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Abstract
Coherent combining of several low-energy few-cycle beams offers a reliable and feasible approach to producing few-
cycle laser pulses with energies exceeding the multi-joule level. However, time synchronization and carrier-envelope
phase difference (�CEP) between pulses significantly affect the temporal waveform and intensity of the combined pulse,
requiring precise measurement and control. Here, we propose a concise optical method based on the phase retrieval of
spectral interference and quadratic function symmetry axis fitting to simultaneously measure the time synchronization
and �CEP between few-cycle pulses. The control precision of our coherent beam combining system can achieve a time
delay stability within 42 as and �CEP measurement precision of 40 mrad, enabling a maximum combining efficiency
of 98.5%. This method can effectively improve the performance and stability of coherent beam combining systems for
few-cycle lasers, which will facilitate the obtaining of high-quality few-cycle lasers with high energy.
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1. Introduction

Few-cycle pulse lasers, as a unique category within the
family of ultrashort pulse lasers, have garnered increasing
attention due to their distinctive characteristics[1]. As
ultrashort lasers tend to reach peak power at several petawatts
or even exawatts, few-cycle pulse lasers will naturally benefit
from the fact that the same energy can be confined to
a shorter temporal duration[2,3]. When the energy of a
few-cycle pulse laser exceeds tens of joules, several novel
mechanisms in laser–plasma interactions are unveiled. For
instance, proton acceleration driven by an intense few-cycle
pulse is particularly advantageous for energy transfer from
the laser to the generated ions[4,5], with a proton cutoff energy
greater than GeV being predictable under an instability-free
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acceleration regime. Similarly, the energy conversion
efficiency of laser-to-electron beams has been shown to
improve with laser wake field acceleration using few-cycle
high-power lasers[6,7]. Beyond applications in high-energy-
density science, the diverse waveforms of few-cycle pulse
lasers introduce a new dimension to the study of intense
laser field interactions with matter[8]. This capability arises
from the fact that the electric field shape of a few-cycle
pulse is strongly influenced by the carrier-envelope phase
(CEP), enabling precise control of atomic-scale electronic
motion[9–11]. The prospect of using a petawatt-class few-
cycle laser with a controlled electric field shape in studies
of intense laser–matter interactions is both highly intriguing
and promising.

However, obtaining petawatt few-cycle laser pulses
remains a significant challenge. Although the peak power
of ultrashort pulse laser systems based on chirped-
pulse amplification (CPA) or optical parametric chirped-
pulse amplification (OPCPA) technology can reach up to
10 PW[12–14], their pulse durations are generally greater
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than 20 fs. Recently, the post-compression technique
was demonstrated to be applicable to a petawatt-class
CPA/OPCPA laser by using a thin-film compressor[15].
Bleotu et al.[16] reported the successful spectral broadening
of a 7 J/21.5 fs laser to a bandwidth compatible with a
15 fs pulse, indicating the feasibility of achieving few-cycle
pulses in the PW class. Parametric waveform synthesis, by
coherently combining laser pulses with different amplified
spectra, is another promising technique for obtaining high-
power few-cycle or even single-cycle laser pulses with the
ability to tailor optical waveforms. A sub-millijoule and
sub-cycle (pulse width of 2.8 fs, 0.6 optical cycles at a
central wavelength of 1.4 μm) laser pulse was generated
by utilizing a parametric waveform synthesis technique[17].
Nonetheless, to generate few-cycle ultrashort pulses with
higher power, significant technical challenges remain in the
post-compression and parametric waveform synthesis. Here,
we propose a direct approach to further increase the peak
power of few-cycle lasers, that is, few-cycle pulse coherent
combination (FCPCC).

Coherent beam combination can greatly increase laser
power far beyond what can be achieved with a single
laser and has become a common technique in fiber and
diode lasers[18]. While relatively few studies are currently
being conducted on FCPCC, two key issues can be
foreseen that will seriously deteriorate the combining
efficiency of FCPCC. Firstly, time synchronization and
spatial beam pointing are notoriously critical factors in
coherent combination, in which time synchronization is
more destructive because few-cycle pulses have an extremely
narrow pulse duration – typically less than five optical
cycles. Secondly, and more importantly, coherent combining
arises from the interference between the fields of parent
few-cycle pulses, and the carrier-envelope phase difference
(�CEP) between them dramatically deforms the combined
laser field. For example, with a CEP shift of π , two
pulses will cause destructive interference with the smallest
intensity. As an optical pulse propagates through a dispersive
material, the CEP evolves due to the difference between
phase and group velocities. Consequently, for amplified
high-energy few-cycle pulses to be coherently combined,
the �CEP originates from material thickness variations
and refractive index changes caused by inhomogeneities
or thermal effects in the amplifier. These factors indicate
that minimizing both the time delay and �CEP between
combined laser pulses is essential for producing stable
combined waveforms. Moreover, the deformation of
coherent combined pulse waveforms can be very similar
when a time delay and �CEP appear, making it difficult to
distinguish them directly from the retrieved combined light
fields[19]. There are methods to control these two parameters
individually, such as balanced cross-correlation (BOC)[20]

for timing jitter and fundamental-to-second-harmonic self-
referencing (f-2f)[21] for CEP stabilization. However, in

an FCPCC system, implementing f-2f measurements and
adjustments for �CEP at the final stage of every laser
channel would introduce excessive complexity.

In this paper, we present a spectral interference (SI)-based
phase difference retrieval method for FCPCC, capable of
simultaneously measuring the time delay and �CEP with
high precision. Our method achieves a time delay measure-
ment resolution of 12 as and controls the standard deviation
(STD) of the time delay synchronization within 42 as. The
�CEP is measured with an accuracy better than 40 mrad.
The experimental implementation demonstrates FCPCC of
two laser channels, with real-time feedback control of both
the time delay and �CEP.

2. The theory of time delay and carrier-envelope phase
difference retrieval

As a linear technique of phase measurement, SI is sensitive
and reliable to detect subtle changes between two laser
pulses[22]. The theory of SI can be simply described by
I (ω) = A2

1 + A2
2 + 2A1A2 cos (Φ (ω)), in which Φ(ω) is their

phase difference. The time delay and �CEP are the two main
phase terms in Φ(ω). Consequently, the interferogram of the
SI is highly sensitive to these parameters, and variations in
Φ(ω) can be directly retrieved from the changing fringes of
the interferogram. A common method for extracting the time
delay from Φ(ω) is the Fourier transform algorithm[23]. How-
ever, this method is better suited for recovering a time delay
longer than the pulse duration, as it avoids overlap of the
individual autocorrelation term and interference term when
applying the inverse Fourier transform to the spectral inter-
ferogram. For FCPCC, the time delay between combined
pulses must be minimized to approach zero. In our proposed
method, the phase difference is directly retrieved by taking
the arccosine of cos(Φ(ω)), and the resulting phase differ-
ence is subsequently fitted using a quadratic function of ω.

Assuming the central frequency of two pulses is ω0, they
can be represented in the frequency domain as follows:

E1 (ω) = A1 (ω)eiϕ1(ω),

E2 (ω) = A2 (ω)ei(ϕ2(ω)+ωτ), (1)

where A1(ω) and A2(ω) are the amplitude spectra of the
pulses, ϕ1(ω) and ϕ2(ω) are the phase spectra and τ rep-
resents the time delay between the two pulses. For chirped
pulses, the phase spectra can typically be expanded using a
quadratic polynomial:

ϕ1 (ω) = ϕ1 (ω0)+GD1 (ω−ω0)

+ 1
2

GDD1(ω−ω0)
2 +o

(
ω3),

ϕ2 (ω) = ϕ2 (ω0)+GD2 (ω−ω0)

+ 1
2

GDD2(ω−ω0)
2 +o

(
ω3) . (2)
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Here, ϕ1(ω0) and ϕ2(ω0) denote the carrier phase
shifts, GD1 and GD2 represent the group delays (GDs), GDD1

and GDD2 denote the group delay dispersion (GDD) and
o(ω3) is referred to as high-order dispersion, which has
a relatively minor impact on the calculation compared to
GDD. Therefore, it can be neglected during the formula
derivation process. However, achieving higher measurement
accuracy requires precise correction of the bias introduced
by third-order dispersion (TOD). For further details, please
refer to the Supplementary Material. Then we can get the
following:

Φ (ω) = 1
2
�GDD ·ω2 + (�GD− τ −�GDD ·ω0)ω

+ 1
2
�GDD ·ω0

2 +�ϕ0 −�GD ·ω0, (3)

where �ϕ0 = ϕ1 (ω0) − ϕ2 (ω0), �GD = GD1 − GD2,
�GDD = GDD1 − GDD2. The above expression shows
that when �GDD �= 0, Φ(ω) is a quadratic func-
tion of ω. Since �GD represents the GD, combin-
ing �GD with τ yields the actual time delay:

td = �GD− τ . (4)

According to the basic properties of a quadratic function,
there is a symmetry axis as follows:

ωs = �GDD ·ω0 − td
�GDD

. (5)

Thus, the actual time delay between the two pulses can be
solved from the symmetry axis as follows:

td = �GDD · (ω0 −ωs) . (6)

It is obvious that ωs is linearly related to td at the symmetry
axis, and td = 0 when ωs = ω0. Here, �GDD is obtained
directly from the coefficient of the quadratic term of the
fitted phase expression. From Equation (3), when td = 0, we
have the following:

Φ (ω0) = �ϕ0 −�GD ·ω0. (7)

Since the CEP refers to the phase difference between the
carrier and the envelope:

ϕ1,CEP = ϕ1 (ω0)−ω0 ·GD1,

ϕ2,CEP = ϕ2 (ω0)−ω0 ·GD2. (8)

Thus, the �CEP between the two pulses is as follows:

�CEP = ϕ1,CEP −ϕ2,CEP = Φ (ω0) . (9)

The above derivation demonstrates that for two pulses with
GDD differences, the time delay between the two pulses can
be determined by analyzing the parabolic characteristics of
the SI phase. By further adjusting the time delay to zero, the
phase value of the central frequency of the pulse corresponds
to the �CEP between the two pulses.

Consequently, both the time delay and �CEP can be
simultaneously resolved, enabling the realization of time
and CEP synchronization. Indeed, �GDD is necessary
and the key point in this method because the function of
Φ(ω) is quadratic only when there is �GDD between two
laser beams. In an FCPCC system, �GDD naturally arises
because the pulse duration must be stretched by dispersion
components and pass through the OPCPA to achieve energy
amplification. This condition also indicates an advantage
of our method in that the time delay and �CEP can be
measured and controlled before dispersion compensation.

3. Experiment: FCPCC of two few-cycle laser beams

An FCPCC system consisting of two few-cycle pulses was
demonstrated to verify the proposed measurement method
for the time delay and �CEP. As shown in Figure 1, the
laser seed was a commercial Ti:sapphire mode-locked fem-
tosecond laser, delivering 10 fs pulses with 20 nJ of energy
at a central wavelength of 800 nm. This pulse duration
corresponds to approximately four optical cycles. The laser
pulse was split into two channels by a 50/50 beam splitter.
The transmission channel (designated as channel 1) from the
splitter had an additional dispersion and an altered CEP. The
CEP of channel 1 was further actively controlled by passing
through a wedge pair, where one wedge was mounted on
a moving stage driven by a direct current (DC) motor to
precisely adjust the wedge thickness. The wedge pair, made
of fused silica, had a wedge angle of 1 mrad. In addition
to introducing a difference in CEP, the movement of the
wedge also introduced changes in the time delay between
channels 1 and 2. In our setup, the closed-loop control
precision of the piezo-driven delay (PZD) line is 0.6 nm.
Specifically, we used the NFL5DP20S/M model from Thor-
labs, paired with a KPC101 controller, both of which are
well-suited for high-precision applications. The coherent
combination of the two laser channels, implemented in a
tiled-aperture configuration, was achieved using an off-axis
parabolic (OAP) mirror with a focal length of 381 mm.
Before combination, the dispersion of the two laser pulses
was compensated by chirped mirrors. As shown in Figure 2,
the pulse durations of the two channels were measured by a
frequency-resolved optical gating (FROG) system to be 10.4
and 10.9 fs, respectively. These results confirm that the two
pulses used for coherent combining were indeed few-cycle
pulses, corresponding to approximately four optical cycles
at a wavelength of 800 nm. To a large extent, in terms of
time delay, dispersion and CEP, our experimental setup can
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Figure 1. Experimental setup of the FCPCC with an SI system for the measurement of time synchronization and �CEP. A commercial Ti:sapphire mode-
locked femtosecond laser provided 10 fs pulses with 20 nJ of energy at a central wavelength of 800 nm. The laser pulse was split by a 50/50 beam splitter
(BS), where laser channel 1 passed through a wedge pair for active CEP control, while laser channel 2 passed only through a time delay controller mounted
on a PZD stage. Both laser channels were sampled for phase difference measurements based on spectral interference. The remaining portions of the lasers
were coherently combined in a tiled-aperture configuration, and the far-field interferogram was captured using a CCD camera. Before combination, the two
channels passed through chirped mirrors (CMs) for dispersion compensation.

Figure 2. Measured pulse durations of the two laser channels. (a) The pulse duration of channel 1 is 10.4 fs. (b) The pulse duration of channel 2 is 10.9 fs.
Both pulse durations correspond to approximately four optical cycles at a central wavelength of 800 nm. The Fourier transform limits according to the
spectrum are 9.3 fs for both channels, as shown by the dotted lines.

simulate the actual situation of coherent combination of two
high-energy few-cycle pulses. Moreover, in the high-energy
few-cycle system, a grating-based compressor is typically
required for the dispersion compensation as it can offer
large amount of GDD. However, the grating compressor
also introduces fluctuations in the CEP. To obtain Fourier
transform limits pulses, chirped mirror pairs are necessary
to provide accurate dispersion compensation. Our �CEP
measurement can be implemented between these two stages,
allowing control over the CEP fluctuations introduced by the
grating compressor.

The SI was implemented using a Mach–Zehnder interfer-
ometer, as shown in Figure 1. The two interference arms were
sampled from laser channels 1 and 2 and recombined in a
collinear geometry through a beam splitter. The interfero-
gram produced by the SI was collected by a spectrometer

(Ocean Optics, HR4000+). The data were analyzed using a
quadratic function fitting method to extract the time delay
and �CEP, which were subsequently fed back to the PZD
and DC motor for active control of these two parameters.
Figure 3 presents the spectral interferogram and the retrieved
phase difference of two laser pulses at different time delays.
Although the retrieved phase difference (orange curve) is
not phase unwrapped, a quadratic curve (red curve) can still
be fitted in all cases. The symmetry axis ωs of the fitted
quadratic curve (blue dotted line) determines the angular
frequency difference (�ω) between ωs and ω0. Omitting the
phase unwrapping step reduces the computation time for
solving the time delay. Using Equation (6), the time delays
shown in Figure 3 were determined to be 1.31, 4.85 and
24.10 fs, respectively. As ωs approaches ω0, the time delay
decreases. When �ω is less than the fitting resolution of our
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Figure 3. Spectral interferogram and retrieved phase difference of two laser pulses at different time delays. Each retrieved phase difference (orange curve)
from the spectral interferogram is fitted with a quadratic curve (red curve). The symmetry axis (blue dotted line) determines the angular frequency difference
�ω = ω0 – ωs, from which the time delay (td) can be calculated.

SI method, the time delay is considered to be zero, indicating
that the two laser pulses are time synchronized. The spectral
resolution of the spectrometer used in our setup is 0.2 nm.
Our measurement method achieves a temporal resolution of
12 as, with further analysis provided in Section 4 and the
Supplementary Material.

Subsequently, the �CEP can be determined using Equa-
tion (2). When the time delay td is equal to zero, the retrieved
phase difference Φ(ωs) corresponds to �CEP. Figure 4
presents the spectral interferogram for this condition, where
all the symmetric axes of the quadratic fitted curves align
with the central frequency ω0. Here, �CEP values of 0.027,
1.534 and 2.950 rad were measured for three different inter-
ferograms, as shown in Figure 4. Without active feedback
control, environmental disturbances – such as mechanical
vibrations and air currents – caused significant time delay
drifts, as shown in Figure 5(a). These drifts led to a loss of
temporal stability, with large fluctuations observed over time.
Engaging the active feedback system effectively suppressed
low-frequency noise components, as shown by the reduced
time delay fluctuations in the latter portion of Figure 5(a)
and the corresponding frequency spectrum in Figure 5(b).

To further validate our ability to precisely measure and
control �CEP, the wedge thickness was adjusted to span
the �CEP across a range of π in our experiment, with

the measurement results depicted as the orange signal in
Figure 6. The optical wedge was adjusted by 1 mm every
few minutes while maintaining time synchronization (blue
signal). Each step of wedge adjustment induced a measured
variation in �CEP of approximately 0.105 rad. Starting at
−1.72 rad, �CEP reached 2.28 rad after 38 adjustments.
Both the blue and orange signals exhibit fine spikes, repre-
senting instantaneous changes in the time delay and �CEP
detected during incremental adjustments of the wedge thick-
ness by the DC motor. Abrupt changes in the time delay
were immediately corrected by the feedback system. During
prolonged feedback stabilization, the STD of the time delay
was effectively controlled to within 42 as.

With the control of the �CEP while keeping time syn-
chronized, we observed the FCPCC using a charge-coupled
device (CCD) camera. Spatial interference fringes formed in
the far-field due to the tiled-aperture configuration. Notably,
this configuration of FCPCC is highly efficient, as it avoids
energy loss and potential damage to the combining mirrors,
making it suitable for high-energy systems at the hundred
millijoule or joule level. Laboratories aiming to achieve
exawatt-class lasers through the coherent combination of
petawatt lasers predominantly employ tiled-aperture config-
uration[24,25]. Figure 7(a) shows the central cross-section of
the far-field interference fringes for varying �CEP values.
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Figure 4. Spectral interferogram and retrieved phase difference of two synchronized laser pulses at different �CEP values. When the symmetry axis ωs of
the quadratic curve aligns with ω0, td is determined to be zero; then, the retrieved phase difference at the symmetry axis corresponds directly to the �CEP.

Figure 5. Time delay stability (a) and jitter power spectrum (b) with feedback on and off.

As the �CEP is varied, the strongest fringe gradually shifts,
demonstrating the linear movement of interference fringes.
This result confirms that the measurement and regulation
of the �CEP were effectively achieved based on time syn-
chronization through SI. To further characterize the FCPCC
performance, we calculated the combining efficiency for
each �CEP value and compared it with numerical simula-
tions based on the angular spectrum method. The combining
efficiency is defined as the ratio of the focused peak intensity
of the combined beam to the maximum achievable value
under perfectly coherent conditions[26]. As shown in Figure
7(b), the experimental combining efficiency (solid line)
aligns very well with the simulated efficiency (dashed line).
The highest combining efficiency, approximately 98.5%, is

reached for �CEP = 0 (blue dot c), while the efficiency
drops to 85.6% when �CEP = π (blue dot e). The high-
est combining efficiency does not reach 100% because of
a measured �GDD of 5 fs2 between the two combined
pulses, which also accounts for the slight differences in
pulse durations shown in Figure 2. Notably, the relative
�CEP measured in the SI setup shown in Figure 1 differs
from the actual �CEP in the far-field combined beam.
However, the relative phase difference between these two
positions remains constant, and we initially calibrated the
phase difference and time delay using the same SI method.
Detailed information on calibration can be found in the
Supplementary Material. The relative phase difference of
�CEP in our experiment was determined to be 1.5 rad.
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Figure 6. Measurement results of continuously varying �CEPs within
a range larger than π while maintaining time synchronization. The blue
signal represents the measured time delay, and the orange signal represents
the measured �CEP. The spikes observed in both signals correspond
to instantaneous changes in the time delay and �CEP, detected during
incremental adjustments of the wedge thickness.

In addition, minor modifications to the experimental setup
in Figure 1 enabled beam combining in a filled-aperture
configuration. A beam splitter sampled the combined pulse
entering the spectrometer and directed a portion to a CCD
camera for focal spot intensity monitoring. Employing the
same experimental procedure as in Figure 7(a), we observed
the combined beam profile behavior depicted in Figure 7(f).
In this configuration, as the two pulses co-propagate axi-
ally, no fringe movement was observed. Instead, significant
intensity modulation occurred in the combined focal spot.
The �GDD between the combined pulses was measured
to be approximately 220 fs2. This relatively high �GDD
produced variations in combining efficiency ranging from
20% to 80%, in strong agreement with our simulations, as
illustrated in Figure 7(g). These experimental results reveal
that in far-field coherent combining, a noncollinear config-
uration is more robust against �CEP variations compared
to a collinear configuration, which results in destructive
interference when �CEP = π . However, the �CEP can
still cause approximately 15% efficiency decline. The exper-
imental results from Figures 6 and 7 demonstrate the precise
�CEP control in both configurations, while simultaneously
ensuring accurate time synchronization.

4. Discussion

The accuracy of the �CEP measurements was evaluated
by comparison with the theoretical values derived from the
experimental setup. The dotted blue line in Figure 8 repre-
sents the theoretical �CEP variation induced by translating
the optical wedges. In the experiment, when the wedge is
displaced by 1 mm, the thickness changes by 1 μm due to
its wedge angle of 1 mrad. Based on the data in Figure 6,
the mean value of the measured �CEP at each step is fitted

Figure 7. Far-field interference fringes and efficiency obtained for FCPCC
under different �CEP values in the tiled- (a) and filled-aperture (f) configu-
rations. The strongest interference fringe in Figure 7(a) gradually shifts with
increasing �CEP, and the highest combining efficiency (98.5%) is reached
only when �CEP = 0. For the filled-aperture configuration in Figure 7(f),
there is no interference fringe, and the maximum beam combining intensity
is also reached when �CEP = 0. The solid lines in Figures 7(b) and
7(g) show the experimentally obtained combining efficiency, while the
dashed lines correspond to the simulation results based on the experimental
parameters. In addition, Figures 7(c)–7(e) and 7(h)–7(j) depict the spatial
interference patterns observed at three distinct �CEP values identified on
the efficiency curves in Figures 7(b) and 7(g), respectively. These patterns
further illustrate the dependence of the combining performance on the
�CEP for each configuration.

to produce the green line in Figure 8, and the measurement
STD is shown as a gray line. The �CEP measurement
shows good agreement with the ideal linear relationship
dictated by the optical wedge thickness variation, as evident
in Figure 8. The fused silica wedge used in the experiment
exhibits minimal surface profile error, enabling the thickness
variation to be treated as ideal and linear, resulting in a corre-
sponding �CEP variation that is also linear. Surface profile
measurements of the wedge, detailed in the Supplementary
Material, confirm that its contribution to the overall error
is negligible. For a laser pulse with a central wavelength
of 800 nm, a thickness variation of 1 μm corresponds to a
�CEP change of approximately 107 mrad.

Our measurement results show a �CEP variation of
105 mrad/μm, which aligns closely with the intrinsic
material parameter of 107 mrad/μm with an error below
2%. The mean STD of the �CEP measurements is about
40 mrad at points farther from �CEP = 0 rad, demonstrating
the good accuracy and stability of our method in these
regions. However, the STD increases significantly near
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Figure 8. Comparison of the variation in �CEP between the measured
results and theoretical values. The dotted blue line represents the theoretical
�CEP variation induced by wedge translation, while the green line is fitted
to the mean measured �CEP values at each step of Figure 5. The gray
line represents the STD of each measurement, in which the mean STD is
40 mrad.

�CEP = 0 rad, reaching approximately 140 mrad, due
to higher sensitivity to time delay jitter in this region.
When the repetition rate of the laser pulse far exceeds
the spectrometer’s acquisition frequency, the SI signal
represents the cumulative result of multiple interferences.
Consequently, the calculated spectral phase difference
reflects an averaged value over the acquisition cycle, which
prevents complete constructive or destructive interference,
as shown by the solid line in Figure 9. To examine this,
simulations incorporating time delays and TOD were
compared with experimental data. As shown in the results,
the spectral phase difference between the two pulses
was distorted at 0 and π . By adding random time delay
jitter (0.15 fs) to simulate the spectrometer’s integration
process, the noisy simulated phase ϕnoise closely matched the
experimental results ϕexp, compared to the phase ϕideal under
ideal conditions, as illustrated by the chain line in Figure 9,
confirming that the incomplete interference originates from
spectrometer averaging. As shown in Figure 4, under the
same experimental conditions, when �CEP = 2.95 rad,
more pronounced phase distortion is observed near the
central frequency. To further reduce measurement deviation,
achieving shorter exposure times and enhanced mechanical
stability is highly necessary.

In the experiment, we calculate the time delay by fitting
a quadratic function to the spectral phase difference to
obtain the symmetry axis ωs, which is subsequently solved
according to Equation (6). Given the exceptional stability of
�GDD, the resolution of the fit to the symmetry axis directly
determines the resolution of the time delay. The spectrometer

Figure 9. Experimental spectral phase difference (solid line) and noisy
simulated phase (dashed line) considering the impact of the time jitter of
multiple pulses.

used in the setup has a pixel resolution of 0.2 nm. To balance
computational accuracy and efficiency, 10 points are selected
from the phase data for each fit, and the symmetry axis
resolution is determined to be 55 GHz using the error prop-
agation method. Furthermore, the corresponding temporal
delay resolution can be calculated using Equation (6), yield-
ing a value of approximately 12 as. Detailed calculations are
provided in the Supplementary Material.

By substituting Equations (4), (6) and (8) into Equa-
tion (7), we obtain the following formula when ω = ω0:

�CEP = Φ (ω0)–ω0· td. (10)

This is the formula we used to obtain the �CEP values in
our experiment. Under the current experimental conditions,
when the optical wedge remains stationary, �CEP is rela-
tively stable. Therefore, variations in �CEP are primarily
caused by changes in the phase at the central frequency
and the time delay. We use the following error propagation
formula:

σ (�CEP) = σ (Φ (ω0))+ω0·σ(t). (11)

In our current experiment, only a single spectrum was
collected before the interference of the two pulses, making it
necessary to consider the impact of light source power stabil-
ity on the measurements. Since Φ (ω0) = arccos

(
I−I1−I2
2
√

I1I2

)
,

the error propagation formula can be expressed as follows:

σ (Φ (ω0)) = σI

2
√

I1I2
√

1− cos2Φ (ω0)
. (12)

From the above equation, it can be observed that Φ(ω0)
exhibits greater uncertainty at 0 or π . This, in turn, explains
why a measurement deviation of 140 mrad was observed
when �CEP = 0. To achieve the optimal resolution of the
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system, measurement points near cos(Φ(ω0)) = 0 should be
selected, as the error amplification factor is minimized and
the system resolution is maximized at this condition. At this
point, Φ(ω0) = π /2. The spectral integration time was 10 ms,
corresponding to a spectral energy fluctuation σ I = 0.5%,
which is relatively small and stable. A 0.5% fluctuation in
light intensity will induce an approximately linear variation
in σ (Φ(ω0)). Then, we calculated σ (Φ(ω0)) = 5 mrad. Given
that ω0σ (td) = 28 mrad, the measurement resolution of
�CEP is determined to be 33 mrad. The current measure-
ment precision is already approaching the resolution limit
of the system under the present experimental conditions. By
increasing the number of sampling points and real-time mon-
itoring of light source fluctuations, it is possible to further
improve the measurement resolution and system stability.
However, this improvement comes at the cost of significantly
longer computation times and higher operational expenses.
Therefore, in practical applications, a balance must be struck
between feedback speed and precision. We cannot further
control these errors in our experiments because the speed
of our feedback loop is much slower than the frequency of
the errors; in other words, the upper bandwidth limit of our
feedback loop is 100 Hz, which is mainly restricted both by
the response time of the PZD and the acquisition frequency
of the spectrum meter.

5. Conclusion

In conclusion, we proposed a method for generating high-
energy few-cycle laser pulses through the coherent combina-
tion of low-energy pulses, using a concise optical approach
based on SI to simultaneously synchronize time delay and
CEP. Without involving nonlinear optical processes, this
method has quite a low requirement for laser energy, which
makes it possible to integrate these measurements on a chip-
based spectrometer[27,28]. In addition to a few-cycle laser,
the time delay measurement and control can be extended
to femtosecond lasers and picosecond lasers. Notably, this
method remains robust and scalable when applied to high-
energy few-cycle pulse systems. Its ability to perform single-
shot spectral sampling for each pulse eliminates measure-
ment errors caused by energy fluctuations, which is critical
for the coherent combination of amplified lasers with lower
repetition rates. In the next step of our work, this method will
be exploited in the coherent combination of several amplified
few-cycle lasers with tens of millijoule energy, which can
further push the energy of few-cycle laser pulses to the joule
level.

Supplementary material

The supplementary material for this article can be found at
http://doi.org/10.1017/hpl.2025.33.
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