candidates, and conse-
quently a greater proportion of the group coancestry
may arise from self-coancestries, allowing fewer but
greater contributions. Such solutions are attractive
since it allows greater contributions from individuals
with greater breeding values. Therefore, in each gen-
eration, the more dispersed values of Am lead to
selection of individuals that have low or zero re-
lationships because they are homozygous for alterna-
tive alleles, resulting in a higher heterozygosity
amongst the offspring than would be expected from
the array of candidate genotypes. For the reason that
more loci are averaged to obtain the Am used, the
deviation from the expectations of Ap diminish as
the dispersion among the elements of Am diminish
(T. Roughsedge, unpublished results).

Having established that the discrepancy between f,
and fo was due to non-random inheritance of alleles
at the position of restriction in the selected candi-
dates, we can hypothesize that removing the con-
straint at r— 1 and allowing random selection to take
place would restore the expected relationship between
group coancestry and average inbreeding at . In
order to test this hypothesis, a further simulation was
run. The scenario 3 simulation parameters were again
used, but for generation 7 random selection rather
than optimized selection was practised, with 20 of the
candidates of each sex randomly selected as equally
contributing parents. The simulation was run for 1000
replicates. The optimization makes six generations of
selection with the constraint on the rate of inbreeding
being applied using Am. If the discrepancy between
fo and the subsequently realized Fy;, was due to
the selection of parents with non-random samples of
alleles, then the introduction of random selection
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Table 5. Effect on coancestry and inbreeding
calculated using An at 55 cM over generations (t),
when introducing random selection at t=7 and t =8

following optimized selection using Am (55 ¢M) at

t=1-6

Observed coefficients at 55 cM“

tfo Je Jo F c’
1 0-020 0-000 0-000 0-000 0-020
2 0-040 0-018 0-009 0-000 0-040
3 0-059 0-038 0-017 0-009 0-059
4 0-078 0-057 0-025 0-016 0-078
5 0-097 0-077 0-034 0-025 0-096
6 0-116 0-096 0-046 0-035 0-114
7 0-128 0-115 0-115 0-044 na
8 0-140 0-127 0-126 0-115 na

“ fo: average group coancestry weighted by the optimal
contributions from eqn (B1); f.: average group coancestry
assuming that all candidates have equal contributions from
eqn (B2); fo : average pairwise coancestry between selected
male and female parents from eqn (B3); F: average in-
breeding coefficient from eqn (1).

> Desired constraint used in optimization. Applied at
t=1-6 in which optimized selection is undertaken.

should select a sample of parents with a random
sample of the alleles from the previous generations
parents, which were selected under the optimization.
In the simulation, the Fy, realized in =8 was ap-
proximately equal to the f, at t=6 (Table 5). This
further demonstrates that the optimized selection
method constrains group coancestry to the desired
level, but non-random segregation of allele frequency
at the restriction position occurs in selected parents.
The discrepancy between f, and the realized AFy;, can
be attributed to this non-random segregation of
alleles between the selected parents.

This raises a question about which rate of inbreed-
ing it is appropriate to constrain when undertaking
selection. In the optimized selection procedure, we
actually constrain the rate of group coancestry:

_ Jeoy —Jetr—1)
1 —fe—y)

By constraining the rate of group coancestry, the
loss of genetic variation is managed but no absolute
control is placed on the inbreeding coefficients. As we
have seen in this study, when relationships are
constructed at a single locus and the group coancestry
at this locus is constrained, the relationship between
group coancestry at ¢ and average inbreeding coeffi-
cients at 142 breaks down. The loss of genetic vari-
ation is still managed but AF is less than we
would expect. This highlights why we should treat the

Afe
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management of genetic variation and inbreeding
coefficients as separate issues.

A technique to simultaneously constrain both
pedigree group coancestry and also group coancestry
around a QTL under selection may provide a solution
to simultaneously being able to constrain the AFy, on
the segment of the genome around the QTL and the
pedigree AFp. This would require an approach that
allowed two or more constraints to be introduced to
the quadratic optimization such as semi-definite pro-
gramming (Pong-Wong & Woolliams, 2007). Such an
approach could be useful when a QTL is segregating
in a region where a loss in genetic variability is not
desirable. Here, a constraint on both the group
coancestry in the region around the QTL and also the
pedigree group coancestry could avoid a loss in gen-
etic variation in the region and also the average gen-
etic variation.This study has shown that it is possible
to erode the relationship between the rate of coan-
cestry and the rate of inbreeding under random mat-
ing. Hence, we have reinforced the concept that in
order to manage the loss of long-term genetic vari-
ation, group coancestry should be managed rather
than the inbreeding coefficient. If, however, there is
interest in the effects of inbreeding depression, then
the management of group coancestry based on a nu-
merator relationship matrix conditional on pedigree
and marker information does not provide a reliable
estimate of inbreeding coefficients. In order to man-
age inbreeding depression, it is advisable to take a
two-stage approach with the first stage managing the
loss of variation through the constraint of group
coancestry, followed by mate allocation to manage
inbreeding depression. This message has a clear
bearing on both selection and conservation breeding
programmes.

Appendix A. Optimized selection

The optimization algorithm, described by Meuwissen
(1997), maximizes the objective function:
T

4 A,

f(ct)=C,Tg,—io< —a) Q-1

where ¢; is the solution vector (of dimension N) of
optimal contributions of candidates at generation 7, g
is the vector of total estimated breeding values, A is
the numerator relationship matrix N x N of candi-
dates, Q is a known incidence matrix N x2 with
ones for males and zeros for females in the first col-
umn and ones for females and zeros for males in the
second column, C is the constraint on the rate of in-
breeding, ' is a vector of halves of dimension 2, and
Ao and 4 (a vector of dimension 2) are Lagrangian
multipliers. The Lagrangian multiplier A, is chosen
such that c¢fAc,/2 is constrained to 1—(1—AF)
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(Grundy et al., 1998), where AF is the desired rate of
inbreeding.

Appendix B. Coancestry formulae

All three relationship matrices (Ap, Am, An) can be
decomposed into four sub-matrices, Apm» Amf, Afm
and Ag, each of dimensions N/2 x N/2, relating to the
male by male, male by female, female by male and
female by female numerator relationships, respect-
ively. The solution vector of optimal parental con-
tributions (c¢) can also be decomposed into two sub-
vectors, one for male (¢,,) and one for female (cg)
parent contributions, each of dimensions N/2. The ¢
vector sums to 1 and each sub-vector (¢, and ¢f) sums
to 0-5. The average group coancestry of candidates
(f,) calculated using their optimal contributions is
the average pairwise coancestry of a given group of
individuals including within-sex and self-coancestries
weighted by their contributions, and is obtained from

the optimization procedure as:
A f C
I R Bl
A } [ Ct ] B

CocTAe 1 Ten]” [Apm
fo=—" =73 [cf] [Afm

This differs from the group coancestry ( f) defined by
Cockerham (1967) in which all candidates are as-
sumed to make an equal contribution. Let ¢, be a
vector of dimension N with all elements equal to 1/N
(i.e., all candidates make an equal contribution).
Then, the equal contributions group coancestry ( f¢)
can be calculated as

T
_ CAc,

fo=3 (B2)

Finally, the average pairwise coancestry between the
male and female individuals selected as parents
weighted by their contributions ( f5 ) is:

f— =2. Cm T. Amm Amf . 0

°o 0 A Ayt ¢’
where 0 is a vector of dimension N/2 with all elements
set to zero.

(B3)

Appendix C. Excess of heterozygotes when allele
frequency differs between parents

Let ¢; be the frequency of allele A of a bi-allelic gene
in a group of male parents and ¢, be the frequency in a
group of female parents. Then, following random
mating, the expected proportion of heterozygotes in
the offspring is ¢i(1 —¢qz)+¢5(1 —¢1). However, the
mean gene frequency of the parents is (¢; +¢.)/2, and
from the Hardy—Weinberg equilibrium we would ex-
pect the frequency of heterozygotes in the offspring
to be (¢14¢2)(1 —(g1+g5)/2). Therefore the excess of
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heterozygotes when ¢, #¢, is '2(q; —¢). This theory
was extended beyond the bi-allelic case by Robertson
(1965):

1 L L
YooY (g —4i2)(gi1—g;2)s

i=1 j=i+1

H= (C1)

|

where H is the excess of heterozygotes, ¢, is the fre-
quency of allele x in sex y and L is the total number of
possible alleles at the locus considered.

The deviation of the observed f; from the observed
fo at t calculated using An at the restriction position
when Am is used in the optimization (e.g., Table 3,
scenario 6) is accounted for by the deviation in ex-
pected heterozygotes calculated in eqn (A4). This re-
sults in the following equality:

(5] T S L]
2 Cr Anfm Anff Cr

_, [cm]T{Anmm Anmf] {0}
B 0 Anfm Anff Cr

1 2N 2N
+ 5 Z Z (i1 —4:,2)(q;,1—gj.2),
i=1 j=i+1

where An,,, is the sub-matrix between sexes x and y of
the numerator genetic relationship matrix calculated
at the same position as Am was constructed ; ¢y is the
contributions vector for sex x; ¢, is the frequency of
allele i in sex 1, ¢ is the frequency of allele j in sex 2,
g;1 is the frequency of allele j in sex 1 and g;, is the
frequency of allele j in sex 2, 2N is the total number of
M, alleles.

We are grateful to the SEERAD for funding this work.
R.P.-W. and J.A.W. acknowledge funding from the
BBSRC.

References

Bot, J., Karlsson, L.J. E., Greef, J. & Witt, C. (2004).
Association of the MHC with production traits in Merino
ewes. Livestock Production Science 86, 85-91.

https://doi.org/10.1017/5S0016672307009214 Published online by Cambridge University Press

208

Caballero, A. & Toro, M. A. (2000). Interrelations between
effective population size and other pedigree tools for
the management of conserved populations. Genetical
Research 75, 331-343.

Cockerham, C. C. (1967). Group inbreeding and coances-
try. Genetics 56, 89—-104.

de Koning, D. J., Janss, L. L. G., Tattink, A. P., van Oers,
P. A. M., de Vries, B.J., Groenen, M. A. M., van der
Poel, J.J., de Groot, P. N., Brascamp, E. W. & van
Arendonk, J. A. M. (1999). Detection of quantitative
trait loci for backfat thickness and intramuscular fat
content in pigs (Sus scrofa). Genetics 152, 1679-1690.

Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to
Quantitative Genetics, 4th edn. Harlow, UK: Addison-
Wesley Longman.

Grundy, B., Villanueva, B. & Woolliams, J. A. (1998).
Dynamic selection procedures for constrained inbreeding
and their consequences for pedigree development.
Genetical Research 72, 159-168.

Maynard-Smith, J. & Haigh, J. (1974). The hitch-hiking
effect of a favourable gene. Genetical Research 23, 23-35.

Meuwissen, T. H. E. (1997). Maximising the response to
selection with a predefined rate of inbreeding. Journal of
Animal Science 75, 934-940.

Pong-Wong, R., George, A. W., Woolliams, J. A. & Haley,
C. S. (2001). A simple and rapid method for calculating
identity-by-descent matrices using multiple markers.
Genetics, Selection, Evolution 33, 453—471.

Pong-Wong, R. & Woolliams, J. A. (2007). Optimisation of
contribution of candidate parents to maximise genetic
gain and restricting inbreeding using semi-definite pro-
gramming. Genetics Selection Evolution 39, 3-25.

Robertson, A. (1965). The interpretation of genotypic ratios
in domestic animal populations. Animal Production 7,
319-324.

Vaiman, M., Renard, C. & Borgeaux, N. (1988). SLA, the
major histocompatability complex in swine; its influence
on physiological and pathological traits. In The
Molecular Biology of the Major Histocompatability
Complex of Domestic Animal Species (ed. C. M. Warner,
M. F. Rothschild & S. J. Lamont), pp. 23-38. Ames, IA:
Towa State University Press.

Villanueva, B., Pong-Wong, R., Fernandez, J. & Toro,
M. A. (2005). Benefits from marker-assisted selection
under an additive polygenic genetic model. Journal of
Animal Science 83, 1747-1752.

Villanueva, B., Pong-Wong, R. & Woolliams, J. A. (2002).
Marker assisted selection with optimised contributions of
the candidates to selection. Genetics, Selection, Evolution
34, 679-703.


https://doi.org/10.1017/S0016672307009214

