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Abstract

Given a large integer n, determining the relative size of each of its prime divisors as well as the spacings
between these prime divisors has been the focus of several studies. Here, we examine the spacings between
particular types of prime divisors of n, such as prime divisors in certain congruence classes of primes and
various other subsets of the set of prime numbers.
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1. Introduction

Given a large integer n, determining the size of its distinct prime factors as well as their
relative sizes has been the focus of several studies over the past 75 years. For instance,
if we let ω(n) stand for the number of distinct prime divisors of an integer n ≥ 2 and

p1(n) < p2(n) < · · · < pω(n)(n) or for short p1 < p2 < · · · < pω(n),

be these prime divisors, Erdoős [6] proved in 1946 that, letting ξ(n)→ ∞ as n→ ∞
and given any small number ε > 0, then

eek(1−ε)
< pk(n) < eek(1+ε)

(ξ(n) ≤ k ≤ ω(n)) for almost all n,

thereby providing bounds on the size of the kth prime factor for most integers.
Thirty years later, Galambos [7] provided important information on the relative

size of the consecutive prime factors of an integer by showing that, given any small
ε > 0 and a function j = j(x) which tends to infinity with x in such a manner that
j(x) ≤ (1 − ε) log log x, then, for any fixed real number z > 1,

lim
x→∞

1
x
#
{
n ≤ x :

log pj+1(n)
log pj(n)

< z
}
= 1 − 1

z
,
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thereby providing bounds on the gaps between the successive prime factors of most
integers. Further refinements of these results were provided by many others, such as
De Koninck and Galambos [1] in 1987, and Granville [8, 9] in 2007.

More recently, in [3, 4], we further explored this topic by examining the spacings
between those consecutive prime factors of an integer which are ‘close’ to one another,
in the following sense. Given a real number λ ∈ (0, 1], we introduced the arithmetic
function

Uλ(n) := #{i ∈ [1,ω(n) − 1] : pi < pλi+1}

and proved (see Theorem 1 in [3]) that∑
n≤x

Uλ(n) = (1 + o(1))λx log log x (x→ ∞) (1.1)

and that, for any given ε > 0,

lim
x→∞

1
x
#
{
n ≤ x :

∣∣∣∣∣Uλ(n)
ω(n)

− λ
∣∣∣∣∣ ≥ ε
}
= 0. (1.2)

Here, we examine the spacings between particular types of prime divisors of n, such
as prime divisors in certain congruence classes of primes and various other subsets of
the set of prime numbers.

2. Setting the table

Let ℘ be the set of all primes. From here on, unless indicated otherwise, the letters
p, q and π will stand for primes, whereas π(x) will stand for the number of primes
not exceeding x. Also, we will be using the logarithmic integral li(x) :=

∫ x
2 dt/log t.

Finally, given a real number x ≥ eee
, we set

Y1 := Y1(x) = exp{(log x)ε(x)} and Y2 := Y2(x) = exp{(log x)1−ε(x)}, (2.1)

where

ε(x) :=
1
2

log log log x
log log x

.

Let B be a subset of ℘ whose counting function B(x) := #{p ≤ x : p ∈ B} is such
that, for some real number β > 0,

B(x) = β li(x) + O
( x

log3 x

)
, (2.2)

so that in particular, for some constant β2,∑
p≤x
p∈B

1
p
= β log log x + β2 + O

( x
log x

)
, (2.3)
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[3] Spacings between prime divisors 405

∑
u<p<v

p∈B

log p
p
= β log

v
u
+ O(1),

∏
u<p<v

p∈B

(
1 − 1

p

)
=

( log u
log v

) β(
1 + O

( 1
log u

))
.

Any such set B satisfying (2.2) will be called a B-set.
Observe that given a B-set and its associated function ωB(n) :=

∑
p|n, p∈B 1, it is

immediate that ∑
n≤x

ωB(n) = βx log log x + O(x)

and one can show that it follows from the Turán–Kubilius inequality that∑
n≤x

(ωB(n) − β log log n)2 � x log log x,

implying that the average value and the normal order of the function ωB(n) are each
β log log n. Moreover, one can establish that, for some positive constant β3,

lim
x→∞

1
x
#
{
n ≤ x :

ωB(n) − β log log n

β3
√

log log n
< y
}
= Φ(y),

where Φ(y) := (1/
√

2π)
∫ y

−∞ e−t2/2 dt.
Now, given positive real numbers u < v, let us set

Q(u, v) :=
∏

u<p<v
p∈℘

p.

Also, given an integer n > 1 and a prime divisor p of n which is smaller than P(n), the
largest prime divisor of n, we set

νp = νp(n) := min{q | n : q > p},

so that ( n
pνp

, Q(p, νp)
)
= 1.

Now, consider the arithmetic function

Uλ,B(n) :=
∑
p|n

p∈B
log p/log νp(n)<λ

1.

The technique we used in [3] to prove (1.1) can also be used to determine the mean
value of the function Uλ,B(n) and in fact the following more accurate result.
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THEOREM 2.1. Given λ ∈ (0, 1] and a set of primes B satisfying (2.2),∑
n≤x

Uλ,B(n) = (1 + o(1))λ βx log log x (x→ ∞) (2.4)

and, for an arbitrarily small ε > 0,

lim
x→∞

1
x
#
{
n ≤ x :

∣∣∣∣∣Uλ,B(n)
ω(n)

− λ β
∣∣∣∣∣ ≥ ε
}
= 0.

Estimates (1.1) and (1.2) can be modified to hold for shifted primes. Indeed, we also
have the following result.

THEOREM 2.2. Given λ ∈ (0, 1], a set of primes B satisfying (2.2) and a fixed integer
a � 0,

1
π(x)

∑
p≤x

Uλ,B(p + a) = (1 + o(1))λ β log log x (x→ ∞)

and, moreover, for any arbitrarily small ε > 0,

lim
x→∞

1
π(x)

#
{

p ≤ x :
∣∣∣∣∣Uλ,B(p + a)
ω(p + a)

− λ β
∣∣∣∣∣ ≥ ε
}
= 0.

3. An extension of Theorem 2.1

Given λ ∈ (0, 1] and a set of primes B satisfying (2.2), we introduce the arithmetic
function Ũλ,B(n) which counts the number of prime divisors p of n which belong
to B and for which the next prime divisor q of n also belonging to B satisfies
log p/ log q < λ. In short, setting QB(u, v) :=

∏
u<p<v, p∈B p, we can write

Ũλ,B(n) :=
∑
p|n

log p/log q<λ
p,q∈B

(n/pq,QB(p,q))=1

1.

In the case of the function Ũλ,B(n), we can obtain an asymptotic formula for its average
value with greater accuracy than the one obtained for the function Uλ,B(n) (whose
average value was revealed through the estimate (2.4)). Indeed, we can prove the
following result.

THEOREM 3.1. Let λ ∈ (0, 1] and B be a set of primes satisfying (2.2). Then∑
n≤x

Ũλ,B(n) = βλβx log log x + O(x log log log x). (3.1)

Moreover, for any arbitrarily small ε > 0,

lim
x→∞

1
x
#
{
n ≤ x :

∣∣∣∣∣ Ũλ,B(n)
ω(n)

− βλβ
∣∣∣∣∣ ≥ ε
}
= 0. (3.2)
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Before we begin the proof of Theorem 3.1, let us recall a lemma from our recent
paper [4].

LEMMA 3.2 [4, Lemma A]. Let x ≥ ee100
and let Y1 = Y1(x) and Y2 = Y2(x) be the

functions defined in (2.1). Let π1 < π2 < · · · < πs be s primes located in the interval
(Y1, Y2). Write their product as R = π1π2 · · · πs. Further, set

η :=
s∑

i=1

1
πi

and

SR(x) :=
∑
n≤x

(n,R)=1

1.

Assume that η ≤ K, where K is an arbitrary number, and let h be a positive integer
satisfying h ≥ 3e2K. Then, letting φ stand for the Euler totient function,∣∣∣∣∣SR(x) − φ(R)

R
x
∣∣∣∣∣ ≤ x (3e)−h + 2Yh

2 ,

so that in particular, choosing h = 	log log log x
, there exists a positive constant c
such that ∣∣∣∣∣SR(x) − φ(R)

R
x
∣∣∣∣∣ ≤ c x

(log log x)2 .

REMARK 3.3. Observe that, as detailed in [3], the choice of h in Lemma 3.2 is optimal
as it ensures that each of the two terms x(3e)−h and 2Yh

2 is much less than x/(log log x)2.

We are now ready for the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. Let (p, q) ∈ B × B, with p < q, be a pair of prime divisors
of an integer n which satisfy ( n

pq
, QB(p, q)

)
= 1.

Let us first assume that Y1 < p < q < Y2, where Y1 = Y1(x) and Y2 = Y2(x) are the
functions defined in (2.1). Using Lemma 3.2 and estimate (2.3),∑

n≤x

Ũλ,B(n) =
∑

Y1<p<q<Y2
p,q∈B

log p/log q<λ

x
pq

∏
p<π<q
π∈B

(
1 − 1
π

)(
1 + O

( 1
log p

))

=
∑

Y1<p<q<Y2
p,q∈B

log p/log q<λ

x
pq

( log p
log q

) β(
1 + O

( 1
log p

))
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= x
∑

Y1<p<q<Y2
p,q∈B

log p/log q<λ

(log p) β

p
· 1

q(log q) β

(
1 + O

( 1
log p

))
. (3.3)

First assume that β < 1. In this case, fixing q and summing over p,

∑
Y1<p<qλ

p∈B

(log p) β

p
=

∫ qλ

Y1

(log u) β

u
dB(u)

= β

∫ qλ

Y1

(log u) β

u log u
du +

∫ qλ

Y1

(log u) β

u
d(B(u) − βli(u))

= I1(x) + I2(x), (3.4)

say. On the one hand, recalling that β > 0 (see (2.2)),

I1(x) = β
∫ λ log q

log Y1

v β−1 dv = λβ(log q) β + O((log Y1) β). (3.5)

On the other hand,

I2(x) � (B(u) − βli(u))
(log u) β

u

∣∣∣∣∣q
λ

Y1

−
∫ qλ

Y1

d
du

( (log u) β

u

)
du

� (log q) β−2 +

∫ qλ

Y1

u

log2 u
· β(log u) β−1 − (log u) β

u2 du

� (log q) β−2 +

∫ λ log q

log Y1

v β−2 dv

� (log q) β−2 + (log q) β−1 � (log q) β−1. (3.6)

Gathering estimates (3.5) and (3.6) in (3.4), we obtain, in the case β < 1,

∑
Y1<p<qλ

p∈B

(log p) β

p
= λβ(log q) β + O((log q) β−1) + O((log Y1) β). (3.7)

Finally, it is immediate that (3.7) also holds in the case β = 1.
In light of estimate (3.7), the sum on the right-hand side of (3.3) can therefore be

replaced by

λβ
∑

Y1<q<Y2
q∈B

(log q) β

q(log q) β
= β λβ log log x + O(log log log x), (3.8)
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where we could ignore the contribution of the last error term on the right-hand side of
(3.7) because

∑
Y1<q<Y2

1
q(log q) β

�
∫ ∞

Y1

1
t(log t) β+1 dt � 1

(log Y1) β
.

Then, in light of (3.8) and with the help of (2.3), it is clear that the estimate (3.3) can
be replaced by ∑

n≤x

Ũλ,B(n) = βλβx log log x + O(x log log log x),

thus completing the proof of (3.1).
The proof of (3.2) rests on the evaluation of Ũλ,B(n)2, which can be handled using

an approach similar to that used to obtain (3.1). We will therefore omit this proof. �

4. Two B-sets involving congruence classes

Given an integer k ≥ 3, let �1, . . . , �r be the reduced residue system modulo k, with
r = φ(k). Then it is clear that each of the residue classes

B�j := {p ∈ ℘ : p ≡ �j (mod k)} ( j = 1, . . . , r)

satisfies condition (2.2) and is therefore a B-set.
A second interesting B-set involves the sum-of-digits function sq(n) which stands

for the sum of the base q digits of an integer n (here, q ≥ 2). First note that it is known
(see Mauduit and Rivat [11] as well as Drmota et al. [5]) that if (k, q − 1) = 1, then
there exists a real number σ = σq,k > 0 such that

1
π(x)

#{p ≤ x : sq(p) ≡ � (mod k)} = 1
k
+ Oq,k(x−σ log x). (4.1)

Clearly, (4.1) guarantees that if, for a given integer k ≥ 3, we set

B� := {p ∈ ℘ : sq(p) ≡ � (mod k)} (� = 0, 1, . . . , k − 1),

then B� is indeed a B-set for each � = 0, 1, . . . , k − 1.

5. Two B-sets involving fractional parts

We first identify a B-set involving fractional parts of prime powers. Let α,σ ∈ (0, 1).
In what follows, {y} stands for the fractional part of y. Using the method of exponential
sums initiated in 1940 by Vinogradov [13], one can prove that∑

p≤x
{pα}<σ

1 = σπ(x) + R(x) (5.1)
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(see the recent paper of Shubin [12] for a thorough discussion), where R(x) � xθ(α)+ε

with

θ(α) =

⎧⎪⎪⎨⎪⎪⎩1 − 2α/15 if 0 < α ≤ 3/5,
(4 + α)/5 if 3/5 < α < 1.

In light of (5.1), it is clear that indeed, given α,σ ∈ (0, 1), the set

B = {p ∈ ℘ : {pα} < σ}

is a B-set.
Another B-set involving fractional parts is as follows. Let α be an irrational number.

As was shown in 1940 by Vinogradov [13],

lim
x→∞

1
π(x)

∑
p≤x

e2πiαp = 0.

Consequently, the sequence (αp)p∈℘ is uniformly distributed modulo 1. Thus,

Eα(x) := sup
0≤u<v<1

∣∣∣∣∣ 1
π(x)

∑
p≤x

{αp}∈[u,v)

1 − (v − u)
∣∣∣∣∣→ 0 as x→ ∞.

Our next theorem will depend on the following result of Harman.

THEOREM 5.1 [10, Theorem 2.2]. Let α ∈ R and suppose that, for integers a, q with
(a, q) = 1, the inequality

|qα − a| < 1
q

holds. Let δ ∈ (0, 1] be given. Write

χ(θ) =

⎧⎪⎪⎨⎪⎪⎩1 if ‖θ‖ < δ,
0 otherwise.

Then, for any real β and positive integers N, H such that Nε � q � N1−ε for some
ε > 0, we have∑

n≤N

Λ(n)χ(nα + β) = 2δ
∑
n≤N

Λ(n) + O
(Nδ

H

)

+ O
(
N(log H)(log N)7

(qδ
N
+

1
q
+

1
N1/2 +

δ

N1/3

)1/2)
.

(Here Λ(n) stands for the von Mangoldt function. Also ‖θ‖ := minm∈Z |θ − m|.)

From Theorem 5.1, one can easily deduce the following result.

THEOREM 5.2. Let ε > 0 be an arbitrarily small number. Let α ∈ (0, 1) be an
irrational number such that, for every real x > x0(α), there exists a positive integer
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[9] Spacings between prime divisors 411

q ∈ [xε, x1−ε] for which ‖qα‖ < 1/q. Then

Eα(x) � exp
{
− ε

2
log x
}
.

REMARK 5.3. Observe that the condition imposed on α in Theorem 5.2 is known to
hold for almost all real numbers α and for every irrational algebraic number α.

Given 0 ≤ u < v < 1, let α be an irrational number satisfying the conditions of
Theorem 5.2 and set B := {p ∈ ℘ : {αp} ∈ [u, v)}. Then it follows from Theorem 5.2
that B is a B-set.

6. Disjoint classification of primes

Given an integer k ≥ 2, we will now be interested in sets of prime numbers
℘1,℘2, . . . ,℘k such that

℘ = ℘1 ∪ ℘2 ∪ · · · ∪ ℘k ∪D and ℘i ∩ ℘j = ∅ if i � j,

where D is a finite (perhaps empty) set of primes. We assume that, for each
j ∈ {1, 2, . . . , k},

πj(x) :=
∑
p≤x
p∈℘j

1 = βj li(x) + O
( x

log3 x

)
,

where each βj ∈ (0, 1] and
∑k

j=1 βj = 1. Such a collection of subsets of primes is called
a disjoint classification of primes, a notion we introduced in [2] a decade ago in order
to create large families of normal numbers. Here, we use this concept for a different
purpose.

For each j = 1, 2, . . . , k, let Ej be a subinterval of [0, 1]. Given a large integer n, we
will now count those k-tuples of primes (q1, q2, . . . , qk) which satisfy the conditions

q1q2 · · · qk | n,
( n
q1q2 · · · qk

, Q(q1, qk)
)
= 1,

qj ∈ ℘�j , qj+1 ∈ ℘�j+1 , log qj/ log qj+1 ∈ Ej ( j = 1, 2, . . . , k − 1). (6.1)

In fact, let E(n) be the number of these primes q1, that is, primes q1 for which there
exist primes q2, . . . , qk satisfying the conditions listed in (6.1).

By using our usual technique and writing λ(I) for the length of the interval I, we
can prove that, if we set

T(�1, �2, . . . , �k) := β�1β�2 · · · β�kλ(E1)λ(E2) · · · λ(Ek−1),

then,

1
x

∑
n≤x

E(n) = T(�1, �2, . . . , �k) log log x + O(log log log x),
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and moreover that, given any small number ε > 0,

lim
x→∞

1
x
#
{
n ≤ x :

∣∣∣∣∣E(n)
ω(n)

− T(�1, �2, . . . , �k)
∣∣∣∣∣ ≥ ε
}
= 0.

An analogous result for shifted primes can also be proved, namely that, for any fixed
integer a � 0,

lim
x→∞

1
π(x)

#
{

p ≤ x :
∣∣∣∣∣E(p + a)
ω(p + a)

− T(�1, �2, . . . , �k)
∣∣∣∣∣ ≥ ε
}
= 0.

7. The sequence n2 + 1

It is known that if p | n2 + 1, then either p = 2 or p ≡ 1 (mod 4) (since (−1/p) = 1
if and only if p ≡ 1 (mod 4)). On the one hand,∑

n≤x

ω(n2 + 1) = x log log x + O(x). (7.1)

For the sake of completeness, this can be proved by first observing that∑
n≤x

ω(n2 + 1) =
⌊x + 1

2

⌋
+

∑
p≤x

p≡1 (mod 4)

∑
n≤x

n2+1≡0 (mod p)

1 + O(x), (7.2)

where the last term accounts for the contribution of those primes p ∈ (x, x2 + 1]. Since
for each prime p ≡ 1 (mod 4), the congruence n2 + 1 ≡ 0 (mod p) has exactly two
solutions, the number of positive integers n ≤ x for which n2 + 1 ≡ 0 (mod p) is equal
to 2x/p + O(1). Hence,∑

p≤x
p≡1 (mod 4)

∑
n≤x

n2+1≡0 (mod p)

1 =
∑
p≤x

p≡1 (mod 4)

(2x
p
+ O(1)

)
= 2x

∑
p≤x

p≡1 (mod 4)

1
p
+ O
( x
log x

)

= 2x
(1
2

log log x + O(1)
)
+ O
( x
log x

)
= x log log x + O(x),

which, combined with (7.2), proves (7.1).
On the other hand, using estimate (7.1), it follows from the Turán–Kubilius

inequality that ∑
n≤x

(
ω(n2 + 1) − log log n

)2
� x log log x. (7.3)

In light of (7.1) and (7.3), we may conclude that both the average value and the normal
order of the function ω(n2 + 1) are log log n.

For convenience, we will now be using the notation

Λ(p, q) :=
log p
log q

and Q(1)(p, q) =
∏

p<π<q
π≡1 (mod 4)

π.
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[11] Spacings between prime divisors 413

Given a small number ε > 0 and λ ∈ (ε, 1), let us count those pairs of primes p < q
such that

pq | n2 + 1, ε ≤ Λ(p, q) < λ, p ≡ q ≡ 1 (mod 4),
(n2 + 1

pq
, Q(1)(p, q)

)
= 1.

(7.4)

For each such pair of primes p, q, let Ep,q be the number of those positive integers
n ≤ x for which conditions (7.4) hold. Using Lemma 3.2, we may write∑′

Y1<p<q<Y2

Ep,q =
∑′

Y1<p<q<Y2

x
pq

∏
p<π<q

π≡1 (mod 4)

(
1 − 1
π

)
+ O(x)

=
∑

Y1<q<Y2
q≡1 (mod 4)

1
q log q

∑
qε<p<qλ

p≡1 (mod 4)

log p
p
+ O(x), (7.5)

where the prime (′) on the above sums indicates that the summation runs over those
pairs of primes p, q which satisfy the conditions listed in (7.4).

It is easily established that∑
qε<p<qλ

p≡1 (mod 4)

log p
p
=
λ − ε

2
log q + O

( 1
log q

)
. (7.6)

Using (7.6) in (7.5), we obtain

1
x

∑′

Y1<p<q<Y2

Ep,q =
λ − ε

2

∑
Y1<q<Y2

q≡1 (mod 4)

1
q
=
λ − ε

4
log log x + O(log log log x). (7.7)

Denote by Kε,λ(n) the number of those primes p for which there exists a prime q > p
satisfying the list of conditions (7.4). Since the contribution of those primes p < Y1
and q > Y2 to the above sums is relatively small, it follows from (7.7) that

1
x log log x

∑
n≤x

Kε,λ(n) =
λ − ε

4
+ O
( log log log x

log log x

)
. (7.8)

Since ε can be chosen arbitrarily small, it follows from (7.8) that

lim
x→∞

1
x log log x

∑
n≤x

K0,λ(n) =
λ

4
.

Moreover, one can show that, given any arbitrarily small number δ > 0,

lim
x→∞

1
x
#
{
n ≤ x :

∣∣∣∣∣ K0,λ(n)
log log n

− λ
4

∣∣∣∣∣ ≥ δ
}
= 0.

We can also prove an analogue of [3, Theorem 5]. Indeed, let δ0, δ1, . . . , δk−1 ∈
(0, 1) and set H := δ0δ1 · · · δk−1. Further, let F be the set of all (k + 1)-tuples of primes
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(p0, p1, . . . , pk) where p0 < p1 < · · · < pk satisfy

1 − δj < Λ(pj, pj+1) < 1 ( j = 0, 1, . . . , k − 1).

Also let Vδ0,δ1,...,δk−1 (n) stand for the number of those prime divisors p0 of n2 + 1 for
which

p1 p2 · · · pk | n2 + 1 and
( n2 + 1

p0 p1 · · · pk
, Q(p0, pk)

)
= 1 for (p0, p1, . . . , pk) ∈ F .

Then we have the following result.

THEOREM 7.1. Let δ0, δ1, . . . , δk−1, H and F be as above. Then, as x→ ∞,∑
n≤x

Vδ0,δ1,...,δk−1 (n) = (H + o(1))x log log x,

∑
n≤x

V2
δ0,δ1,...,δk−1

(n) = (H2 + o(1))x (log log x)2.

REMARK 7.2. It follows from Theorem 7.1 that

Vδ0,δ1,...,δk−1 (n) = (1 + o(1))H log log n for almost all n.

On the other hand, most likely, for some positive constant c, the function

Vδ0,δ1,...,δk−1 (n) − H log log n

c
√

log log n

is distributed according to the normal law. However, in order to prove this, one would
need to compute the asymptotic value of the sum

∑
n≤x Vδ0,δ1,...,δk−1 (n)k with a good

remainder term, for every k. We were not successful in doing so.
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