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Abstract

This study explores the potential of applying machine learning (ML) methods to identify and predict areas at risk of
food insufficiency using a parsimonious set of publicly available data sources. We combine household survey data
that captures monthly reported food insufficiency with remotely sensed measures of factors influencing crop
production and maize price observations at the census enumeration area (EA) in Malawi. We consider three
machine-learning models of different levels of complexity suitable for tabular data (TabNet, random forests, and
LASSO) and classical logistic regression and examine their performance against the historical occurrence of food
insufficiency. We find that the models achieve similar accuracy levels with differential performance in terms of
precision and recall. The Shapley additive explanation decomposition applied to the models reveals that price
information is the leading contributor to model fits. A possible explanation for the accuracy of simple predictors is the
high spatiotemporal path dependency in our dataset, as the same areas of the country are repeatedly affected by food
crises. Recurrent events suggest that immediate and longer-term responses to food crises, rather than predicting them,
may be the bigger challenge, particularly in low-resource settings. Nonetheless,MLmethods could be useful in filling
important data gaps in food crises prediction, if followed by measures to strengthen food systems affected by climate
change. Hence, we discuss the tradeoffs in training these models and their use by policymakers and practitioners.

Policy significance statement

Food insecurity continues to challengeMalawi’s development efforts. Recent advancements in machine learning
and the increased availability of high-frequency spatial andmarket data provide an opportunity to enhance short-
and long-term policy responses through rapid predictions of food crises. While several studies have developed
machine learning models for predicting food insecurity, these models remain complex and data intensive,
creating barriers to uptake and implementation. We find that parsimonious models that leverage only public data
on the production environment and prices achieve good accuracy in predicting food insufficiency inMalawi. We
also find, however, that non-modeling predictive methods can have similar accuracy levels, although they
present a tradeoff across error types. Overall, our findings suggest thatmachine learningmodels can be simplified
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to be more accessible to policymakers, but that they may not outperform simpler heuristic approaches in
predicting certain development outcomes, and their value rests with the existence of viable and implemented
options for responding.

1. Introduction

Food access remains uneven across and within countries, and many low- and middle-income regions face
endemic hunger. The most recent estimates suggest that in 2023, one in eleven people worldwide faced
hunger and one in five people in Africa, where hunger is still on the rise (FAO et al., 2024). For households
facing any period of moderate or severe food insufficiency, as measured by surveys on food availability,
missedmeals, and hunger over a 12-month period, this proportion has trended from 45.4%of the population
in 2015 to almost 60% in 2023 (FAO et al., 2024). Hunger can be chronic or episodic and transitory if a
household experiences and then recovers from a shock to production or income. However, hunger can also
predictably recur if shocks are experienced on a seasonal basis. Seasonal hunger is transient but also cyclic,
driven by intra-annual variability in food production and climate (Ayalew, 1997; Vaitla et al., 2009; Barrett,
2010; Gebrehiwot and Van der Veen, 2014; Anderson et al., 2017; Bonuedi et al., 2022).

Among rural populations, seasonal hunger food distribution inefficiencies arise from production
variability, inadequate storage and market infrastructure, and shocks to international food supply and
demand. Domestic policy also plays a role, as governments may intervene, for example, to alter prices,
influence domestic supply via import or export controls, or influence production. Within a country, the
political attention a region receives from the national government may be influenced by its agroecological
endowment, with more productive areas receiving greater investments (Khandker and Mahmud, 2012).
Policy approaches including production support (Madsden et al., 2021) and subsidies (Vaitla et al., 2009)
have been impactful, but food insufficiency and calls for improved guidance remain (Vaitla et al., 2009).

There has been substantial progress developing tools, including using machine learning (ML)
methods, to anticipate food insufficiency. This work is supported by improvements in the availability
of diverse data, including surveys (Gholami et al., 2022), news reports (Balashankar et al., 2023), and
mixtures of survey-sourced and satellite-imaged variables (Lentz et al., 2019). There still exist, however,
challenges to making these models usable by governments or civil society organizations including the
complexity of the methods and costly data requirements. Furthermore, while anticipating crises can be
useful to avert severe mortality and morbidity, cumulative mortality can be higher at lower severity levels
of food insufficiency because they can persist for longer (Maxwell et al., 2020). The transition into what
becomes an officially declared famine is not necessarily always the abrupt change that is typically the
focus of transition models (seeWesterveld et al., 2021 and Krishnamurthy R et al., 2022), suggesting that
ongoing monitoring is needed to supplement anticipatory modeling.

In this paper, we ask whether relatively easily collected information on crop production conditions and
prices can be reliably used to develop models that identify and predict food insufficiency at the scale of a
census enumeration area (EA). We focus onMalawi, a country subject to recurring food crises and where
we have rich nationally representative georeferenced household survey data on reported monthly
experience of food insufficiency. Between 2010 and 2020, Malawi experienced five major food crises
caused by climate and energy price shocks (Supplementary Figure A2). The crises are associated with
substantial increases in the proportion of households reporting food insufficiency during the crisis years
and afterward. Our analysis aims to assess whether public and high-frequency remotely sensed and price
data can be used with ML to detect food insufficiency. We examine the tradeoffs in modeling choices
when training these models to facilitate a greater understanding of their performance. Finally, even with a
parsimonious modeling approach, we also ask whether ML methods sufficiently improve accuracy
compared to simpler non-modeling approaches.

Our study contributes to an emerging and rapidly growing literature on applying ML to development
challenges by lookingmore deeply intomodel and data tradeoffs. In their 2019 study, Lentz and others use
a combination of readily available data on rainfall quantity and seasonal variation, soil quality, market
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prices, and access to market (termed “Class 1” data) combined with more difficult-to-collect data on
household assets (such as roofing material, termed “Class 2”) and household characteristics (“Class 3”)
gathered via survey. They find that LASSO regression anticipates, with roughly 80% success, future
binned EA-level averages of the household dietary diversity score (HDDS), one of three continuous
measures of food insufficiency. Model fits were less successful for the reduced coping strategies index
(rCSI) and food consumption score (FCS), a nutrition-weighted index of dietary diversity. Similar work
by Zhou et al. (2022) also find roughly 60–70% accuracy in modeling on FCS and rCSI in Malawi waves
1–3, with time-lagged prices as a primary driver.

Finally, a study was conducted by Gholami et al. (2022) using high-frequency survey data collected
between 2017 and 2019 in southern Malawi to estimate categorized rCSI scores from household charac-
teristics, including location (longitude/latitude), beliefs about future welfare, and experienced shocks. The
models were trained using random forests (RFs) and had out-of-sample and forward predictive (one
month in advance) accuracies of 70–80%. Model decomposition suggested that household location and
subjectively assessed current and anticipated welfare made the largest contributions.

Our analysis extends Lentz et al. (2019) and Zhou et al. (2022)’s data by adding the third and fourth
waves of Malawi’s Integrated Household Survey Program (IHS) of the Living Standards Measurement
Study—Integrated Survey on Agriculture (LSMS-ISA). The inclusion of these additional data improves
the ability to evaluate out-of-sample accuracy, given that the secondwave of theMalawi LSMS-ISAwas a
panel subset of the first wave, while waves 3 and 4 contain nationally representative cross sections. Our
focus is on building amore parsimonious model and understanding the gains of modeling complexity.We
therefore begin by comparing sets of predictors and methods. For predictors, we compare price, inflation,
remotely sensed variables, and their combination to a benchmark consisting of month and region. For
methods, we compare three ML models of different complexities (ridge regression, RFs, and TabNet
neural networks) against a benchmark using classical logistic regression. We also applied Shapley
additive explanations (SHAP) techniques explored in Gholami et al. (2022) and Martini et al. (2022)
to assess the relative contributions of remotely sensed and price data to predictive accuracy.

We find that the various models produce comparable levels of acceptable accuracy, though they differ
in precision and recall. Additionally, we note that performance is influenced by modeling decisions, such
as how cutoff points are defined to categorize an EA as food insufficient and how the training set is
sampled across different waves. The application of SHAP decomposition shows that nominal maize
prices, their trends, and the broader consumer price index (CPI) inflation rate—which reflects the
combination of supply and demand factors across rural producers and urban consumers—are the most
significant factors contributing to predictive accuracy. However, we also find that the improvements in
accuracy provided by ML models over simpler, less computationally demanding prediction methods are
minimal. Given the increasing popularity of ML techniques and their potential to address important data,
we discuss tradeoffs involved in training these models and their use in food security prediction by
policymakers and practitioners.We conclude that despite promising results on the accuracy of simplerML
models, particularly in regionswhere the spatial and temporal variability of climate shocks is limited, non-
modeled approaches may be sufficient. Successfully responding both immediately to food crises and
addressing the underlying contributors over the longer term, rather than successful prediction, may be the
bigger challenge, particularly in low-resource settings.

2. Data and methods

2.1. LSMS-ISA IHS survey data

Data on household experience of food insufficiency come from Malawi’s IHS supported by LSMS-ISA.
This national panel survey is conducted every two to three years. The LSMS-ISA in Malawi extends the
IHS beginning in 2010, when the full instrument was first implemented for a panel of 4,000 households
within the larger IHS sample. This study uses all mainland Malawian households of the wave 1 IHS
sample (12,271 households, 2010–11), the panel only IHPS/LSMS-ISAWave 2 survey whose locations
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remained close to their original wave 1 locations (3,385 households, 2013–14), and the combined
IHS/LSMS-ISA Wave 3 and Wave 4 cross-sectional surveys (12,191 and 11,250 in 2015–16 and
2018–19, respectively).

Our outcome variable is based on responses to the survey question asking respondents to list which
months out of the previous twelve the household “ran out of food.” Previous studies have used alternative
food security measures such as the Food Consumption Score (FCS), the HDDS, and the Reduced Coping
Strategy Index (rCSI) (see SupplementaryMaterial, Appendix C for full discussion). These indicators are
derived using questions that rely on a short recall period, typically capturing household experiences over
the past seven days—hence, they are limited in their ability to account for seasonality in households’
experience of food insufficiency. In contrast, the “ran out of food” variable captures households’ experience
over 12 months. Although this longer recall period may increase the risk of recall error, it allows a more
comprehensive view of households’ experience of food insufficiency and is more suitable for capturing
seasonal fluctuations. Responses were used to generate a binary variable based on thresholds for the
average proportion of households with insufficient food in each EA by month and survey wave. We drop
EA–month pairs with fewer than eight observations.We also drop observations with inconsistencies in data
entry between the cross section and the panel sample in waves 3 and 4. In wave 2, households that were
reported as having moved more than 10 km away from their previous IHS location were also excluded,
because their original EA ID was not updated. With these exclusions, there are approximately 700 EAs per
wave except for wave 2 (204 EAs), with a total of 2,440 across all four waves. The number of households
per EA ranged from 8 to 26, with the majority (2,217) consisting of a sample of 16. The final sample
consists of 29,320 EA–month observational pairs. Food insufficiency rates are shown in Figure 1. A
detailed explanation of response variable preparation is provided in Supplementary Material, Appendix A.

EAs were classified by their proportion of food-insufficient households, under the assumption that
higher prevalence implied greater severity with fewer opportunities to share food. All EAs experiencing
some food insufficiency were divided into quartiles. In Table 1, category 1 (c1) is the 3

rd quartile of all
insufficiency observations and corresponds to two to nine or an average of just under one-third of
households experiencing food insufficiency. Category 2 (c2) is based on the fourth quartile and has a
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Figure 1. Average proportion of households with insufficient food in each EA by month and survey wave
(subplot title). Error bars represent the 95% CI.
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minimum of nearly 40% of households experiencing food insufficiency. These categories are derived
from observations from the data itself rather than externally imposed. This approach reduces the lumping
of disparate EAs into the same category (see SupplementaryMaterial, Appendix C), but greater imbalance
across categories can reduce classification accuracy. In this case, accuracy at the lower threshold for
classification might be higher, but the predictions may be less useful as they cover a wider range of
insufficiency levels.

2.2. Market price information

Price data are taken from the UN’s World Food Programme market observers. The observations are
collected monthly by local observers at marketplaces. Prices are not available for some month–market
combinations, with gaps of 1–3, and rarely up to 7 months. Lentz et al. (2019) and Zhou (2020) consider
thesemissing observations an indication of “market thinness.”However, missing observations sometimes
result from observers being unavailable (and households do not often cite lack of food availability in the
market; see Supplementary Material, Appendix C), and so we instead linearly interpolate using prices on
either side of the gap (as in Andrée, 2021). The point observations are then spatially interpolated to
generate distance-weighted price gradients across markets.

2.3. Remotely sensed data

The model incorporates modeled datasets from the TerraClimate database and NASA’s moderate reso-
lution imaging spectroradiometer (MODIS). TerraClimate is a derivative of the WorldClim dataset, which
is constructed using spatial interpolation on ground-based station measurements (9,000 to 60,000
depending on year; see Fick and Hijmans, 2017) using MODIS observations for additional information
(Abatzoglou et al., 2018). The TerraClimate variables include monthly Palmer Drought Severity Index
(PDSI), a relative scale that ranges from �10 (extremely dry) to +10 (extremely wet); monthly precipi-
tation; monthly mean soil moisture; monthly mean vapor pressure; and monthly mean vapor pressure
deficit. The MODIS datasets include land cover classification, surface temperature, and the normalized
difference vegetation index (NDVI). The annual land cover classification is from the MCD12Q1 modeled
dataset (Friedl and Sulla-Menashe, 2019). Daily daytime minimum, maximum, and mean surface
temperature from the MOD11A1 dataset (Wan et al., 2015) are averaged to generate monthly mean,
monthly mean minimum, and monthly mean maximum temperature for analysis. The 16-day NDVI from
MOD13Q1 (Didan, 2015) is converted to monthly by averaging (see Figure 2).

2.4. Data processing

All MODIS and TerraClimate spatial datasets are processed using rioxarray and xarray packages in
Python. The retrieved datasets are first resampled to a standard 250-m grid. For each variable, a
20-by-20-pixel square (25 km2) containing the EA is extracted and averaged (or, for land cover, the total
number of tiles belonging to each class is counted) to produce a set of observations. The remotely sensed
imagery covers the most recent growing season (running from April to March) prior to the reference

Table 1. Classification categories and their compositions

Category N
Percent of
dataset

Minimum number of
food-insufficient

households

Average proportion of
food-insufficient

households

Maximum number of
food-insufficient

households

0 20,245 69% 0 5.6% 4
1 5,687 19.4% 2 32.7% 9
2 3,388 11.6% 4 62.9% 20

Note: Category 1 (c1) covers the upper third quartile of food insufficiency and includes EAs with at least two households reporting a food shortage.

Data & Policy e52-5

https://doi.org/10.1017/dap.2025.10013 Published online by Cambridge University Press

http://doi.org/10.1017/dap.2025.10013
http://doi.org/10.1017/dap.2025.10013
https://doi.org/10.1017/dap.2025.10013


month (see Supplementary Material, Appendix A). For maize price data, we calculate the nominal price
and relative year-over-year change (monthly inflation) for each of the twelvemonths prior to the reference
month. We also include a measure of recent price movements, the relative change between the average
price of the current quarter and the average price of the previous quarter.

2.5. Model fitting and evaluation

We try two approaches to the classification of food insufficiency. The first assumes the data has been
collected with partial spatial coverage. The model goal is then to interpolate—that is, to attempt to assess
the food insufficiency in areas or time periods not sampled. We attempt this process for waves 1, 3, and
4, omitting wave 2 due to the small sample sizes (less than a third of each of the other waves). The second
approach is a more traditional attempt at forecasting, using data from prior survey rounds to estimate the
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Figure 2. Selected spatial datameans across EAs for the time range included in this study. From upper left
to lower right, mean surface temperature, precipitation, soil moisture, vapor pressure, vapor pressure

deficit, Palmer Drought Severity Index (PDSI), and vegetation index (NDVI).
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food insufficiency occurrence in the future. A key decision in ML modeling using longitudinal data
involves the choice of data partitioning in training and test sets. Bergmeir and Benitez (2012) describe
four data partitioning techniques: fixed-origin, rolling-origin-recalibration, rolling-origin-update, and
rolling-window evaluation. With fixed-origin partitioning, forecasts are made originating at the point
subsequent to the last one in the training data. Rolling-origin-recalibration sequentially moves values
from the test set to the training set, and rolling-origin-update changes the forecast horizon without
updating the training data. The advantage of the latter is that the model only needs to be trained a single
time, whereas the former must be retrained as new data are added and requires ongoing maintenance.
Finally, rolling-window evaluation resembles rolling-origin-update, except that old training data are
dropped from the model as new data are added. The advantage of rolling-window evaluation is that it can
keep older, potentially less relevant data from biasing themodel, while at the expense of potentially useful
information being dropped. Lentz et al. (2019), Martini et al. (2022), and Zhou et al. (2022) use fixed-
origin partitioning in their food security predictions. We select rolling-origin-recalibration, first training
the model on survey wave 1, predicting on survey wave 2, training on waves 1 and 2 and predicting on
wave 3, and training on waves 1 through 3 and predicting on wave 4, as this approach allows to test for
differences in predictive accuracy as additional training data are introduced, simulating how this task
would be approached in practice.

Testing on multiple subsamples of the existing data can be used to evaluate sampling error and test for
overfitting. A common cross validation strategy is k fold cross validation, which splits the data into k
subsets, training on each subset and testing on the remaining k-1 subsets. For experiment 1, we perform
five-fold cross validation at a train:test ratio of 20:80, selecting on the EA. For model training in
Experiment 2, we randomly sample 100 EA observations per month, which range from roughly 12.5%
to 100% of the available monthly observations, with the lean season being more intensively sampled than
the non-lean season (Figure 3). The testing is performed on the full set of observations from the
subsequent wave. In initial trials, we included hyperparameter tuning but found that model classification
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accuracywas not particularly sensitive to hyperparameters, and so results are reported based on the default
settings of each model.

We consider three models suitable for tabular datasets—LASSO, RF, and TabNet, and logistic
regression, which remains a classical approach to modeling binary responses and is commonly chosen
as a benchmark for comparing the machine-learning models (Grinsztajn et al., 2022). LASSO regression
is a linear regression method that drops variables with the least impact on model accuracy to maximize
parsimony and is a relatively simple ML strategy. RF constructs a set of decision trees using a random
subset of features and the training data and then uses then aggregates their predictions either using the
majority vote or average to make the final prediction. TabNet, in contrast to regression trees, is a deep
learning method that is optimized for tabular data (see Arik and Pfister, 2021). The models are computed
in Python using the scikit-learn package v1.3.0.

The models are first trained on a minimal dataset consisting solely of the annual quarter of observation
offset by one month to better align with the growing season, a regional dummy (1–3), and a rural dummy
(0–1). To this specification, we add different variable sets (see Table 2); the “LSMS” set, consisting of
distances to roads, markets, borders, local government offices, and the nearest population center,
elevation, and proportion of the EA that is used for agriculture; the “remotely sensed” set consisting of
the precipitation, drought severity, temperature, NDVI, and land cover variables; the “price” set consisting

Table 2. Description of the variables used for each specification

Variable set Contains
Total number of

predictors

Minimal Rural dummy, quarter dummy (3), and region dummy (2) 6
Remotely sensed Annual land cover classes (crop, urban, forest, grassland), monthly

total precipitation and mean NDVI, PDSI, vapor pressure, vapor
pressure deficit, and surface temperature (average of daily
minimum, maximum, and average)

112

LSMS Distances from the nearest road, population center, Agricultural
Development and Marketing Corporation (ADMARC) center,
auction, government offices, and border post; approximate
coverage of EA footprint by agricultural area, and elevation

8

Price Average monthly maize price for the previous 12 months 12
Inflation Average monthly maize price inflation and CPI inflation 24

Note: All model specifications other than the minimal set include the minimal set for fixed effects in addition to the variables listed.

Table 3. Summary statistics for selected variables; NDVI and PDSI are both indices and are unitless

Pooled sample Mean Median St. Dev. Min Max

Distance to road (km) 8.44 1 0.39 0 1
Elevation (m) 871 899 343 37 1754
Maize price inflation 0.26 0.29 0.515 �0.66 3.03
Maize price (Malawian kwacha [MWK]) 133 133 87 17 361
Midseason NDVI 6304 6408 1027 886 8500
Midseason precipitation (mm) 251 252 82 82 630
Midseason PDSI �0.49 �1.09 3.12 �7.81 6.69
Rural (0/1) 0.81 1 0.39 0 1

Note: For variables labeled “midseason,” January was chosen as the approximate middle of the agricultural season.
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of monthly price observations for the twelve months prior to the observation period; and the “inflation” set
consisting of monthly maize price inflation and national CPI inflation. We compare combinations of these
variables (prices + inflation, prices + LSMS, prices + remotely sensed, inflation + remotely sensed, and
inflation + LSMS) to a regression tree-based selection algorithm applied to all variables (the “selected”
set). Summary statistics for selected variables are presented in Table 3. At the c2 classification, the
comparatively small number of positive cases made it difficult for model fits to converge, so we applied
synthetic minority oversampling technique (SMOTE) using the package imblearn. Synthetic oversampling
creates additional positive cases based on observed positive cases, with some additional random noise
added to the predictor variables.

2.6. Validation

The goal of this exercise is to use a computational model to classify EAs as either food sufficient
(negative for food insufficiency) or food insufficient (positive for food insufficiency) according to the
thresholds described in Table 1. There are several metrics for comparing the performance of classifiers.
Accuracy, the ratio of correct positive and negative assignments to all assignments, is the most intuitive,
but it can be misleadingly high in situations where the target classification is rare. In a scenario where
the population consists of 90 negative observations and 10 positive observations, a classifier that
assigns all observations to the most common class would have an accuracy of 90%. This finding would
imply a highly functional model, but it would provide no utility for identifying the subpopulation of
interest. Instead, precision and recall can be used to determine the model’s skill in making true positive
assignments. Precision is a measurement of the ratio of true positive assignments to all positive
assignments (i.e., the inverse of the false negative rate). Recall is the ratio of true positive assignments
to all positive cases (the true positive rate). Precision and recall are inversely related to one another;
increasing precision typically comes at the expense of reducing recall and vice versa, andmodel training
weights can be used to establish a relative preference of one over the other. The tradeoff between
precision and recall can be measured in terms of F1, an average of precision and recall, and the area
under the precision-recall curve (AUPRC), which is a function of the precision and recall at each
possible threshold (on a scale of 0 to 1) used to determine which of the continuous set of fitted values
produced by the model is a positive assignment and which is a negative assignment (see Table 4).
Higher values indicate a better balance between precision and recall.

In addition to these metrics, we add some general principles that can be used to evaluate model
performance and validity:

Models should outperform a “most frequent case classifier.” Performance on preferred metrics should
be higher than simply assigning all observations to the most abundant class in the dataset. For binary
comparisons, this can be a trivial exercise, as precision and recall will always be higher when negative
cases are most abundant, but, for multiple classes where more than one may be of interest to the modeler,
this criterion can be useful for measuring performance.

Table 4. Evaluation Metrics for the performance of a classifier

Metric Equation Interpretation

Precision TP
TP+ FP Number of true positive predictions (i.e., food-insecure households predicted

as food insecure) out of all positive predictions

Recall TP
TP+ FN Number of true positive predictions identified out of all positive cases

F1 2 × precision × recall
precision + recall Harmonic mean of precision and recall

Accuracy TP+TN
TP+ FP+TN+FN How well the algorithm has classified positive and negative classes over the

total cases
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More complex approaches should outperform simpler ones. Although data storage and computation
time have become comparatively inexpensive, constructing and using ML models can still require
substantial person-hours and at least the initial involvement of someone with expertise. Compiling and
maintaining large datasets can require ongoing support. Thus, if a simplermethod can perform similarly to
a more complex one, it may be necessary to conclude that either the dataset is inadequate for the chosen
task or that a more complex approach is unnecessary, depending on overall performance. Grinsztajn et al.
(2022) quantify this principle in terms of “easiness” and conclude that a dataset is too easy when an ML
approach fails to outperform a simpler one (such as OLS regression) by at least five percent on the chosen
metrics. Here, we compare the ML approaches to logistic regression.

The number of predictor variables should be as small as possible: we define a parsimonious set of
predictors of variables representing the EAs district, the time of year, and a rural-urban stratum. These
metrics provide very coarse indicators of time of year and location, and it should be possible to outperform
them with more geographically detailed information.

For predictive models, performance should be better than someone with simple knowledge of the past:
We assume that practitioners and policymakers will have access to past information on where food
insufficiency existed because it is impossible to create a model without training data. Consequently, if
trends in food insufficiency are highly spatiotemporally consistent, it may be sufficient to know howwell
a community near a target community was doing in a previous survey. We refer to this approach as the
“naive” approach and compare the accuracy, precision, and recall of predicting a given EA’s food
insufficiency based on the observed food insufficiency of its nearest neighbor in the previous survey
round to the accuracy, precision, and recall of the modeled forward predictions.

3. Results

3.1. Experiment 1: Within-wave models

3.1.1. Results for the c1 category
Across all experiments, the selected variable set tended to be close to the total variable set, indicating
poor performance in finding the most informative variables. Results from that trial are excluded. In the
within-wave models, excluding models that did not converge (precision or recall less than 0.1),
accuracy scores ranged from 74% (TabNet fitting on wave 3 data using remotely sensed variables) to
87% (RFs fits on wave 1 data using either inflation and remotely sensed variables or all variables).
Compared to the logistic regression, LASSO fits were identical and RFs and TabNet were within three
to four percentage points in accuracy, but some results had substantially higher precision; e.g., the RFs
fit was 13 percentage points higher than logistic regression on the inflation and remotely sensed set and
all variables set in wave 1, producing the greatest observed AUPRC of 0.7. This difference was much
lower in wave 3 (four points) and moderately lower in wave 4 (eight points). While recall was similar
within variable sets, across sets, inflation had substantially higher recall in waves 3 and 4 (8- and
12-point increases over the minimal set, respectively), while it did not have a substantial effect alone in
wave 1, while it produced a 7-to-8-point increase in combination with the remotely sensed variables.
Figure 4 compares results for all variable sets and models against the minimal logistic regression, and
Tables 5–7 present the most accurate fits for waves 1, 3, and 4 compared to the minimal logistic
regression.

3.1.2. Results for the c2 category
It was not possible to evaluate performance against the minimal specification for wave 1 fits because it is
not possible to oversample on exclusively categorical predictors and the minimal fits failed to converge.
Across the remaining specifications, performance was slightly higher for TabNet and RFs than for logistic
regression. High accuracy scores were accompanied by low precision and recall, indicating a bias toward
false negatives. Substantial increases in both precision and recall occurred in waves 3 and 4, with the price
specification of TabNet achieving substantial improvements in recall (32.6 points compared to the
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Figure 4. From left to right, comparisons for waves 1, 3, and 4 in terms of precision and recall across
model specifications for all models at the c1 threshold using the within-wave training and testing datasets.
The red dotted lines show the precision and recall fit with logistic regression and the minimal variable set.
Points that fall in the upper right quadrant are more accurate, while those in the upper left outperform on

recall but underperform on precision, and those in the lower right outperform on precision but
underperform on recall. Abbreviations: logit: logistic regression, RF: random forests.

Table 5. Comparison of the simple logit fit to higher-performing models in wave 1 at the c1 threshold

Variable set Model Precision Recall Accuracy AUPRC

Minimal Logit 0.66 0.494 0.84 0.63
Inflation + remotely sensed Random forest 0.73 0.604 0.874 0.774
All variables Random forest 0.73 0.61 0.866 0.686
Price Random forest 0.686 0.588 0.86 0.682
Remotely sensed Random forest 0.712 0.528 0.86 0.67

Table 6. Comparison of the simple logit fit to higher-performing models in wave 3 at the c1 threshold

Variable set Model Precision Recall Accuracy AUPRC

Minimal Logit 0.772 0.656 0.758 0.792
All variables Random forest 0.782 0.786 0.808 0.832
Inflation + remotely sensed Random forest 0.784 0.776 0.804 0.83
Inflation Random forest 0.766 0.764 0.79 0.818
Price Random forest 0.768 0.762 0.788 0.816
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minimal/logistic regression benchmark in wave 3 and 74.8 points in wave 4) with accompanying losses in
precision (20 points below the minimal/logistic regression benchmark in wave 3 and 31 points above
benchmark in wave 4, but below comparable RF scores by 19–20 points). Figure 5 compares the results
across all variable sets and model fits to the benchmark, and Tables 8–10 present details of the best
performing models compared to the benchmark for waves 1, 3, and 4.

Figure 5. Comparison of precision and recall across model specifications for all models at the c2
classification using the within-wave training and testing datasets. Waves 1, 3, and 4 are presented from

left to right.

Table 7. Comparison of the simple logit fit to higher-performing models in wave 4 at the c1 threshold

Variable set Model Precision Recall Accuracy AUPRC

Simple Logit 0.776 0.55 0.82 0.728
Inflation LASSO 0.766 0.672 0.844 0.764
Inflation Logit 0.766 0.672 0.844 0.764
Price LASSO 0.77 0.65 0.842 0.76
Price Logit 0.77 0.65 0.842 0.76

Table 8. Comparison of the best-performing models to the minimal logit model in terms of
classification accuracy, precision, and recall using the c2 category in wave 1

Variable set Model Precision Recall Accuracy AUPRC

Minimal Logit 0 0 0.938 0.5
Inflation + remotely sensed Random forest 0.496 0.49 0.936 0.51
Price Random forest 0.408 0.562 0.92 0.498
All variables TabNet 0.398 0.516 0.918 0.474
Inflation Random forest 0.392 0.514 0.916 0.47

Note: The zeros in precision and recall for the minimal logit model indicate that the model is functioning as a most common case classifier and did not
produce any positive assignments.
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3.1.3. SHAP decompositions for the random forest models
To understand the contributions of each variable to the predictive accuracy, we calculate SHAP values on
the RF models. SHAP values show the observation-level contributions of each variable to the predicted
value. A greater magnitude SHAP value indicates greater influence in determining the prediction, while
signs indicate the direction of the influence—either toward the positive case (the EA is food insufficient)
or away if negative. In the figures below, the SHAP value is on the X axis and variable values are
illustrated through a color scale where red indicates highly positive values and blue indicates values that
are highly negative or close to zero depending on the variable’s scale. The variables, filtered to the most
important 20 (or all if themodel specification had fewer than 20 variables), are on the Yaxis in descending
order of average contribution to the predictions across the entire dataset. The points (representing
individual EA/month observations) are jittered in the Y axis direction to get a sense of the distribution
of the Shapley values per variable. A greater width in the band indicates a greater number of observations.

In Figure 6, we present SHAP values for the experiment 1 c1 RF fits on all variables. Across all waves,
inflation, nominal maize prices, and maize inflation tended to rank highly, along with the temporal and
spatial dummies. In waves 1 and 3, precipitation and vapor pressure deficit (vpd) during the growing
season are also influential, with greater vpd and lower precipitation values associated with a greater
likelihood of food insufficiency, likely corresponding with the greater aridity occurring in the southern
region. Results for the c2 classifier were similar (Supplementary Material, Appendix B)

3.2. Experiment 2: Forward predictions

3.2.1. Benchmarking with the non-model approach
To establish the benchmarks, a non-model method where the predicted value for each EA in each survey
wave was taken from its nearest neighbor (determined based on Euclidean distance between the centroid
coordinates provided in the LSMS-ISA) in the previous wave. For eachwave, the neighbor value from the
previous wave was compared to the observation value for the current wave to generate estimates of
accuracy, precision, and recall. Because the wave 2 survey was a panel subset of the wave 1 survey, we
remove the panel EAs from wave 1 to avoid the equivalent of overfitting. Comparing the classification
accuracy of the non-model estimator to the accuracy of simply using the state of the EA in the previous
survey provides an estimate of the effect of including the panel in the modeling approaches. For the c1

Table 9. Comparison of the best-performing models in wave 3 at the c2 threshold

Variable Set Model Precision Recall Accuracy AUPRC

Minimal Logit 0.636 0.462 0.842 0.602
All variables Random forest 0.606 0.592 0.844 0.64
Minimal Random forest 0.61 0.544 0.842 0.62
Inflation + remotely sensed Random forest 0.598 0.556 0.84 0.622
Price TabNet 0.436 0.788 0.784 0.65

Table 10. Comparison of the best-performing models in wave 4 at the c2 threshold

Variable set Model Precision Recall Accuracy AUPRC

Minimal Logit 0.088 0.102 0.908 0.538
Inflation + remotely sensed Random forest 0.532 0.546 0.916 0.56
Price Random forest 0.482 0.652 0.906 0.584
Inflation Random forest 0.564 0.618 0.902 0.56
Price LASSO 0.392 0.848 0.864 0.626
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classification, the panel accuracy was 5.5 percentage points higher than the best-guess accuracy (82% and
76.5%), and at the c2 classification, accuracy was roughly on par (90% versus 89%), although precision
was substantially lower (0.3 versus 0.18). Comparisons across waves showed a positive trend in recall and
a negative trend in precision; i.e., false positive assignments increase substantially while false negative
assignments decline (Table 11).

(a)

(c)

(b)

Figure 6. SHAP decompositions for models trained and tested on data from wave 1 (top left), wave 3 (top
right), and wave 4 (bottom), c1 classification. Abbreviations: inflationcpi: monthly CPI inflation;

lsms_elev: elevation; mzinfl: monthly maize price inflation; mzprice: maize price, ppt: precipitation, qtr:
quarter; vap: vapor pressure; vpd: vapor pressure deficit. “Lag” indicates how far before the observation

(in months) the value was taken.
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3.2.2. Predictions for the c1 classification
At the c1 classification, model fits initially underperformed the non-model predictor, although some
achieved similar accuracy scores with high precision but low recall. Predictions improved as training data
were added and occasionally surpassed the benchmark on accuracy in waves 3 and 4. In wave 4, the
minimal, LSMS/IHS, and price specifications performed similarly, outperforming the benchmark by
7–10 percentage points in accuracy. The models frequently outperformed the precision benchmark, but
recall was typically substantially lower. The only observed results surpassing both benchmarks occurred
in wave 3 with logistic regression predicting on price and LSMS/IHS variables (Figure 7).

3.2.3. Predictions for the c2 classification
Both the non-model classifier and ML modeled fits had the highest apparent accuracy in wave 2, but
nearly half of the cross-validation runs (124 of 280) failed to produce any positive classifications,
suggesting insufficient training data even with oversampling. The only variable sets producing consistent
estimates were the LSMS variables and the remotely sensed variables, while price and inflation became
more effective when predicting on waves 3 and 4. The non-modeled estimates gradually declined in
accuracy across successive surveys, whileMLmodel accuracy improved. In wave 4, RFs predicting from
the remotely sensed variables or the price variables achieved accuracy rates of 90%, although overall
precision and recall were low, and model fits were slightly less accurate than the minimal model. Recall
was highest when using the LSMS/IHS variables and price variables, with LASSO regression achieving
0.87 recall on the former and 0.97 on the latter, with overall accuracies of 82 and 70%. Comparisons are
presented in Figure 8.

The SHAP decompositions for the three sets of training data, when generated for all variables, initially
ranked early and late season precipitation as significant contributors, but these variables were gradually
displaced by prices and inflation. When the comparison was generated for solely the highest-performing
inflation set, quarter fixed effects became most important, followed by maize price inflation lagged
between 2 and 12 months (Figure 9).

4. Discussion

4.1. Evaluation of model performance and classification ability

Within-wave ML classifications did not consistently outperform logistic regression or a heuristic
approach based on past information, but they did produce adequate fits. If judged on accuracy alone,
the dataset was too “easy” (as defined by Grinsztajn et al., 2022), indicating that the additional work
involved inMLmay not be justified over a simpler method like logistic regression. However, we observed
substantial variation in precision and recall, suggesting that marginal differences in accuracy could have
substantial impacts when models are scaled; for example, in our wave four predictions on the c2
classification, the RF predictions on the remotely sensed variables and price differed by less than a
percentage point in accuracy (90.4% and 89.6%), but the remotely sensed specification made 30% more

Table 11. Precision, recall, and accuracy of the nearest-neighbor matching (best-guess) approach for
the c1 and c2 categories and each of the three waves for which predictions were generated

Wave Classification Accuracy Precision Recall

2 c1
c2

77%
89%

0.32
0.18

0.74
0.69

3 c1
c2

70%
82%

0.49
0.36

0.74
0.56

4 c1
c2

72%
83%

0.77
0.63

0.51
0.29
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true positive assignments (192, compared to 148 for the price specification) while making a similar ratio
of false positive assignments (283 for the remotely sensed specification and 223 for the price specifi-
cation). Both underperformed on true positives but outperformed on false positives relative to the
non-model method, with the non-model approachmaking 469 true positive assignments and 1,094 false-
positive assignments.While the LSMS-ISA cannot be used to estimate EA-level populations because the
household weights are designed to be nationally representative; estimates for the entire country were
produced by the Netherlands Red Cross (2017) in their INFORM study. These estimates place the typical
EA population at 1,600 individuals, with a maximum population of 16,081. Thus, even in this compara-
tively small-scale predictive exercise, sub-percentage-point margins in accuracy could generate differ-
ences of over 60,000 people targeted for aid, over half of whom may be affected by food insufficiency.

The difficulty in generating discrete, non-overlapping categorizations for EA-level food insufficiency
at scales smaller than the resolution of our datasets combined with unaccounted for factors like assets and

Figure 7. Precision and recall scores across specifications and models on the c1 classification compared
to the benchmark precision and recall of the naïve classifier (red lines). The left plot represents predictions
onwave 2 derived fromwave 1, the center predictions on wave 3 derived fromwaves 1 and 2, and the right

predictions on wave 4 derived from waves 1, 2, and 3.
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access to aid would have contributed to the higher false positive rate. Across specifications, the observed
performance was highest on spatially interpolated price information and CPI inflation, suggesting that
real-time weather observations may not add substantial information not already incorporated into prices,
given the relative consistency of food insufficiency over time. Our findings on the limited value of ML in
contexts with relatively strong spatial patterns over time are likely generalizable, but future research is
necessary to both understand what those thresholds of weather patterns are and the value of ML in less
predictable contexts.

Forecasts may provide advantages by giving more advanced notice of weather conditions, improving
model lead times. At present, depending on the timing of rainfall, the Malawian government is
typically aware if harvests will be poor by March (e.g., see WFP, 2024), which is already the peak of
the current lean season. In previous crises, poor weather as early as October has presaged poor
harvests (Ellis and Manda, 2012), but the depth of the advance warning will depend on the nature

Figure 8. Precision and recall scores across specifications and models on the c2 classification compared
to the benchmark precision and recall of the naïve classifier (red lines). The left plot represents predictions
onwave 2 derived fromwave 1, the center predictions on wave 3 derived fromwaves 1 and 2, and the right

predictions on wave 4 derived from waves 1, 2, and 3.
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and timing of the shock. This information will determine the extent and onset of the next lean season,
whose severity will then be affected by off-season production, and the extent and delivery timeline of
imported supplies (see Duchoslov et al., 2024). The former depends on residual soil moisture and the
extent of irrigation, while the latter depends on policy and the international market. Delays in

(a)

(c)

(b)

Figure 9. SHAP decompositions for models trained and tested on data from wave 1 (top left), wave 3 (top
right), and wave 4 (bottom), c1 classification. Abbreviations: inflationcpi: monthly CPI inflation; mzinfl:
monthly maize price inflation; mzprice: maize price, ppt: precipitation, tmin: mean daily minimum
temperature; tmean: mean daily temperature; tmax: mean daily maximum temperature; qtr: quarter;
vap: vapor pressure; vpd: vapor pressure deficit. “Lag” indicates how far before the observation (in

months) the value was taken.
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securing imports further delays in their fulfilment, and insufficient aid for government purchasing
have been associated with poor outcomes in the past (Ellis and Manda, 2012), and so advance notice
may not provide information that decision-makers need or can act upon.

The relative success of the price and inflation variables along with their relatively high SHAP rank
echoes findings byMartini et al. (2022), where food inflation was one of the strongest contributors to a RF
model. These results indicate that sensitive predictions may be possible with a limited set of indicators,
and food inflation may already capture information about the success or failure of the previous growing
season, reducing the need for direct measurements of crop growing conditions, though further verification
of consistency is warranted. Remote sensing also appeared to improve model fits in some scenarios,
indicating that weather patterns within a given year may provide indications of the distribution of
subnational variability, but the importance of these features fell as additional waves were added to
generate forward predictions, suggesting that interannual variability in which weather conditions are
leading to food insufficiency may limit the impact of these variables for long-term forecasts without
expert data preparation or sustained training data collection.

4.2. Variable contributions

Based on the SHAP results, we find that multiple maize price indicators have the highest influence on
model predictions. In Malawi, the relationship between hunger and price is complicated by house-
holds transitioning from net sellers in the post-harvest season to net buyers in the pre-harvest season
(Cardell andMichelson, 2022). Because price increases harm net food purchasers but benefit net food
sellers, Warr (2014) concludes that “the net effect of a change in food prices therefore depends on the
sizes of these two groups and the amounts by which consumer and producer prices each change.” The
SHAP explanations for the RF models often produced double-headed plots in the price and inflation
variables, where high values were found at either end of the axis rather than having a monotonic effect
on predictions, a consequence of how the data were organized and the coverage of a single lagged
observation. The effect of time as a model parameter was also visible when comparing models that
predicted on observations only from the lean quarter to the predictions on the full dataset. The former
produced lower accuracy scores even when compared to the full-year model’s accuracy in the first
quarter only.

Variables indicative of location, such as distances from market and elevation, appeared to be more
effective at generating predictions for wave 2 observations compared to later waves or within individual
waves, suggesting that there may have been a panel effect in sampling and reinforcing the need to test
models over multiple time frames to verify continued validity. The remotely sensed variables also
contributed more to fits within waves rather than across waves, suggesting that the models may be
effective at noticing spatial variations over a single season but may encounter challenges integrating over
a small number of cropping seasons if conditions are not consistent across them. In our data, we observed a
consistent drought inMalawi’s southern region, which contributed to food insufficiency in evaluations by
the Famine Early Warning System, but periods of heavy rainfall from cyclones also contributed to
nationwide food insufficiency in waves 3 and 4, something that didn’t appear as a significant predictor in
our models.

In general, what we refer to as theminimal approach consisting of solely dummies for time, region, and
rural or urban residence, representing the prediction that a policymaker can make with minimal
information, and the best-guess approach primarily relying on past instances of food insufficiency both
produce results that would be considered reasonably accurate (i.e., around 80% classification accuracy).
While these fixed effects showed significant stability during the study period, if significant changes occur
—such as a region that typically experiences normal seasons suddenly facing a major drought or flood—
short-term predictions may become substantially inaccurate over the next few periods; simultaneously, if
updates occur in response to the event, the updated model may become less useful if the event does not
recur for a long time.
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4.3. Difficulties in accurately assessing food sufficiency

The data preparation process required overcoming both the challenges of defining the outcome
appropriately and selecting the best variables from available data. Food insufficiency at the EA could
have been structured as a categorical or continuous variable, but our preparatory work found that the
models were better at making binary classifications rather than continuous or multinomially classified
responses. While alternative indicators such as rCSI and HDDS that offer a more continuous form of
measurement have been previously applied in food insufficiency modeling in Malawi (Lentz et al.,
2019; Zhou, 2020 and Gholami et al., 2022), variations in what is being measured by different indices
(see, e.g. Bertelli, 2019) and the availability of observations are considerations. In the LSMS IHS
data, we observed high rates of spatiotemporal consistency and a lack of seasonal variation in HDDS.
In the wave 1 and 2 surveys, we observed nearly complete overlap between the binned HDDS scores
among the panel EAs (see Supplementary Material, Appendix C). The rCSI scores were considerably
less consistent, with only 110 out of 204 EAs staying within bin between samples. Unlike the HDDS,
rCSI varies seasonally and is thus sensitive to differences in interview dates across waves. These
differences may explain why the HDDS modeled values were more accurate than the rCSI modeled
values in Lentz et al. (2019). In a validation exercise, Vellema et al. (2015) found that individual
consumption items provided little discrimination ability due to differences in dietary habits and that
some food groups exhibited a negative relationship with dietary diversity. Thus, adding context-
sensitive thresholding or splitting into a greater number of categories may improve the utility of
HDDS and/or rCSI for ML-based models, but this may also require a greater number of observations
for training.

In contrast to the LSMS/IHS methods of data collection, modeling efforts by Gholami et al. (2022)
used high-frequency data with a sample concentrated in a smaller area where food insecurity was most
widespread; RF models tend to perform better when the two labeled categories are closer to parity
(Grinsztajn et al., 2022). Measurements of household assets or proxies of economic outlook also
substantially contributed to model accuracy in this work, further supporting the conclusion that food
insufficiency results more from challenges in distribution and social equity that may be difficult to sense
remotely rather than biogeophysical factors influencing crop production. Two such factors identified in an
analysis by Frelat et al. (2015) include off-farm income and livestock holdings, both of which represent
alternative sources of income and/or direct provision of food for rural households and which account for
approximately 20% and 12% of calories for food-insufficient households. A third factor is the ganyu labor
system (a source of offseason agricultural employment for the rural poor): Sitienei et al. (2016) and
Bouwman et al. (2021) both note how disruptions, such as introducing labor-saving herbicides, result in
hunger due to lost employment opportunities (see also Fisher &Lewin, 2013). In addition to these factors,
remote sensing crop productivity in Malawi appears to be more challenging than it is for its neighbors.
Tang et al. (2022) found lower predictive accuracy in estimating crop yields inMalawi than in Tanzania. In
addition, underperformance in Malawi and Ghana was observed by Gachoki and Muthoni (2023), and
models for Malawi also underperformed models for Kenya in Lee et al. (2022). Li et al. (2022) achieved
moderate accuracy but required higher-resolution satellite imagery.

5. Conclusion and implications for policy

While tools such as ML have the potential to detect warning signs of crises, for structural food insecurity
whose geographic distribution may already be known and consistent or for crises that emerge suddenly
from abrupt shifts in weather patterns, ML models are unlikely to provide information not already
possessed by the experienced practitioner. Creating and maintaining models and troubleshooting prob-
lems that arise from changing standards or data sources is a challenge. Here, we demonstrate a simpler,
easily explainable approach using existing data (naivematching) that produces predictions roughly on par
with an ML model in some circumstances, but with tradeoffs in precision and recall that may be difficult
for policymakers or aid organizations to navigate. Improvements in measurement and data collection
frequency may change this assessment.
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To explore whether usable forecasts can emerge from small sets of variables, we considered multiple
types of publicly available and high- and low-frequency data: remotely sensed data on production
indicators and price data, land cover, local topography, and distance to infrastructure. We found that
these data can improve the predictive power of a simple model consisting solely of time and location but
appear to capture similar levels of information about food sufficiency. The SHAP results indicate that
price movements tend to offer more information about an EA’s near-term food sufficiency status than
remotely sensed factors related to crop productivity when the two are combined. Therefore, additional
work on understanding the role of price as a leading indicator of food insufficiency and greater emphasis
on collecting market observation data could lead to low-cost and rapidly effective forecasts to target areas
for future intervention.

The variables particular to Malawi’s food systems—persistent and reliable shortages by season,
geographical consistency of food-insecure areas, and substantial reliance on a single staple crop—
contribute to conditions for effective models trained on relatively small sets of variables. But they also
lower the net value of any MLmodels for prediction and the generalizability of our finding non-modeled
to contexts with more variable climate or dietary patterns. While continuing to build capacity to predict
production will be useful, responding to food crises and working to prevent them appears to be the larger
challenge, particularly in low-income countries with limited resources. Our findings contribute to an
existing body of evidence (see Fadare, 2017) that policies focusing on smoothing seasonal food
availability by supporting food staple affordability, dietary diversity and improving access to markets
or postharvest storage regardless of anticipated production could provide significant benefits for food-
insecure households and may reduce the need to rely on forecasts or predictions to ensure a stable food
supply.
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