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Hierarchy of coherent structures and real-space
energy transfer in turbulent channel flow
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By analysing a database (Lozano-Durán & Jiménez, Phys. Fluids, vol. 26, 2014, 011702)
of fully developed turbulent channel flow at the friction Reynolds number Reτ = 4179,
we investigate the sustaining mechanism of a hierarchy of coherent structures in the
turbulence. For this purpose, we decompose the turbulent fields into different scales
by band-pass filters and quantify the real-space energy transfer. Visualizations of the
hierarchy of vortices and velocity in the filtered fields show that the largest-scale structures
at each distance from the wall are composed of quasi-streamwise vortices and low-speed
streaks. These are similar to well known coherent structures in the buffer layer and
they are maintained by a hierarchical self-sustaining process. Quantitatively, however, the
energy production rate of the largest-scale structures is different in the log and buffer
layers. This difference explains the change of the scaling of the Reynolds stress as a
function of the Reynolds number. In contrast to the largest-scale structures, vortices
smaller than the distance from the wall distribute isotropically, and they are generated
by an energy cascading process. The energy of these small-scale structures is transferred
predominantly from twice-larger-scale structures and reduced by half-scale ones through
the vortex stretching and contraction, respectively. Turbulent advection from the wall
hardly contributes to the maintenance of small-scale structures in the log layer.

Key words: vortex dynamics, turbulent boundary layers, boundary layer structure

1. Introduction

Near-wall turbulence is sustained by the so-called self-sustaining process (SSP); that
is, streamwise vortices induce low- and high-speed streaks by the advection of the
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Figure 1. Vortices and low-speed structures visualized by the isosurfaces of the second invariant (Q+ =
3.0 × 10−3, yellow) of the velocity gradient tensor and of the streamwise fluctuating velocity (ǔ+ = −3, blue),
respectively. The grid width on the wall indicates 1000 wall units. The flow is from lower left to upper right. We
visualize a subdomain (half in the spanwise direction and full in the streamwise direction) of the computational
domain.

streamwise momentum, while an instability induces the meandering of streaks leading to
the regeneration of streamwise vortices (Hamilton, Kim & Waleffe 1995; Waleffe 1997).
It is also known that these quasi-streamwise vortices are inclined in the wall-normal and
spanwise directions and they are located in a staggered array (Jeong et al. 1997). When the
Reynolds number is low, there is no scale separation and the SSP explains the sustaining
mechanism of the turbulence very well.

However, as the Reynolds number increases, larger-scale vortices appear in addition
to these near-wall coherent vortices. We emphasize that we cannot identify larger-scale
vortices in terms of the velocity gradients. For example, the yellow objects in figure 1
are the positive isosurfaces of the second invariant Q of the velocity gradient tensor in
turbulent channel flow at the friction Reynolds number Reτ = uτ h/ν = 4179 (see § 2.1 for
the details of the database). Here, uτ is the skin-friction velocity and h is the channel
half-width. We can only observe the smallest-scale vortices in figure 1. On the other
hand, looking at the blue isosurfaces of the fluctuating streamwise velocity, larger-scale
motions are prominent. Thus, the quantities related to the velocity are appropriate for
extracting the largest-scale structures, whereas those related to its gradients are appropriate
for extracting the smallest-scale structures. This is the reason why the velocity has been
often used for investigating large-scale motions (LSM). For example, Adrian, Meinhart
& Tomkins (2000) investigated the velocity field in a turbulent boundary layer to show
that large-scale hairpin vortices formed packets, which are a kind of LSM. Lee & Sung
(2011) also showed that a packet of hairpin vortices merged the adjacent one, resulting
in the creation of very large-scale motions (VLSM). Incidentally, Kevin, Monty &
Hutchins (2019a) found that large-scale quasi-streamwise vortices exist along the side
of large-scale low-speed structures. Thus, since one can easily extract the large-scale
structures by visualizing LSM and/or VLSM with the velocity (or the filtered velocity),
many authors (e.g. Adrian 2007; Hutchins & Marusic 2007; Monty et al. 2007; Dennis &
Nickels 2011a,b; Baltzer, Adrian & Wu 2013; Lee et al. 2014; Lee, Sung & Zaki 2017;
Kevin, Monty & Hutchins 2019b) examined large-scale streaky velocity structures and
their relation to large-scale vortices.

A different approach for extracting multiscale motions in the real space was introduced
by Hwang & Cossu (2010), who artificially quenched small-scale motions by using
overdamped large-eddy simulations (LES). By examining the coarse-grained fields where
small-scale flow structures are absent, Hwang (2015) showed that energy-containing
motions attached to the wall were self-similar. This is a picture consistent with the
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Hierarchy in turbulent channel flow

attached eddy theory (Townsend 1976). These wall-attached structures are composed
of streamwise-elongated streaky motions and relatively short vortical structures.
Hwang & Bengana (2016) also explored the self-similar nature of the SSP by conducting
the overdamped LES in a minimal computational domain.

In our previous study (Motoori & Goto 2019a), we extracted the hierarchy of multiscale
vortices in a turbulent boundary layer by coarse graining the velocity fields obtained
by a direct numerical simulation. Since the coarse graining enables us to quantify the
interactions among different scales, we evaluated the scale-dependent contributions of the
vortex stretching to reveal the generation mechanism of multiscale vortices; vortices as
large as the height from the wall are stretched by the mean shear, whereas smaller-scale
vortices are stretched by larger-scale vortices. The latter generation mechanism in terms
of the vortex stretching is consistent with a picture of the energy cascade in turbulence
in a periodic cube (Goto 2008, 2012; Leung, Swaminathan & Davidson 2012; Goto, Saito
& Kawahara 2017) and turbulent channel flow at Reτ = 932 (Lozano-Durán, Holzner &
Jiménez 2016). However, it is not obvious that the process that larger-scale vortices stretch
smaller-scale ones corresponds to the energy transfer to smaller scales. This issue was
investigated by introducing the scale-dependent energy transfer in the real space (Goto
2008, 2012) for periodic turbulence, and it was concluded that the energy cascade was
the creation of thinner vortex tubes in strongly straining regions around fatter tubes.
On the other hand, for wall-bounded turbulence, there are only a few studies of the
real-space energy transfer because the quantification of the scale-dependent transfer rate
is not straightforward. For example, by using the balance equation of the second-order
velocity structure function (a generalized Kolmogorov equation) for turbulent channel
flow, Cimarelli et al. (2016) examined the energy transfer in the space and scales to show
that two types of energy sources caused the complex dynamics of the cascade.

In the present study, we investigate band-pass filtered fields in turbulent channel flow at
Reτ = 4179 (Lozano-Durán & Jiménez 2014). The Reynolds number of the flow is much
higher than in the turbulent boundary layer (Reτ ≈ 1000) examined in our previous study
(Motoori & Goto 2019a). The purposes of the present study are (i) to show the concrete
relation of flow structures (vortices and low-speed regions) at each level of the hierarchy,
and (ii) to show the relation between vortex generation processes and the energy cascade,
and its similarity in the two wall-bounded turbulent flows. In the rest of the present
paper, we first describe in § 2 the numerical database of the turbulent channel flow and
the scale-decomposition method. We then examine the different-scale fields to show the
hierarchical structures of vortices and streaks (§ 3.1), and their generation mechanisms in
terms of the vortex stretching (§ 3.2) and of the real-space energy transfer (§ 3.3).

2. Methods

2.1. Numerical database
To reveal hierarchical turbulent flow structures, we investigate data of a direct numerical
simulation of turbulent channel flow at the friction Reynolds number Reτ = 4179
(Lozano-Durán & Jiménez 2014). The simulation was conducted by integrating the
Navier–Stokes equations for an incompressible fluid in terms of the wall-normal
component of the vorticity and its Laplacian (Kim, Moin & Moser 1987). For the
spatial discretization, the Fourier spectral method was used in the wall-parallel directions,
whereas the seven-point compact finite difference scheme (Lele 1992) was used in the
wall-normal direction. The sides of the computational domain are Lx = 2πh, Ly = 2h and
Lz = πh, where x, y and z denote the streamwise, wall-normal and spanwise directions,
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respectively. This computational domain is large enough to examine statistics of fully
developed turbulence (Lozano-Durán & Jiménez 2014). The Taylor-length-based Reynolds
number at y/h ≈ 0.4 is approximately 200.

2.2. Scale decomposition
To extract the hierarchy of flow structures in the turbulence, we employ a filter
corresponding to the Fourier band-pass filter for the velocity. First, we apply a Gaussian
filter

u(σ )low
i (x) = C(σ )

∫
V

ǔi
(
x′) exp

(
− 2

σ 2 (x − x′)2
)

dx′ (2.1)

to the fluctuating velocity ǔi. Here, σ denotes the filter scale and C(σ ) is the coefficient to
ensure that the integration of the kernel is unity. For the wall-normal direction, we use the
method proposed by Lozano-Durán et al. (2016) that the filtering operation is extended by
reflecting the filter at the walls and the sign of ǔ2(=v̌) is inverted in order to ensure the
incompressibility and the no-slip boundary condition of v(σ). Since u(σ )low

i captures the
information for all scales larger than σ , the filter corresponds to a low-pass filter of the
Fourier modes of the velocity. Then, we take the difference between the low-pass filtered
fields at two different scales, i.e.

u(σ )
i (x) = u(σ )low

i (x) − u(2σ)low
i (x). (2.2)

Since the kernel of this filter (2.2) is also the difference of the kernels of the two Gaussian
filters (2.1), its integration over |x| < |x0| is approximately zero, if |x0| > 2σ ; namely,
its convolution with the velocity in scales larger than 2σ almost vanishes. Therefore, this
filtering procedure eliminates motions in scales larger than 2σ in addition to those smaller
than σ . Therefore, u(σ )

i has contributions from only around the scale σ . Although the centre
of the scale range is

√
2σ and 1.5σ in the logarithmic and linear scale, respectively, we

refer to σ (the lower bound of the scale range) as the scale of the filtered field. Incidentally,
in our previous study (Motoori & Goto 2019b), we examined the two filters (2.1) and (2.2)
to show that they lead to similar conclusions on the hierarchy of multiscale vortices, but
the latter is more appropriate for the present investigation of flow structures related both
to the velocity and its gradient. The study also showed that, the filter u(σ )low

i − u(21/4σ)low
i

with a narrower band width (0.19σ ≈ 21/4σ − σ ) leads to the same conclusion with the
present band width (σ = 2σ − σ ) for nonlinear interactions among scales in a turbulent
boundary layer. Note also that we evaluate a scale-decomposed quantity ·(σ ) (for example,
the scale-decomposed strain-rate tensor S(σ )

ij ) from u(σ )
i .

3. Results

In this section, we will first show the hierarchy of vortices and its relation to the low-speed
region in the real space (§ 3.1). This gives us a clear view to understand what happens in
the real space, when we quantitatively investigate the vortex stretching (§ 3.2) and energy
transfer (§ 3.3) among structures in different scales. Since the scope of the present study is
the investigation of nonlinear interactions among motions in different scales, we will show
in the following the results for the buffer and log layers (y+ � 10), where ·+ denotes the
wall unit.
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Hierarchy in turbulent channel flow

3.1. Hierarchy of vortices and low-speed structures
As mentioned in the introduction, when we visualize the positive isosurfaces of the second
invariant Q of the velocity gradient tensor, only the smallest-scale vortices are captured
(yellow objects in figure 1). This is because the smallest-scale flow structures are relevant
to quantities related to the velocity gradient. On the other hand, when we visualize,
for example, the negative isosurfaces of the fluctuating streamwise velocity, structures
as large as the distance from the wall are captured (blue objects in figure 1). This is
because quantities related to the velocity are predominantly determined by the largest-scale
structures.

Thus, figure 1 shows a clear scale-separation between the structures associated with
velocity and its gradients. This is consistent with the spectral distributions of energy and
dissipation (Jiménez 2012). To extract arbitrary-scale structures, we employ the band-pass
filter defined by (2.2). Figure 2 shows the isosurfaces of the second invariant Q(σ ) (yellow)
of the velocity gradient tensor and the streamwise velocity u(σ ) (blue), which are evaluated
from the fields filtered at three different scales: (a) σ+ = 960, (b) 240 and (c) 60. Note
that each of them contains the largest-scale (σ ≈ y) structures at a height around the
upper boundary (panel a) and lower boundary (panel b) of the log layer, and in the buffer
layer (panel c). Note also that σ+ = 60 is larger than the diameter (approximately 10η)
of the smallest-scale vortices, where η is the Kolmogorov scale (e.g. σ+ = 60 at y = h
corresponds to σ = 11η). In figure 2, by using a percolation analysis, we choose the
thresholds (Q(σ )

per and u(σ )
per ) of the isosurfaces in an objective manner (see appendix A for

the details), which enables us to identify separated structures. We can see that vortices
and low-speed structures identified from the band-pass filtered fields at different scales are
hierarchical.

Looking at the scale comparable to approximately 0.2h (figure 2a), we notice that
vortices (yellow) are quasi-streamwise but they are also inclined to the wall-normal
direction, and that largest-scale streaks (blue) are located beside these quasi-streamwise
vortices. This combination of quasi-streamwise vortices and meandering streaks is
reminiscent of the coherent structures in the buffer layer that were found by Jeong et al.
(1997) for low-Reynolds-number turbulence. The observed largest streaks correspond
to VLSM and the quasi-streamwise vortices to LSM, which were observed by Hwang
(2015) in the overdamped LES, though the streamwise length of the observed streaks is
limited by the streamwise length (2πh) of the computational domain and shorter than its
real length (approximately 15h) of the VLSM. Furthermore, it is important that similar
wall-attached structures are observed in the buffer and log layers. Evidence is given in
figure 3, where we crop such structures in rectangular boxes whose faces are parallel to the
computational domain. We see that the combination of vortices and streaks is similar in the
three panels in figure 3. In other words, the largest-scale structures at each height (σ ∼ y),
i.e. wall-attached structures, are the coherent structures composed of quasi-streamwise
vortices and low-speed streaks irrespective of the height y. Although we cannot observe
such hierarchical structures in the turbulent fields without scale decomposition (figure 1),
once we decompose the velocity field, it is easy to find the self-similar hierarchy of the
flow structures.

Next, to show that the observed structures are dominant, we evaluate averaged
distributions of Q(σ ) and u(σ ) with a given scale σ at a given height yr around intense
vortices. We take averages of Q(σ ) and u(σ ) around the points which satisfy the conditions
that Q(σ ) at a fixed height yr is larger than isosurfaces level Q(σ )

per in figure 2 and
the streamwise vorticity ω

(σ)
x is positive. Note that the former condition is determined

911 A27-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1025


Y. Motoori and S. Goto

y

z
x

y

z
x

y

z
x
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Figure 2. The hierarchy of vortices and low-speed structures at the same instant and location as in figure 1.
Isosurfaces of the second invariant Q(σ ) (yellow) of the velocity gradient tensor and the streamwise velocity
u(σ ) (blue) filtered at (a) σ+ = 960, (b) 240 and (c) 60. The thresholds Q(σ )

per are determined by the percolation
analyses (see appendix A), namely, (a) Q(σ )/Q(σ )

rms = 0.25 and u(σ )/u(σ )
rms = −1, (b) 2 and −2, (c) 8 and −3.

The grid width on the wall indicates 1000 wall units. The flow is from lower left to upper right.

objectively by the percolation analyses (appendix A), and the latter condition (ω(σ)
x ( yr) >

0) breaks the spanwise symmetry. We show in figure 4 the isosurfaces of the conditional
averages of Q(σ ) (yellow) and u(σ ) (blue) for the filter scales (a) σ+ = 960, (b) 240 and
(c) 60. Since the heights y+

r where the conditions are imposed are as large as the filter
scales (i.e. (a) y+

r = 960, (b) 240 and (c) 60), the obtained structures are the largest scale
possible at each height. As expected from the previous observation in figure 3, the averaged
structures for the largest scale are similar irrespective of the heights. The vortices are in
the quasi-streamwise direction and inclined to the wall-normal and slightly to the spanwise
directions (the different views of figure 4c are shown in figure 5g–i). Incidentally, the
inclination angle (i.e., the angle with respect to the wall of the line connecting the two
points with the maximum of Q(σ ) on the cross-sections at x = ±σ ) are (a) 40, (b) 35
and (c) 27◦. The low-speed structures are also consistent with the observation in figure 3;
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(a)

(b)

(c)

Figure 3. An example of the hierarchy of quasi-streamwise vortices and a low-speed streak for the scales (a)
σ+ = 960, (b) σ+ = 240 and (c) σ+ = 60. Subdomains in figure 2 are shown, but the thresholds are different
((a) Q(σ )+ = 6.0 × 10−7 and u(σ )+ = −0.5, (b) 1.0 × 10−5 and −0.5, (c) 3.0 × 10−4 and −0.7). Here, we
choose these thresholds so that we can visualize attached structures. The lighter yellow indicates the isosurfaces
with the positive ωx, whereas the darker yellow indicates those with the negative ωx. The grid width on the
wall indicates 1000 wall units. The flow is from lower left to upper right.

yr
+ = 960 yr

+ = 240 yr
+ = 60

z = 0 z = 0 z = 0

x = 0 x = 0 x = 0

ωx

(a) (b) (c)

Figure 4. Averaged distribution of Q(σ ) and u(σ ) around the intense largest-scale vortical structures at each
height: (a) σ+ = y+

r = 960, (b) σ+ = y+
r = 240, (c) σ+ = y+

r = 60. The thresholds of the yellow isosurfaces
are Q(σ )

per/5, and those of the blue ones are −u(σ )
rms/2. The black arrows indicate the centre (0, yr, 0) of the

reference frame in which the conditional average is taken. The grid width on the wall is σ(=yr). The flow is
from lower left to upper right. The blue arrow in panel (a) indicates the direction of ω with positive ωx.

a low-speed streak at each height tends to locate on the left-hand side of the vortices
(lighter yellow) at the scale with positive streamwise vorticity. We have confirmed that a
low-speed structure is located on the right-hand side of the vortex with negative streamwise
vorticity under the condition ω

(σ)
x < 0 (figure is omitted). This observation in the real

space not only supports the results of the studies on the wall-attached clusters (e.g. del
Álamo et al. 2006; Lozano-Durán, Flores & Jiménez 2012) and of the spectral analysis
(e.g. Baars, Hutchins & Marusic 2017), but also clarifies the details of the wall-attached
structures; for example, it is evident that the largest-scale structures are similar to the well
known buffer-layer coherent structures. This implies that they are likely to be maintained
by the SSP. Since such processes occur simultaneously at different heights, we refer to
them as the hierarchical SSP. This self-similar nature of the coherent structures was also
observed in the overdamped LES (Hwang 2015; Hwang & Bengana 2016).

Next, let us investigate small-scale vortices away from the wall. We show in figure 5 the
different views of the isosurfaces of Q(σ ) for a scale σ+ = 60 at different heights: (a–c)
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z

x

x = 0

z = 0

(a) (b) (c)

(d) (e) ( f )

(i)(h)(g)

Figure 5. Different views of the conditionally averaged objects of the vortex with scale σ+ = 60 at heights
(a–c) y+

r = 960, (d–f ) 240 and (g–i) 60. The thresholds are set to be Q(σ )
per/5 = 1.6Q(σ )

rms( yr).

y+
r = 960, (d–f ) 240 and (g–i) 60. Since the vortex shown in figure 5(g–i), which is at

the largest scale in the sense that σ = yr, is identical to the one in figure 4(c), we may
confirm that the vortex is inclined to both the wall-normal (see figure 5h) and spanwise
directions (see figure 5i). In contrast, detached structures (σ < yr) are more spherical
(see figure 5a–c). However, this observation does not imply that the vortical structures
themselves are spherical but implies that they are distributed isotropically. This fact is
consistent with the conclusion by Jiménez (2013) that smaller-scale vortices away from the
wall decouple from the mean shear and their orientation becomes isotropic. In our previous
study (Motoori & Goto 2019a), we also showed that smaller-scale vorticity became less
aligned to the mean-flow stretching direction in a turbulent boundary layer.

Before closing this subsection, we investigate the spatial relation between small-scale
vortices and large-scale structures. We take an average of the large-scale (σ+ = 960) fields
under the condition that small-scale (σ+

cond = 60) vortices away from the wall (y+
r = 960)

exist. We set Q(σcond)( yr) > Q(σcond)
per = 8Q(σcond)

rms ( yr) as the condition so that we can
examine correlation between large-scale structures and intense small-scale vortices. Note
that, since this condition cannot break the spanwise symmetry, obtained structures are
always symmetric in the spanwise direction. Figure 6 shows the transparent isosurfaces of
the conditionally averaged quantities of ω

(σ)
x , u(σ ) and v(σ). Looking at the yellow (positive

ω
(σ)
x ) and green (negative ω

(σ)
x ) objects and the dot (0, yr, 0) indicated by the black arrow

where the small-scale vortices exist, we can see that small-scale vortices away from the
wall are more likely to exist in the ejection (upflow, red; low-speed streak, blue) induced
by these large-scale streamwise vortices (yellow and green). Note again that this does not
necessarily mean the existence of counter-rotating vortices. The conclusion drawn from
figure 6 that small-scale vortices tend to be in large-scale streaks is consistent with the
observation by Tanahashi et al. (2004). A similar relation between vortex clusters and
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ωx

x = 0

z = 0

yr
+ = 960

Figure 6. Average large-scale (σ+ = 960) structures under the condition of the existence of intense
small-scale (σ+

cond = 60) vortices (Q(σcond) > Q(σcond)
per = 8Q(σcond)

rms ) at the height y+
r = 960. Thresholds are

25ω
(σ)
x,rms (yellow), −35ω

(σ)
x,rms (green), −0.3u(σ )

rms (blue) and 0.3v
(σ)
rms (red). The black arrow indicates the centre

(0, yr, 0) of the reference frame in which the conditional average is taken. The grid width on the wall indicates
σ+(= y+

r = 960). The flow is from lower left to upper right. The blue arrow indicates the direction of ω with
positive ωx.

large-scale streaks was also shown by del Álamo et al. (2006) and Lozano-Durán et al.
(2012).

In this subsection, two main conclusions are obtained from the scale-dependent analyses
in the real space. One is that the largest-scale structures at each height (i.e., wall-attached
structures) are hierarchically composed of quasi-streamwise vortices and low-speed streaks
(figures 3 and 4). This implies that they are simultaneously maintained by the SSP
at different heights, that is, the hierarchical SSP. The other is that the orientation of
small-scale vortices away from the wall is isotropic (figure 5), and they tend to exist in the
large-scale ejection induced by quasi-streamwise vortices (figure 6). However, as will be
shown below, the last conclusion does not imply that small-scale vortices are carried from
the wall. In the following two subsections, we will develop more quantitative arguments
on their sustaining mechanism.

3.2. Sustaining mechanism: vortex stretching
The transport equation for the enstrophy ω2

i /2 reads

1
2

Dω2
i

Dt
= ωiSijωj + νωi∇2ωi, (3.1)

where ωi is the vorticity, Sij is the strain-rate tensor and ν is the kinematic viscosity.
Only when the vortex stretching term is positive, the enstrophy is amplified, because the
viscous term νωi∇2ωi weakens the enstrophy. Therefore, to investigate the generation
mechanism of vortices, we focus on the vortex stretching term. Since strain rates at all
scales simultaneously contribute to the stretching of the vorticity at a given scale, we
decompose ωi and Sij into various scales to define

gf (σS → σω; y) =
ω

(σω)
i S(σS)

ij ω
(σω)
j

ω
(σω)2
i

. (3.2)

Here, ω
(σω)
i is the fluctuating vorticity filtered at the scale σω, and S(σS)

ij is the fluctuating
strain rates filtered at σS. Hence, gf (σS → σω) indicates the contribution of the production
rates of the enstrophy at σω from fluctuating strain rates at σS. If gf (σS → σω) is positive
(or negative), it implies the stretching (or contraction) of the vorticity at σω by the strain
rate at σS. Similar quantities were defined by Goto et al. (2017) for periodic turbulence and
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by ourselves (Motoori & Goto 2019a) for a turbulent boundary layer. We also define the
contribution from the mean shear to the stretching of vortices at σω by

gm(M → σω; y) =
ω

(σω)
i Sijω

(σω)
j

ω
(σω)2
i

, (3.3)

where Sij is the mean rate of strain. Note that only S12 and S21 are non-zero in the channel
flow. Note also that (3.2) and (3.3) differ only in the source of the stretching (i.e. S(σS)

ij and
Sij), and that, for example, when gm(M → σω; y) is positive, the mean shear stretches the
vorticity at σω. Here, when taking the average in the streamwise and spanwise directions
and time at a fixed y, we impose two conditions. One is that the stretched vorticity is
in a rotational region (Q(σω) > Q(σω)

rms ). The other is the condition whether the stretched
vorticity is in the upflow (i.e. large-scale ejection; v(σcond) > v

(σcond)
rms ) or downflow (i.e.

large-scale sweep; v(σcond) < −v
(σcond)
rms ) for a large scale σ+

cond = 960. We impose the latter
condition to examine the origin of the observation (figure 6) that smaller-scale vortices
away from the wall are more likely to exist in the largest-scale upflow regions.

We show, in figure 7, gf (black or grey) and gm (blue or light blue) in the upflow case
(darker colours) and the downflow case (lighter colours) for (a) y+ = 960, (b) 240 and
(c) 60. These are normalized by the channel half-width h and the skin-friction velocity
uτ . Since the contributions in the upflow and downflow cases are quantitatively similar,
first we describe observations common in the both cases. Looking at the open circles in
figure 7(a) for a small-scale (σ+

ω = 30) at a location (y+ = 960) near the upper boundary
of the log layer, the contributions from fluctuating strain rates at the scales one to eight
times larger than σ+

ω (= 30) are larger than gm. In particular, the contribution gf (2σω →
σω) from the twice-larger scale is the largest. This is also the case for other small scales
σ+

ω = 60 (open squares) and 120 (open triangles). It is also interesting to observe that
gf < 0 for σS � σω/2. This implies that the vortices are contracted by smaller-scale strain
rates on average. On the other hand, for the vortices (σ ∼ y, for example, closed circles
in figure 7a) whose size is of the order of the distance from the wall, the contributions
from the mean shear are larger than those from the fluctuating strain rates (gf � gm) at
any scale.

The results for a location (y+ = 240) around the lower boundary of the log layer
(figure 7b) show a similar tendency to the above observations for y+ = 960. Small-scale
vortices (open squares) are stretched most significantly by the twice-larger scale, whereas
large-scale vortices (open triangles and closed circles) are stretched directly by the mean
shear.

Next, let us look at the contributions in the buffer layer (y+ = 60; figure 7c)
where the hierarchy of vortices is absent. If we refer to σ ∼ y as a large scale, there
are only large-scale vortices in the buffer layer. Although, among the contributions
from the fluctuating strain rates, the twice-larger scale contributes most significantly,
the contributions from the mean shear are always more important (gf < gm). These
observations for y+ = 960, 240 and 60 are similar to those in the log and buffer layers
in a turbulent boundary layer (Motoori & Goto 2019a).

We have thus shown that, at any height in the buffer and log layers, the largest-scale
(σ ∼ y) vortices are stretched by the mean shear. This result supports the speculation on
the basis of the spatial structures (figures 3 and 4) that the largest-scale structures are
maintained by the hierarchical SSP. This is because gm (the stretching by the mean shear)
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Figure 7. Averaged contribution gf defined by (3.2) from the strain rate at σS to the stretching of vortices
at σ+

ω = 30 (◦), 60 (� ), 120 (	) and 240 (•) at heights (a) y+ = 960, (b) 240 and (c) 60. The larger symbols
correspond to the self-contribution (σS = σω). Blue and light blue symbols indicate the contribution gm defined
by (3.3) from the mean shear. Here, gf and gm are normalized by h and uτ . The averages are taken under the
conditions v(σcond) > v

(σcond)
rms (black and blue) and v(σcond) < −v

(σcond)
rms (grey and light blue) at σ+

cond = 960 for
each height y.

corresponds to the lift-up (tilting) of quasi-streamwise vortices in the SSP (Hamilton et al.
1995; Hwang & Bengana 2016).

Next, we discuss the difference in the large-scale upflow and downflow regions. We
observe in figure 7 that gf (2σω → σω) shown by the black lines (in the upflow case) for
small-scale vortices in the log layer (i.e., σ+

ω = 30, 60 and 120 in figure 7a) are larger
than the values by the grey lines (in the downflow case). This implies that the small-scale
enstrophy production rates in upflow regions are larger than those in downflow regions.
This is reasonable because, in upflow regions, the source of the vorticity is carried from
the wall. Note that, small-scale enstrophy in the log layer is not simply advected by the
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largest-scale upflow but they are amplified due to the stretching by one to eight times
larger-scale strain rates. This point will be further verified in the next subsection.

3.3. Sustaining mechanism: real-space energy transfer
We have evaluated the scale-dependent enstrophy production rates and shown
that small-scale vortices away from the wall are stretched predominantly by the
twice-larger-scale vortices. Although this generation mechanism of the hierarchy of
vortices seems consistent with the notion of the energy cascade, the creation of
smaller-scale vortices may not necessarily correspond to the energy transfer to smaller
scales. This issue was investigated by Goto (2008, 2012) for periodic turbulence, but here
we employ a different approach. The transport equation for the mean turbulent kinetic
energy K = ǔiǔi/2 is given by

∂K
∂t

= ∂

∂xj

{
−ūjK − 1

2
ǔjǔ2

i − 1
ρ

ǔjp̌ + ν

(
∂K
∂xj

+ ∂

∂xi
ǔjǔi

)}

− ǔiǔj
∂ ūi

∂xj
− 2νŠijŠij, (3.4)

where Šij is the fluctuating strain-rate tensor (∂ ǔj/∂xi + ∂ ǔi/∂xj)/2. The terms in
∂/∂xj{· · · } in (3.4) denote the mean-flow advection, turbulent advection, velocity-pressure

correlation and viscous diffusion, respectively. The term −2νŠijŠij denotes the viscous
dissipation. These terms do not contribute to the production of the turbulent energy K on
average. On the other hand, −ǔiǔj∂ ūi/∂xj is the production of K by the mean flow. To
investigate interscale energy transfer, we must decompose the velocity in (3.4) into scales.
Recently, Kawata & Alfredsson (2018) used a decomposition to analyse interscale transfer
of the Reynolds stress in plane Couette flow. They decompose the fluctuating velocity
into large-scale u(L) and small-scale u(S) parts by sharp Fourier filtering in the spanwise
wavenumber space. Since the Fourier filter is orthogonal, the cross-correlation u(L)u(S)

vanishes. Then, we can derive the transport equation for the energy of the large- and

small-scale parts. For example, the equation for the small-scale energy (K(S) = u(S)
i u(S)

i /2)
is given by

∂K(S)

∂t
= ∂

∂xj

{
−ūjK(S) − 1

ρ
u(S)

j p(S) + ν

(
∂K(S)

∂xj
+ ∂

∂xi
u(S)

j u(S)
i

)}

− u(S)
i u(S)

j
∂ui

∂xj
− 2νS(S)

ij S(S)
ij + Ad′(L → S) + Tr′(L → S), (3.5)

where

Ad′(L → S) = −1
2

∂

∂xj

{
u(S)

i u(S)
i u(S)

j + u(S)
i u(S)

i u(L)
j + 2u(S)

i u(L)
i u(L)

j

}
(3.6)

and

Tr′(L → S) = −u(S)
i u(S)

j
∂u(L)

i
∂xj

−
⎛
⎝−u(L)

i u(L)
j

∂u(S)
i

∂xj

⎞
⎠ (3.7)

denote the interscale interaction related to the spatial redistribution of K(S) and the
energy transfer from large to small scales, respectively. In particular, we can interpret that
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Hierarchy in turbulent channel flow

−u(S)
i u(S)

j ∂u(L)
i /∂xj in (3.7) is the energy transfer from the large to small scales, while

−u(L)
i u(L)

j ∂u(S)
i /∂xj is from small to large scales. In the present study, although we cannot

describe the equation for K(σ ) = u(σ )
i u(σ )

i /2 in a simple form due to the non-orthogonality
of the filter, by making use of the terms composed of two different scales, we quantify
real-space energy transfers between these scales as follows. First, we define the production

Pr(M → σto; y) = −u(σto)
i u(σto)

j
∂ui

∂xj
= −u(σto)v(σto)

∂ ū
∂y

(3.8)

of the σto-scale energy K(σto) by the mean flow. This term is obtained by replacing u(S)
i

with u(σto)
i in (3.5). We also quantify the interscale energy transfer

Tr(σfr → σto; y) = −u(σto)
i u(σto)

j
∂u

(σfr)

i
∂xj

−
⎛
⎝−u

(σfr)

i u
(σfr)

j
∂u(σto)

i
∂xj

⎞
⎠ (3.9)

from scale σfr to σto and the turbulent advection

Ad(σfr → σto; y) = −1
2

∂

∂xj

{
u(σto)

i u(σto)
i u(σto)

j

+ u(σto)
i u(σto)

i u
(σfr)

j + 2u(σto)
i u

(σfr)

i u
(σfr)

j

}
(3.10)

of K(σto). These terms are obtained by replacing L and S in (3.5) with σfr and σto,
respectively, and they represent the contributions from scale σfr to scale σto. We note again

that, although non-diagonal parts (u(σto)
i u(σ ) for σto /= σ ) do not vanish, the terms defined

by (3.8)–(3.10) approximate contributions to the energy around the scale σto. We confirm

this in figure 8, which shows the ratio of non-diagonal parts K(σto, σ ) = u(σto)
i u(σ )

i /2 to
the diagonal part K(σto, σto) (i.e. K(σto)) as a function of σ and y. We see that the most
correlated scales are distributed in a range around σ ≈ σto irrespective of the height y.
Therefore, the terms (3.8)–(3.10) may evaluate the contributions to the energy around σto.
Note also that, although many nonlinear terms related to energy transfers through triad
interactions also contribute to the change of K(σto), we assume in the present study that
Tr and Ad composed of σfr and σto play an essential role in the energy transfer. Thus, by
evaluating the terms (Pr, Tr and Ad) as functions of σfr, σto and y, we will show in the
following how the energy with a scale σto at a height y is sustained.

3.3.1. Production by the mean shear
The blue line in figure 9 shows the total production rate of turbulent kinematic energy as
a function of y. Although it is a monotonically decreasing function of y, its decomposition
into scales makes the mechanism of the energy production much clearer. We show in
figure 9 the production Pr(M → σto) by the mean flow for six different scales σ+

to = 30,
60, 120, 240, 480 and 960 as a function of y. The thinner (and darker) lines indicate the
contribution to the smaller scales. It is remarkable that, for a given height y, Pr(M →
σto ≈ y) is always largest (see the open squares on the lines) among different σto. This
implies that the mean shear always produces most significantly the largest-scale (i.e.
σ ≈ y) structures at each height. In other words, since the largest-scale structures compose
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Figure 8. The ratio of the non-diagonal parts of K(σto, σ ) to the diagonal part K(σto, σto) at (a) σ+
to = 60,

(b) 240 and (c) 960 as a function of σ and y. We interpolate the values evaluated in the six cases (σ+ = 30, 60,
120, 240, 480 and 960) to draw these plots.

y+
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10–2
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102 103

Pr ǔv̌
∂y
∂u–

–

Figure 9. Production (3.8) of K(σto) by the mean flow. From the thinner (and darker) to the thicker (and lighter)
lines, σ+

to = 30, 60, 120, 240, 480 and 960. The open squares indicate Pr(M → σto) at y+ = σ+
to . The blue

line shows the production from the mean flow without scale decomposition. Here, h and uτ are used for the
normalization. The grey dashed line indicates (κy+)−1 and the black dashed one indicates (13κy+)−1 with
κ = 0.38.

a hierarchy of streaks located beside quasi-streamwise vortices (figures 3 and 4), the
mean flow transfers the energy to the streaks induced by these vortices. This sustaining
mechanism of the hierarchical streaks composes a part of the hierarchical SSP.

Next, let us look at the envelope (black dashed line in figure 9) of the curves of Pr
for σ+

to = 120, 240, 480 and 960. This line is proportional to y−1, which implies the
self-similarity of the largest structures in the log layer because each scale of the structures
equally contributes to the total production rate:

∫ 2σto

σto

Pr dy ≈ C
∫ 2σto

σto

y−1 dy = const. (3.11)

Here, the coefficient C = (13κ)−1, with κ being the Kármán constant, gives the best fit of
the envelope. Incidentally, the production rate of the energy around the scale σ+

to = 30 in
the buffer layer (see the open square for y+ = 30) is larger than the envelope. This implies
that the sustaining mechanisms of the largest scales by the mean shear are qualitatively
similar but quantitatively different in the buffer and log layers. The difference will explain
the statistics discussed in § 3.3.6.
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Figure 10. Scale-dependent energy transfer Tr defined by (3.9) to K(σto) with scales σ+
to = 30 (◦), 60 (� ),

120 (	) and 240 (•) at heights (a) y+ = 960, (b) 240 and (c) 60. Blue symbols indicate Pr defined by (3.8).
Here, h and uτ are used for the normalization.

3.3.2. Interscale energy transfer
Next, we evaluate the interscale energy transfer Tr(σfr → σto; y) defined by (3.9). Figure 10
shows Tr evaluated for (a) y+ = 960, (b) 240 and (c) 60. Looking at the results for y+ =
240 in the log layer, the contribution Tr(2σto → σto) from the twice larger-scale strain rate
is the most significant for all scales. On the other hand, the contributions from the smaller
scale (σfr < σto) are negative. This implies that the smaller-scale (σfr) flow reduces the
energy at the larger scale (σto). In other words, the direction of the energy transfer is
forward on average. This observation suggests that the creation of small-scale vortices
indeed corresponds to energy cascading events. Note that, for large scales (σ+

to = 120 (	)
and 240 (•)), Pr (blue dots) is larger than Tr. This is because the mean flow transfers its
energy to the largest scale at each height as already observed in figure 9. We emphasize
that, for smaller scales, the contribution Pr from the mean flow becomes less important,
and Tr(2σto → σto) plays a major role.
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The results for the other heights y+ = 960 (in the upper log layer) and y+ = 60 (in
the buffer layer) are similar to those for y+ = 240, if we refer to the scale as large
as the height as large. In other words, in the buffer and log layers in turbulent channel flow,
the large-scale energy is directly transferred from the mean flow, whereas smaller-scale
energy is generated by energy cascading process. Incidentally, we also see that the
interscale energy transfers to structures larger than the height (e.g. σ+

to = 240 in figure 10c)
are small.

It is also interesting to observe that the scale-dependent contributions to the vortex
stretching (figure 7) and to the energy transfer (figure 10) are similar to each other. This
result gives direct evidence that the vortex-stretching process plays a major role in the
energy cascade (Tennekes & Lumley 1972; Goto 2008, 2012; Lozano-Durán et al. 2016;
Goto et al. 2017; Doan et al. 2018; Motoori & Goto 2019a,b; Dong et al. 2020; Hirota et al.
2020).

Thus, we have shown the interscale energy transfer by evaluating Tr (3.9) at a given
height y. The small-scale energy in the log layer is transferred predominantly from
the twice-larger-scale structures and reduced by the half-scale ones. Here, we plot the
wall-normal distribution of Tr(2σto → σto) and Tr(σto/2 → σto) in figure 11 by black
solid and dashed lines, respectively, for (a) σ+

to = 240 and (b) 60. In both cases, at any
height, the former is always positive, whereas the latter is negative. In addition, their
positive and negative peaks are located around y ≈ 2σto and σto (indicated by the open
squares on these lines), respectively. Note that, around the negative peak (y ≈ σto) in the
log layer (figure 11a), the production Pr(M → σto ≈ y) (blue solid lines) gets large. This
is consistent with the conclusion drawn from figure 9 and implies that the mean shear first
transfers its energy to structures with the scale σ comparable to y, and then the energy is
transferred to the half-scale structures.

3.3.3. Crossover of Pr and Tr
The blue solid line in figure 11 intersects the black solid one around y ≈ 3σto (grey
arrow). This means that smaller vortices (σto � y/3) are generated by energy cascade
rather than the mean shear. Note that the Corrsin scale Lc( y) (Corrsin 1958), where the
mean shearing and cascade time scales (i.e. the eddy turnover time) are balanced, is also
proportional to y (Lc ≈ 0.3y) in the log layer (Jiménez 2013). Therefore, the generation
mechanism changes at a scale comparable to Lc( y); that is, the structures (σ � Lc) larger
than the Corrsin scale are generated by the mean shear, whereas the smaller-scale (σ � Lc)
structures are generated by energy cascade. This is similar to the observation that the
generation mechanism qualitatively changes at the height y proportional to 5σto in a
turbulent boundary layer (Motoori & Goto 2019a). Note that the proportional coefficients
are different because the quantification of the generation mechanism (e.g. filtering) is
different.

3.3.4. Advection
The four red lines (σ+

fr = 30 (dotted lines), 60 (dot-dashed lines), 120 (dashed lines) and
240 (solid lines)) in the inset of figure 11 show the scale-dependent advection terms Ad
defined by (3.10). These lines are overlapped in the main plot. While they are O(10−3),
Pr (blue solid lines) and Tr (black solid and dashed lines) are O(10)–O(1). It is therefore
clear that the advection hardly contributes to the generation of the turbulent energy in
the log layer. In other words, intense vortices in the log layer are not those created in
the near-wall but they are generated by energy cascade within the layer. This is consistent
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Figure 11. Energy production Pr by the mean flow (blue solid lines), energy dissipation −2νS(σto)
ij S(σto)

ij (blue
dashed lines), interscale energy transfer Tr(2σto → σto) from the twice-larger scale (black solid lines) and
Tr(σto/2 → σto) from the half scale (black dashed lines), and scale-dependent energy advection Ad from scales
σ+

fr = 240 (red solid lines), 120 (red dashed lines), 60 (red dot-dashed lines) and 30 (red dotted lines) to σto in
the equation for the energy with the scale (a) σ+

to = 240 and (b) 60. Two open squares on the black solid and
dashed lines indicate Tr(2σto → σto) at y+ = 2σ+

to and Tr(σto/2 → σto) at y+ = σ+
to , respectively. Here, h and

uτ are used for the normalization. The inset shows only Ad.

with the observation that the advection term without filtering little contribute to the energy
transport (see, for e.g. Hoyas & Jiménez 2008).

3.3.5. Dissipation
We also show in figure 11 the blue dashed lines indicating the scale-dependent energy

dissipation −2νS(σto)
ij S(σto)

ij . For (a) σ+
to = 240, its magnitude is smaller than, for example,

the energy production Pr. On the other hand, the energy dissipation is larger for the
smaller scale (b) σ+

to = 60. In the log layer, the magnitude of the energy dissipation for
the small-scale structures is larger than the energy production and it is comparable to the
energy transfers Tr (black lines). All these observations are also consistent with the energy
cascade picture.

3.3.6. Reynolds stress
The results shown above suggest that the energy cascade in the log layer occur within a
local layer, and the energy source of the cascade is the largest structures at each height
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produced by the mean shear. We have shown in figure 9 that the envelope (black dashed
line) for the curves of Pr in the log layer is proportional to y−1. This scaling is the same as
that of the total production without filtering (the grey dashed line in figure 9), which is the
product of the mean velocity gradient and the Reynolds stress. In this subsection, we show
that the behaviour of the Reynolds stress is also explained by the hierarchy of coherent
structures.

For turbulent channel flow, if we assume the log law of the mean velocity profile, the
Reynolds stress in the log layer obeys

− ǔv̌
+ = 1 − y+

Reτ

− 1
κy+ (3.12)

(see, for e.g. Rotta 1962). For 1/κ 
 y+ 
 Reτ , −ǔv̌
+

is approximately 1. Looking at the
Reynolds-stress profile without filtering (the blue line in figure 12a), we can see that this
scaling indeed holds in the log layer. To explain this behaviour, we show in figure 12(a)
the scale-decomposed Reynolds stress −u(σ )v(σ) for the scales σ+ = 30, 60, 120, 240,
480 and 960. We can see that −u(σ )v(σ) always takes a maximum around y ≈ σ , and,
in the log layer, the maxima (indicated by the black dashed line) are constant (≈1/13)
irrespective of σ . For the other heights (y �≈ σ ), the Reynolds stress is much smaller. Thus,
if we assume that the largest-scale coherent structures are most relevant to the Reynolds
stress at each height and they are self-similar in the log layer, we may demonstrate that
the total Reynolds stress becomes constant. To show this, we plot in figure 12(b) the
summation τ< of the contributions from the scales smaller than and equal to σ (e.g. for
σ+ = 120, τ< = −u(120)v(120) − u(60)v(60) − u(30)v(30)). Although we do not take into
account the cross-correlations (e.g. −u(30)v(60)) between different scales which contribute
to the Reynolds stress, the region with constant τ< indeed expands for larger σ .

The scaling of the location yp of the peak of the Reynolds stress with respect to Reτ

is also important. Chen, Hussain & She (2019) showed that the scaling of yp changed
around Reτ = 3000: y+

p ∝ Re1/3
τ for Reτ � 3000, while y+

p ∝ Re1/2
τ for Reτ � 3000. We

examine this scaling transition by using the database with a single Reτ (= 4179). For
this purpose, we again focus on τ< (figure 12b) assuming that the increase of Reτ

corresponds to the increase of the levels of the hierarchy of the largest-scale (σ ≈ y)
flow structures, and that the largest-scale flow structures most contribute to the Reynolds
stress (figure 12a). Since the hierarchical structures are absent in low-Reynolds-number
turbulence, only the buffer-layer coherent structures exist. Therefore, the peak of the
Reynolds stress for low Reynolds numbers is related to the peaks of τ< for σ+ = 30
and 60, for which the buffer-layer structures are dominant. As the Reynolds number
increases, since the hierarchy of structures appears, larger-scale motions contribute to
the Reynolds stress. For example, the curve of τ< for σ+ = 960 (the thickest line in
figure 12b) is similar to that of the Reynolds stress (blue line) without filtering. Thus,
we can interpret τ<(σ ) as a distribution of the Reynolds stress at the Reynolds number σ .
In fact, the peaks of τ< demonstrate a scaling transition when increasing σ (figure 13).
The peak location yp of τ<(σ ) is proportional to σ 1/3 for σ+ � 240 (see blue solid line),
whereas the scaling changes to yp ∝ σ 1/2 at σ+ ≈ 240 (see red dashed line). Although
the peak y+

p = 50 at the transition point σ+ ≈ 240 is not in exact agreement with the peak
location (y+

p ≈ 80) shown by Chen et al. (2019), the scaling is reproduced by the hierarchy
in the fully developed turbulence (Reτ = 4179 > 3000). We therefore conclude that the
scaling transition for the Reynolds number occurs due to the quantitative difference in the
generation mechanism of the largest-scale structures in the buffer and log layers (figure 9).
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Figure 12. (a) Scale-decomposed Reynolds stress −u(σ )v(σ ) and (b) the summation τ<( y; σ) of the
contributions from the scales smaller than and equal to σ . From the thinner (and darker) to thicker (and
lighter) lines, σ+ = 30, 60, 120, 240, 480 and 960. The blue line shows the Reynolds stress without the scale
decomposition. The grey dashed line indicates 1 and the black dashed one indicates 1/13.

30
20

200

60 120

σ+

yp
+

240 480 960

Figure 13. The height yp where τ< (shown as in figure 12b) is maximum. Blue solid and red dashed lines are
proportional to σ 1/3 and σ 1/2, respectively.

4. Conclusions

To reveal the hierarchy of coherent structures of turbulent channel flow and to understand
its sustaining mechanism, we have analysed the database of the fully developed turbulence
at Reτ = 4179 provided by Lozano-Durán & Jiménez (2014). The key ingredients of our
analyses are the scale decomposition using a band-pass filter, which is composed of the
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combination (2.2) of the Gaussian filters at two different scales, and the quantification
of the real-space energy transfer (3.8) and (3.9). We have shown the concrete relation
between vortices and low-speed regions at the same or different level of the hierarchy in the
real space (§ 3.1), and their sustaining mechanism in terms of the vortex stretching (§ 3.2)
and energy transfer (§ 3.3). We summarize the main conclusions on (i) the largest-scale
structures, (ii) smaller-scale vortices and (iii) the effect of the advection of small-scale
structures from the wall to the log layer.

(i) Using the band-pass filtered velocity (2.2) and its gradients, we have visualized the
hierarchy of vortices and low-speed structures (figure 2). Their isosurfaces are determined
by the percolation analysis (appendix A). An important observation is that the largest-scale
structures at each height are composed of low-speed streaks and quasi-streamwise vortices
located beside the streaks in a staggered manner (figure 3). Here, we re-emphasize that
these structures are the largest at each height in the sense that their size is comparable to
the distance from the wall. The structures (figure 4) obtained by the conditional average
are consistent with the observation in figure 3, and they are also similar to those observed
in the overdamped LES (Hwang & Cossu 2010, 2011; Hwang 2015; Cossu & Hwang
2017). Moreover, since the observed structures are qualitatively similar to the coherent
structures in the buffer layer, we may speculate that the hierarchy of the largest-scale
quasi-streamwise vortices and low-speed streaks is maintained by the hierarchical SSP.
The scale-dependent contributions of the vortex stretching defined by (3.2) and (3.3) and
the energy transfer defined by (3.8) and (3.9) are consistent with the hierarchical SSP.
In other words, the largest-scale quasi-streamwise vortices are stretched by the mean shear
(figure 7), and the energy is also transferred from the mean shear to the largest-scale streaks
(figure 9). In the log layer, the largest-scale coherent structures are self-similar (figure 9)
and this explains statistics, such as the Reynolds stress, determined by them (figures 12
and 13).

(ii) Smaller-scale vortices, namely, vortices smaller than the Corrsin scale (see § 3.3.3)
proportional to the height from the wall, are stretched by strain-rate fields at scales one
to eight times larger (for example, see open symbols in figure 7a). In particular, the
contribution from the twice-larger scale is most significant. These trends are similar to
the results of the energy transfer (see open symbols in figure 10a). At the same time,
vortices at a given scale are contracted by smaller scales (see open symbols for σS < σω

in figure 7a), and the energy of the given scale is reduced by them (see open symbols for
σfr < σto in figure 10a). These results on the vortex stretching and the energy transfer are
consistent with the picture of the energy cascade due to the vortex stretching. Through the
cascade, the distribution of smaller-scale vortices becomes isotropic (figure 5a–c). Here,
recall that the present analysis on the interscale energy transfer has been developed under
the assumptions described in § 3.3. Nevertheless, we can capture the energy cascading
process due to the vortex stretching. The verification of the assumption as well as the
examination of the spatial correlation between the vortex stretching and the energy transfer
is an important near-future study.

(iii) By evaluating the spatial correlation between different scales and the strength of
the vortex stretching in the upflow and downflow cases, we have shown that the energy
cascade events are stronger in the large-scale upflow (ejection) regions (figure 7), where
intense vortical structures are more likely to exist (figure 6). This is because the source
of the vorticity rather than the small-scale vortices themselves, is carried from the wall,
and the large-scale upflow promotes the vortex stretching in the region. This has been
verified in figure 11, where we show that the advection of the energy is much weaker than
the energy production and interscale energy transfer. Hence, we conclude that small-scale
vortices and energy in the log layer are not carried from the wall but are generated by
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the energy cascade. It is also interesting that the cascade event in the log layer is likely
to occur within each local layer. In fact, the height (y ≈ σto) of the positive peak of the
production Pr in the log layer corresponds to that of the negative peak of the energy
transfer Tr(σto/2 → σto) (figure 11a).

The sustaining mechanism of flow structures in the buffer and log layers of turbulent
channel flow is similar to that of a turbulent boundary layer (Motoori & Goto 2019a). In
both the flows, vortices at the scale (Corrsin scale) comparable to the height are stretched
by the mean shear, whereas smaller-scale vortices are stretched by twice-larger-scale
vortices. We did not show the relation between the vortex stretching and energy transfer
in our previous studies on the turbulent boundary layers, but the similarity of the vortex
stretching events in these flows implies that the similar energy cascading events sustain
flow structures in the buffer and log layers of turbulent boundary layers. However, we have
not shown the sustaining mechanism above the layers. This is an interesting issue because
there would appear to be a difference between the two wall-bounded turbulent flows.
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Appendix A. Percolation analysis

To objectively determine the thresholds of Q(σ ) and u(σ ) for the isosurface visualization,
we investigate the percolation of the region satisfying the condition Q(σ ) > Q(σ )

th and
u(σ ) < −u(σ )

th , respectively. This technique was used by several authors (e.g. del Álamo
et al. 2006; Lozano-Durán et al. 2012; Osawa & Jiménez 2018; Motoori & Goto 2020).
More concretely, we tag the same label to the neighbouring connected grid cells satisfying
the condition in order to count the number of the identified vortices and to estimate the
volume for different values of Q(σ )

th and u(σ )
th . For example, the darkest yellow dashed-line

in figure 14(a) shows the number of individual vortices at σ+ = 60 normalized by its
maximum as a function of the threshold. When the threshold is small (Q(σ )

th � 1), the
number is small because many of the objects are connected. Increasing the threshold
(Q(σ )

th /Q(σ )
rms ∼ 1), the number gets larger. For larger thresholds (Q(σ )

th /Q(σ )
rms � 10), since

each object shrinks, the number again decreases. This trend of the number of objects is
consistent with the ratio Vlar/Vtot (solid line) of the volume of the largest object Vlar to
the total volume Vtot of all objects. The volume ratio is the smallest at Q(σ )

th /Q(σ )
rms = 8

for σ+ = 60 in figure 14(a) (indicated by the black arrow). This justifies the threshold
Q(σ )

th = 8Q(σ )
rms for the visualizations (figures 2c and 3c) and the condition for the averages

(figures 4c and 5). Since the similar trend of the curves is observed in the results for
the other scales σ+ = 240 and 960 (the thicker lines in figure 14a) and for the velocity
fields (figure 14b), we can objectively choose the thresholds Q(σ )

per and u(σ )
per by the values

corresponding to the smallest values of Vlar/Vtot.
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Figure 14. Percolation analysis for (a) vortices (Q(σ ) > Q(σ )
th ) and (b) low-speed regions (u(σ ) < u(σ )

th ). From
the thinner (and darker) to the thicker (and lighter) lines, σ+ = 60, 240 and 960. The dashed lines show the
ratio N/Nmax of the number of identified objects to its maximum. The solid lines show the ratio Vlar/Vtot of the
volume of the largest object to the total volume of the identified objects. The arrows indicate thresholds (Q(σ )

per

and u(σ )
per ) of the isosurface visualization in figure 2.
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